Collector current waveforms for transistors operating in class A amplifier stage
Collector current waveforms for transistors operating in class B amplifier stages
Collector current waveforms for transistors operating in class AB amplifier stage
Collector current waveforms for transistors operating in class C amplifier stage
An emitter follower ($Q_1$) biased with a constant current I supplied by transistor $Q_2$. 
Transfer characteristic of the emitter follower. This linear characteristic is obtained by neglecting the change in $v_{BE1}$ with $i_L$. The maximum positive output is determined by the saturation of $Q_1$. In the negative direction, the limit of the linear region is determined either by $Q_1$ turning off or by $Q_2$ saturating, depending on the values of $I$ and $R_L$. 
Class B output stage.
Transfer characteristic for the class B output stage.
How the dead band in the class B transfer characteristic results in crossover distortion.
Simplified internal circuit of the LM380 IC power amplifier

(Courtesy National Semiconductor Corporation.)
Small-signal analysis of the circuit.

The circled numbers indicate the order of the analysis steps.
Structure of a power op amp. The circuit consists of an op amp followed by a class AB buffer. The output current capability of the buffer, consisting of $Q_1$, $Q_2$, $Q_3$, and $Q_4$, is further boosted by $Q_5$ and $Q_6$. 
Double-diffused vertical MOS transistor (DMOS).
Typical $i_D$-$v_{GS}$ characteristic for a power MOSFET.
A class AB amplifier with MOS output transistors and BJT drivers. Resistor $R_3$ is adjusted to provide temperature compensation while $R_I$ is adjusted to yield to the desired value of quiescent current in the output transistors.
References

- *Electronics* by A. Hambley
- *Microelectronics Circuits* by Sedra & Smith
- Other books on Electronics