Basic Principle of Plasma Display Panel

Prof. Heung-Sik Tae School of Electronic and Electrical Engineering, Kyungpook National University

• What is the 'Plasma Display Panel'?

- Principle of AC-PDP
- Driving Mechanism
- Image in PDP

Section 1: What is the 'PDP'?

- **Definition of PDP**
- What is 'plasma'?
- Plasma
- Applications of PDP
- Advantages of PDP

Definition

Plasma:

Display:

Panel :

What is 'Plasma'?

Plasma

Applications of PDP

Home

Public

Entertainment

Industrial

Business

Advantages of PDP

Large screen

Thin

Lightweight

Wide viewing angle

Good Uniformity

Distortion-Free with M.F.

Section 2: Principles of PDP

- Gas Discharge
- Structure of AC-PDP
- Gas in PDP
- Basic of AC discharge
- Emission of VUV
- Definition of Phosphor
- Spectrum of Visible light

:

AC Type PDP

Structure of AC PDP

Structure of AC PDP(

÷.

가

≻MgO

 \triangleright

Structure of AC PDP(

▶ :VUV 가

 \triangleright

Wall charge Polarization of dielectric (

• Wall charge

Simulation of discharge(2D) & CCD image(

Simulation (side view)

CCD image (top view)

■ 가

Red, Green, Blue (PDP)

Section 3: Driving Mechanism

- PDP Driving scheme
- Necessity of Reset Pulse
- Driving scheme
 - Using Strong Discharge Reset
 - Ramp Pulse with Wall Voltage
- Driving scheme using Ramp Reset

PDP Driving step

- Reset and Erase step
 - Strong discharge reset (Pulse reset)
 - Ramp reset
- Address step

• Sustain step

Necessity of Reset

Erasing of wall charges made by previous discharge and set-up wall charge to do addressing discharge.

Reducing the discharge voltage difference in PDP cell

Reducing of background light

- → Improve the contrast ratio
- For Low address voltage

Reset pulse

- Erasing wall charge
 - Narrow width pulse
 - Low voltage pulse
 - Ramp pulse
- Redistribution of wall charge
 - Self-erasing discharge (using strong discharge)
 - Ramp pulse (using weak discharge)

Strong discharge reset

Strong Discharge Reset

- Merit & Defect in strong discharge reset
- Merits
 - Short reset time
 - Redistribution of wall charges
- Defect
 - High driving voltage
 - Self-erasing discharge
 - Low contrast ratio

Ramp waveform

Matsushita Driving pulse

Matsushita Ramp reset mechanism

Driving Mechanism

- Merit and Defect of Matsushita Ramp reset
- Merits
 - High contrast ratio (Weak discharge)
 - Strong Redistribution of wall charges
 - Low address driving voltage
 - Stable
- Defect
 - Long reset time
 - High reset voltage

Driving Mechanism

Modeling of Address step **Address Electrode** \mathbf{Y}_1 **Barrier rib** \mathbf{Y}_2 \mathbf{Y}_{3} Y_4 $\mathbf{Y}_{\mathbf{5}}$ \mathbf{A}_1 A_2 **Y-Sustain X-Sustain** A_3 Electrode **Electrode** A_4

tim

Section 4: Expression of image in PDP

- Pulse Number Modulation Driving
- Luminance Control in PDP
- Wall Charge
- Line-by-Line Scanning, Matrix Driving
- Subfield Method
- Block Diagram of Signal Circuit in PDP

Pulse Number Modulation Driving

• Cathode Ray Tube :

• Plasma Display Panel :

Luminance Control in CRT and PDP

• CRT : Control the Luminance using Electron Beam Intensity

• PDP : Control the Luminance using Number of Light Pulses

8 Bit Binary Code →8 Subfields →256 가 →16,777,216가 R(256) G(256) 16,777,216 B(256)

Gray Scale	SF1	SF2	SF3	SF4	SF5	SF6	SF7	SF8
	1(2 ⁰)	2(2 ¹)	4(2 ²)	-8(2 ³)	16(2 ⁴)	<mark>32(2⁵)</mark>	64(2 ⁶)	128(2 ⁷)
0								
1								
2								
3								
4								
5								
6								
7								
		• • • •	• • • •	••••	•	• • • •	•	•
248								
249								
250								
251								
252								
253								
254								
255								

ON/OFF State Selection

VF: 250V

Sustain Discharge

ON Cell

OFF Cell

Effect of Wall Charge

- Line-by-Line Scanning
- Cathode Ray Tube : Cell by Cell Scanning

• PDP : Line - by - Line Scanning

Composition of 1 Subfield

8 Subfield in 1 TV-Field (ADS)

Video Signal Processing

• Analog Video Signal ⇒ Digital Pulse Signal

Subfield Method – Example (Addressing)

Original Image

SF2

SF3

Subfield Method – <u>Example (Displayed)</u>

Original Image

SF4

SF5

SF1

SF6

SF2

SF7

SF3

SF8

Future Work

- High luminance efficiency
 - : 5 lm/W)
- High image quality (color temperature, contrast ratio, dynamic false contour, image sticking)
- Low cost

(materials, manufacturing processes)