Cable Design Equations—Coaxial Cable

COAXIAL CABLE CAPACITANCE:

$$C = \frac{7.36\epsilon}{LOG\left(\frac{D}{fd}\right)}, pF/ft$$

COAXIAL CABLE VELOCITY OF PROPAGATION:

$$V_p = \frac{100}{\epsilon^{1/2}}, \%$$

COAXIAL CABLE INDUCTANCE:

L = 0.140 LOG
$$\left(\frac{D}{fd}\right)$$
, μ H/ft

COAXIAL CABLE TIME DELAY:

$$t_d$$
 = 1.016 $\epsilon^{1/2}$, nsec/ft

COAXIAL CABLE IMPEDANCE:

$$Z_{O} = \frac{138}{\epsilon^{1/2}} LOG \left(\frac{D}{fd}\right), \Omega$$

COAXIAL CABLE CUTOFF FREQUENCY:

$$f_{CO} = \frac{7.50}{\epsilon^{1/2} (D + fd)}, GHz$$

where:

C = capacitance, pF/ft

 ε = insulation dielectric constant (see table below)

D = diameter under the shield, inches

d = diameter of the center conductor, inches

L = inductance, μ H/ft

f = strand factor (see Table II, page 194)

 Z_{O} = characteristic impedance, Ω V_{p} = velocity of propagation, %

t_d = time delay, nsec/ft

f_{CO} = cutoff frequency, GHz

MATERIAL	3	POWER FACTOR, PF
FEP Teflon® (Cellular)	1.40	0.0002
FEP Teflon® (Solid)	2.10	0.0003
PE (Cellular)	1.56	0.0003
PE (Solid)	2.26	0.0003
PE (Semi-Solid)	1.29	0.0003