GAS EXCHANGE AND TRANSPORT

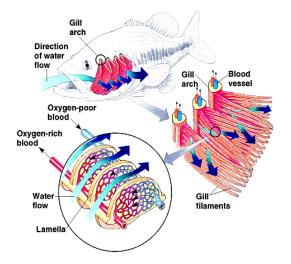
- I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O₂ to generate CO₂ & H₂O. This is cellular respiration
- II. HOW GAS ENTERS A CELL
 - A. The composition of air: 79% N_2 + 21% O_2 + 0.1% other
 - B. The diffusion of oxygen into water
 - C. The passage of O_2 into cells

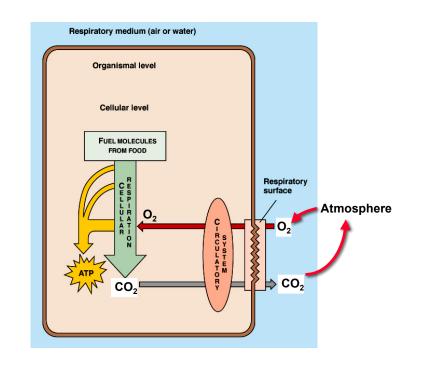
III. THE EVOLUTION OF RESPIRATION

- A. Diffusion of O_2 is passive & driven by difference in O_2 concentration (dC/dx)
 - 1. Mathematical relationship called Fick's Law of Diffusion
 - 2. Rate of diffusion = R = D x A x dC/dx (D is diffusion ceff.; A is surface area; dC/dx is concentration gradient)
 - 3. Evolutionary changes optimize R; favor certain parameters
- B. Limitations of simple diffusion
- C. Increasing the diffusion surface area (A), and decreasing dx
- D. Enclosing the respiratory organ

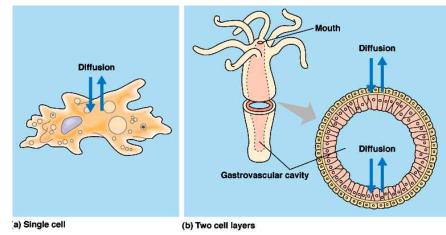
IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

VI. THE MECHANICS OF HUMAN BREATHING


- A. Structure of the respiratory system,
- B. Mechanics of breathing
 - 1. Expansion & contraction of lung is passive; follows intrapleural pressure
 - 2. Diaphragm descends & walls of chest cavity expand with inhalation
 - 3. Rib cage & diaphragm return to original positions with exhalation: air leaves
 - 4. The problem of air/water surface tension role of surfactant; role of mucus

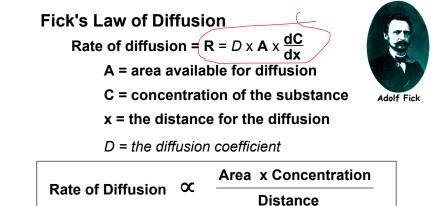

VII. HOW RESPIRATION WORKS: GAS TRANSPORT AND EXCHANGE

- A. Close association of respiratory and circulatory systems
- B. Hemoglobin and gas transport
 - 1. Hemoglobin: O_2 carrier protein within blood of many animals
 - 2. Oxygen-hemoglobin dissociation curve
 - a. Correlates partial pressure of O_2 and binding to hemoglobin
 - b. Curve also shifted with activities, e.g., pH & CO₂
 - 3. Carbon monoxide (CO) is a poison because of high affinity to Hb
- C. The exchange process
 - 1. O₂-rich air interfaces with O₂-poor blood at alveoli
 - 2. O_2 -loaded blood reaches systemic capillaries where CO_2 is high
 - 3. Simultaneously, blood gives up its O_2 & absorbs CO_2 from tissues
 - a. Carbonic anhydrase catalyzes: $CO_2 + H_2O H_2CO_3$
 - b. H₂CO₃ dissociates to form, H₂CO₃ \rightarrow HCO₃ + H⁺, no catalyst needed
 - 4. Blood cells carry CO_2 back to lungs where CO_2 is lost and O_2 is taken up


VIII.REGULATION OF VENTILATION

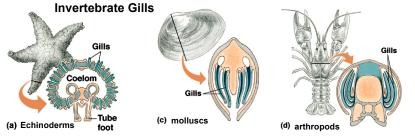
- A. Regulatory centers in the central nervous system
- B. Chemoreceptors sense the level of O_2 and CO_2

Very small animals can exchange gas without a specialized respiratory apparatus

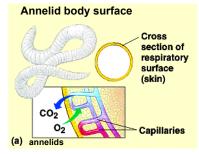


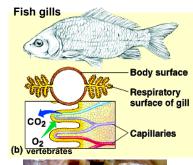
What is DIFFUSION?

How fast is DIFFUSION?			
Diffusion distance	Time required for diffusion		
1-10 µm	1-50 msec		
1 mm - 1 cm	10 min - 10 hr		

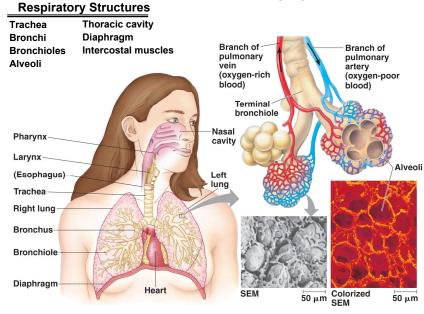

CONCLUSION?

DIFFUSION is fast at small distances and slow at long distances

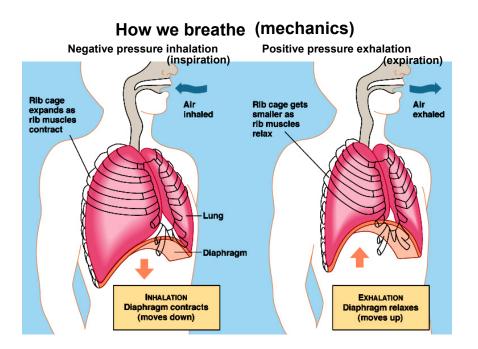

Respiratory Surface: The interface over which gas exchange occurs between environment and body fluids

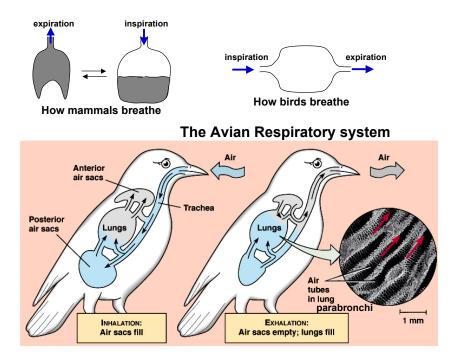


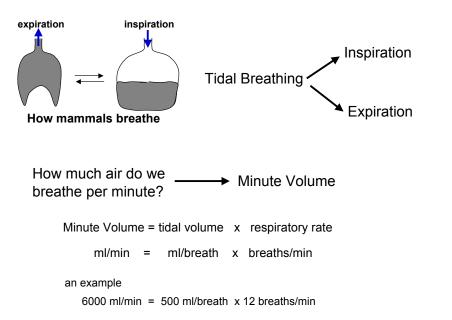
So...... the strategy is to <u>increase the surface area</u> and <u>decrease the distance</u> that has to be accommodated for diffusion of gases from the atmosphere (in this case sea water) and the body fluid.

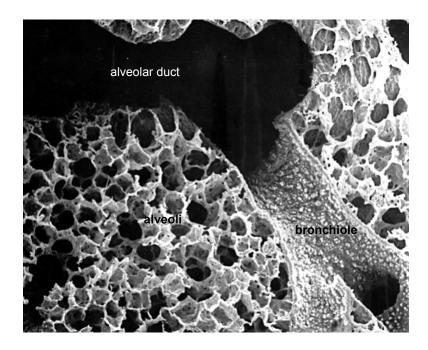

Inverted respiratory organs inverted organs designed to keep from drying out Body Body surface surface Respiratory surface Respiratory (within spiracle surface lung) (tracheal 02 tubes) Capillary Body CO2 cells (d) mammals (c) insects Body wall *Auscle* Spiracule Trachea Tracheoles

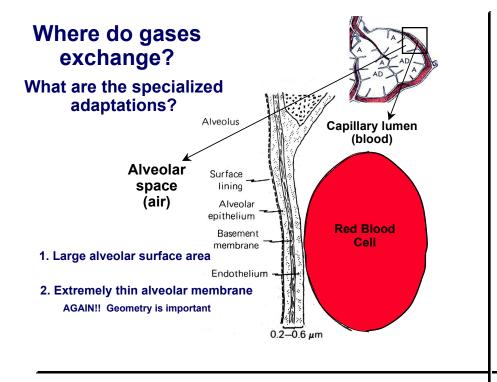
Respiratory Organs







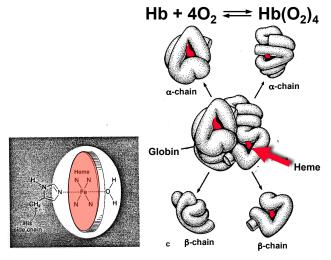


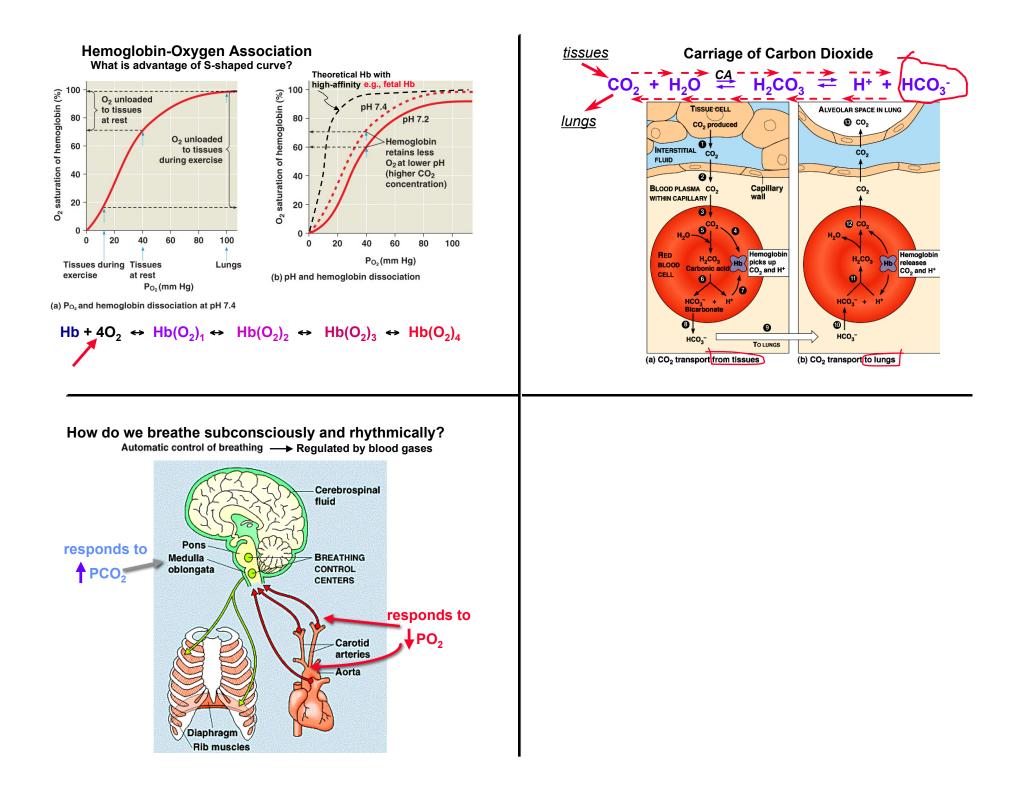

The Mammalian Respiratory System

How gases are carried in the blood (values given in.... ml gas/ 100 ml blood) 0, CO_2 2.6 as dissolved gas 0.3 in a combined form 19.5 46.4 HCO₃ How combined? Hb(O₂)₄ combined w/ Hb H₂CO₃ • $4O_2$ + Hb \longrightarrow Hb $(O_2)_4$ $CO_2 + H_2O \xrightarrow{CA} H_2CO_3 \longrightarrow H^+ + HCO_3^- \checkmark$ CA = carbonic anhydrase

Getting gases to and from cells

First: Composition of Atmospheric Air


O ₂	21%		
N ₂	79%	>	= 100%
CO ₂	<0.1%	J	


At sea level, atmospheric pressure ~ 760 mm Hg

What part of the atm. pressure does O_2 represent? 21% of 760 mm Hg = 160 mm Hg = PO_2

What part of the atm. pressure does CO_2 represent? 0.04% of 760 mm Hg = 0.3 mm Hg = PCO_2

Structure of hemoglobin (Hb): the major protein in RBCs 4 globin + 4 heme = hemoglobin (Hb)

