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Work and Kinetic Energy 
 
C.1 Energy 
 
C.1.1 The Concept of Energy 
 
The concept of energy helps us describe many processes in the world around us. 
 

• Falling water releases stored “gravitational potential energy” turning into a 
“kinetic energy” of motion.  This “mechanical energy” can be used to spin 
turbines and alternators doing “work” to generate electrical energy. It's sent to you 
along power lines. When you use any electrical device such as a refrigerator, the 
electrical energy turns into mechanical energy to make the refrigerant flow to 
remove ‘heat’ (the kinetic motion of atoms), from the inside to the outside. 

 
• “Human beings transform the stored chemical energy of food into various forms 

necessary for the maintenance of the functions of the various organ system, 
tissues and cells in the body.”1 This “catabolic energy” is used by the human to 
do work on the surroundings (for example pedaling a bicycle) and release heat. 

 
• Burning gasoline in car engines converts “chemical energy” stored in the atomic 

bonds of the constituent atoms of gasoline into heat that then drives a piston. With 
gearing and road friction, this motion is converted into the movement of the 
automobile. 

 
• Stretching or compressing a spring stores ‘elastic potential energy’ that can be 

released as kinetic energy. 
 

• The process of vision begins with stored “atomic energy” released as 
electromagnetic radiation  (light) that is detected by exciting atoms in the eye, 
creating chemical energy. 

 
• When a proton fuses with deuterium, (deuterium is a hydrogen atom that has an 

extra neutron along with the proton in the nucleus), helium three is formed (two 
protons and one neutron) along with radiant energy in the form of photons. The 
mass of the proton and deuterium are greater than the mass of the helium. This 
“mass energy” is carried away by the photon. 

 
These energy transformations are going on all the time in the manmade world and the 
natural world involving different forms of energy: kinetic energy, gravitational energy, 
heat energy, elastic energy, electrical energy, chemical energy, electromagnetic energy, 

                                                 
1 George B. Benedik and Felix M.H. Villars, Physics with Illustrative Examples 
from Medicine and Biology Volume 1 Mechanics, Addison-Wesley, Reading, 1973, p. 5-
116. 
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nuclear energy, or mass energy. Energy is always conserved in these processes although 
it may be converted from one form into another. 
 
Any physical process can be characterized by an “initial state” that transforms into a 
“final state”. Each form of energy  undergoes a change during this transformation, iE
 
 final, initial,i iE E E i∆ = −  (C.1.1) 
 
Conservation of energy means that the sum of these changes is zero, 
 

  (C.1.2) 1 2
1

0
N

i
i

E E E
=

∆ + ∆ + = ∆ =∑
 
Two critical points emerge. The first is that only change in energy has meaning. The 
initial or final energy is actually a meaningless concept. What we need to count is the 
change of energy and so we search for physical laws that determine how each form of 
energy changes. The second point is that we must account for all the ways energy can 
change. If we observe a process, and the changes in energy do not add up to zero, then 
the laws for energy transformations are either wrong or there is a new type of change of 
energy that we had not previously discovered. Some quantity is conserved in all 
processes and we call that energy. If we can quantify the changes of forms of energies 
then we have a very powerful tool to understand nature. 
 
We will begin our analysis of conservation of energy by considering processes involving 
only a few forms of changing energy. We will make assumptions such as “ignore the 
effects of friction”. This means that from the outset we assume that the change in heat 
energy is zero. 

 
Energy is always conserved but sometimes we prefer to restrict our attention to a set of 
objects that we define to be our system. The rest of the universe acts as the surroundings. 
Our conservation of energy then becomes 
 
 system surroundings 0E E∆ + ∆ =  (C.1.3) 
 
C.1.2 Kinetic Energy 
 
Our first form of energy that we will study is the kinetic energy K , an energy associated 
with the motion of an object with mass m . Let’s consider a car moving along a straight 
road (call this road the x -axis) with velocity ˆ

xv=v i . The speed v  of the car is the 
magnitude of the velocity. The kinetic energy of the car is defined to be the positive 
scalar quantity  
 

 21
2

K mv=  (C.1.4) 
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Note that the kinetic energy is proportional to the square of the speed of the car. The SI 
unit for kinetic energy is ; this combination units is defined to be a joule and 

is denoted by [J]. Thus  

2 -2kg m s⎡ ⋅ ⋅⎣ ⎤⎦
2 21 J 1 kg m s−≡ ⋅ ⋅ .  

 
Let’s consider a case in which our car changes velocity. For our initial state, the car 
moves with an initial velocity  along the -axis. For the final state (some time 

later), the car has changed its velocity and now moves with a final velocity 
0 ,0

ˆ
xv=v i x

,
ˆ

f x fv=v i . 
Therefore the change in the kinetic energy is  
 

 2
0

1 1
2 2fK mv mv∆ = − 2  (C.1.5) 

 
C.2 Work and Power 
 
C.2.1 Work Done by Constant Forces 
 
We begin our discussion of the concept of work by analyzing the motion of a rigid body 
in one dimension acted on by constant forces. Let’s consider an example of this type of 
motion: pushing a cup forward with a constant force along a desktop. When the cup 
changes velocity and hence kinetic energy, the sum of the forces acting on the cup must 
be non-zero according to Newton’s Second Law. There are three forces involved in this 
motion, the applied pushing force appliedF , the contact force k= +C N f , and gravity, 

. The force diagram is shown in Figure C.2.1. grav m=F g
 

 
Figure C.2.1: Force diagram on a cup. 

 
Let’s choose our coordinate system so that the +x -direction is the direction of motion of 
the cup forward. Then the pushing force can be described by,  
 
 applied applied,

ˆ
xF=F i  (C.2.1) 
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Definition: Work done by a Constant Force 
 

Suppose a body moves in a straight line from an initial point 0x  to a final point 

fx  so that the displacement of the cup is positive, 0 0fx x x∆ ≡ − > . The work W  

done by the constant force appliedF  acting on the body is the product of the 
component of the force  and the displacementapplied,xF x∆ , 
 

 applied applied,xW F x= ∆  (C.2.2) 
 
Work is a scalar quantity; it is not a vector quantity. The SI units for work are joules 
since[1 . Note that work has the same dimension as kinetic energy.  N m] = [1 J]⋅
 
If our applied force is along the direction of motion, both  and , so the 
work done is just the product of the magnitude of the applied force with the distance 
moved and is positive. We can extend the concept of work to forces that oppose the 
motion, such as friction.  

applied, 0xF > 0x∆ >

 
In our example of the moving cup, the friction force is 
 
  (C.2.3) k k k

ˆ ˆ
xf N mµ µ= = − = −f i i ˆg i

g x

 
Here the component of force is in the opposite direction as the displacement. The work 
done by the friction force is negative, 
 
 friction kW mµ= − ∆  (C.2.4) 
 
Since the gravitational force is perpendicular to the motion of the cup, it has no 
component along the line of motion. Therefore, gravity does zero work on the cup when 
the cup is slid forward in the horizontal direction.  The normal force is also perpendicular 
to the motion, hence does no work.  
 
In summary, the gravitational force and the normal force do zero work, the pushing force 
does positive work, and the friction force does negative work. 
 
C.2.2 Work and the Dot Product 
 
A very important physical example of the dot product of two vectors is work. Recall that 
when a constant force acts on a mass that is moving along the x -axis, only the 
component of the force along that direction contributes to the work, 
 
  
 xW F x= ∆  (C.2.5) 
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For example, suppose we are pulling a mass along a horizontal surface with a force F . 
Choose coordinates such that horizontal direction is the -axis and the force F  forms an 
angle 

x
β  with the positive x-direction. In Figure C.2.2 we show the force vector 

 and the displacement vector x y
ˆF F= +F i ĵ ˆx∆ = ∆x i . Note that x∆ is the component of 

the displacement and hence can be greater, equal, or less than zero. 
 

 
Figure C.2.2 Force and displacement vectors 

 
Then the dot product between the force vector F  and the displacement vector  is  ∆x
 
  
  (C.2.7) ˆ ˆ ˆ( ) ( )x y xF F x F⋅∆ = + ⋅ ∆ = ∆F x i j i x
 
This is the work done by the force, 
 
 W∆ = ⋅∆F x   (C.2.9) 
 
The force  forms an angle F β  with the positive x-direction. The angle β  takes values 
within the range π β π− ≤ ≤ .  Since the -component of the force is x cosxF F β=  where 

denotes the magnitude of | |F = F F , the work done by the force is  
 
  
 ( cos )W x F β x= ⋅∆ = ∆F  (C.2.10) 
 
C.2.3 Work done by Non-Constant Forces 
 
Consider a mass moving in the x -direction under the influence of a non-uniform force 
that is pointing in the -direction, x x

ˆF=F i . The mass moves from an initial position 0x  
to a final position fx  .In order to calculate the work done by a non-uniform force, we 
will divide up the displacement into a large number  of small displacements N ix∆  where 
the index i  denotes the i th displacement and takes on integer values from 1 to , with N
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N fx x= . Let (  denote the average value of the x -component of the force in the 

interval [
)x iF

]1,i ix x− . For the i th displacement, the contribution to the work is 
 
  
 ( )i x i iW F x∆ = ∆

ix

 (C.2.11) 
 
 This contribution is a scalar so we add up these scalar quantities to get the total work; 
 
  

 
1 1

( )
i N i N

N i x i
i i

W W F
= =

= =

= ∆ = ∆∑ ∑  (C.2.13) 

 
This depends on the number of divisions N . In order to define a quantity that is 
independent of the divisions, take the limit as  and N →∞ 0ix∆ → . Then the work is 
  

  (C.2.15) 
0

10

lim ( )
f

i

x xi N

x i i xN i x xx

W F x
==

→∞
= =∆ →

= ∆ =∑ ∫ F dx

 
This last expression is the definition of the integral of the x-component of the force with 
respect to the parameter . In Figure C.2.3, the graph of the x -component of the force 
with respect to the parameter  is shown. The work integral is the area under this curve. 

x
x

 

 
Figure C.2.3 Graph of -component of the force as a function of  x x

 
C.2.4 Work Done Along an Arbitrary Path 
 
Now suppose that a non-constant force F  acts on an object of mass  while the object is 
moving on a three-dimensional curved path. The position vector of the particle at time t  
with respect to a choice of origin is 

m

( )tr . In Figure C.2.4, the orbit of the object is shown 
of the object for a time interval 0 , ft t⎡ ⎤⎣ ⎦ , moving from an initial position  at 

time  to a final position 
0 0( )t t≡ =r r

0t t= ( )f ft t≡ =r r  at time ft t= .  
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Figure C.2.4 Orbit of the mass. 
 
We divide the time interval  into  small pieces with 0 , ft t⎡⎣ ⎤⎦ fN Nt t= . Each individual 
piece is labeled by the index i  taking on integer values from 1 to . Consider two 
position vectors  and 

N
(i it t≡ =r r ) 1)i1 (i t t− −≡ =r r  marking the  and  position. The 

displacement  is then 
i 1i −

i∆r 1i i i−∆ = . −r r r
 
Let  denote the average force acting on the mass during the interval [iF ]1,i it t− . We can 
locate the force in the middle of the path between ir  and 1i−r . The average work iW∆  
done by the force during the time interval [ ]1,i it t−  is the dot product between the average 
force vector and the displacement vector corresponding to the product of the component 
of the average force in the direction of the displacement with the displacement, 
 
  
 i iW i∆ = ⋅∆F r  (C.2.16) 
 
The force and the displacement vectors for the time interval [ ]1,i it t−  are shown in 

 Figure C.2.5.

 
Figure C.2.5 Infinitesimal work diagram 

 
The work done is found by adding these scalar contributions to the work for each interval 
[ ]1,i it t− , for  to , 1i = N
  

 
1 1

i N i N

N i i
i i

W W
= =

= =
i= ∆ = ⋅∆∑ ∑F r  (C.2.17) 
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We would like to define work in a manner that is independent of the way we divide the 
interval so we take the limit as N  and →∞ 0i∆ →r . In this limit as the intervals 
become smaller and smaller, the distinction between the average force and the actual 
force becomes vanishingly small. Thus if this limit exists and is well defined, then the 
work done by the force is  
  

 
010

lim f

i

i N r

i i rN i
W

=

→∞
=∆ →

d= ⋅∆ = ⋅∑ ∫
r

F r F r  (C.2.19) 

 
Notice that this summation involves adding scalar quantities. This limit is called the “line 
integral of the tangential component” of the force F . The symbol d  is called the 
“infinitesimal vector line element”. At time 

r
t , dr  is tangent to the orbit of the mass and 

is the limit of the displacement vector ( ) (t t t)∆ = + ∆ − rr r  as t∆  approaches zero. 
 
In general, this line integral depends on the particular path the object takes between the 
initial position  and the final position 0r fr . The reason is that the force  is non-constant 
in space and the contribution to the work can vary over different paths in space. 

F

 
We can represent this integral explicitly in a coordinate system by specifying the 
infinitesimal vector line element dr  and then explicitly computing the dot product. For 
example in Cartesian coordinates the line element is 
  
 ˆ ˆ ˆd dx dy dz= + +r i j k  (C.2.20) 
 
where , , and dz  represent arbitrary displacements in the x , , and z  -directions 
respectively as seen in Figure C.2.6. 

dx dy y

 

 
 

Figure C.2.6 Line element in Cartesian coordinates 
 
The force vector can be represented in vector notation by 
  
 x y z

ˆ ˆ ˆF F F= + +F i j k  (C.2.21) 
  
Then the infinitesimal work is the dot product 
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  (C.2.23) ( ) (x y z
ˆ ˆ ˆ ˆˆdW d F F F dx dy dz= ⋅ = + + ⋅ + +F r i j k i j k)ˆ

 
 x y zdW F dx F dy F dz= + +  (C.2.24) 
 
so the total work is 
  

 (C.2.25) ( )
0 0 0 0 0

f f f f f

x y z x y zW d F dx F dy F dz F dx F dy F dz
= = = = =

= = = = =

= ⋅ = + + = + +∫ ∫ ∫ ∫ ∫
r r r r r r r r r r

r r r r r r r r r r

F r

 
The above equation shows that W consists of three separate integrals. In order to calculate 
these integrals in general we need to know the specific path the object takes.  
 
C.2.5 Power 
 
Definition: Power by a Constant Force: 
 

Suppose that an applied force appliedF  acts on a body during a time interval t∆ , 
and displaces the body in the x-direction by an amount x∆ . The work done, W∆ , 
during this interval is 
 

 applied,xW F x∆ = ∆  (C.2.26) 
 
where  is the x-component of the applied force. applied,xF
 
The average power of the applied force is defined to be the rate of doing work  
 

 applied,
ave applied, ,ave

x
x x

F xWP
t t

F v
∆∆

= = =
∆ ∆

 (C.2.27) 

. 
 
The average power delivered to the body is equal to the component of the force in the 
direction of motion times the average velocity of the body.  
 
Power is a scalar quantity and can be positive, zero, or negative depending on the sign of 
work. The SI units of power are called watts [ ]W  and  [ ] 1 21W 1J s 1kg m s− −3⎡ ⎤ ⎡ ⎤≡ ⋅ ≡ ⋅ ⋅⎣ ⎦ ⎣ ⎦ . 
 
The instantaneous power at time t is defined to be the limit of the average power as the 
time interval [ ],t t∆  approaches zero,  
 

 applied,
applied, applied,0 0 0

lim lim limx
xt t t

F xWP F
t t t∆ → ∆ → ∆ → x x

x F v
∆∆

= = = =
∆ ∆ ∆

∆  (C.2.28) 
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the instantaneous power of a constant applied force is the product of the force and the 
instantaneous velocity of the moving object. 
 
 
C.3 Work and Energy 
 
C.3.1 Work-Kinetic Energy Theorem 
 
There is a connection between the total work done on an object and the change of kinetic 
energy. Non-zero total work implies that the total force acting on the object is non-zero. 
Therefore the object will accelerate.  When the total work done on an object is positive 
the object will increase its speed. When the work done is negative, the object will 
decrease its speed. When the total work done is zero, the object will maintain a constant 
speed. In fact we have a more precise result, the total work done by all the applied forces 
on an object is equal to the change in kinetic energy of the object. 
 

 2
total 0

1 1
2 2fW K mv mv= ∆ = − 2  (C.3.1) 

 
C.3.2 Work-Kinetic Energy Theorem for Non-Constant Forces 
 
The work-kinetic energy theorem holds as well for a non-constant force. Recall that the 
definition of work done by a non-constant force in moving an object along the x -axis 
from an initial position 0x  to the final position fx  is given by 

  (C.3.2) 
0

fx

xx
W F= ∫ dx

 
where  is the component of the force in the x -direction. According to Newton’s 
Second Law, 

xF

 

 x
x

dvF m
dt

=  (C.3.3) 

 
Therefore the work integral can be written as 
 

 
0 0 0

f f fx x xx
xx x x

dv dxW F dx m dx m dv
dt dt

= = =∫ ∫ ∫ x  (C.3.4) 

 
Since the x -component of the velocity is defined as xv dx dt= , the work integral 
becomes  
 

 , ,

,0 ,0

x f x f

x x

v v

x xv v

dxW m dv mv dv
dt

= =∫ ∫ x  (C.3.5) 
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Note that the limits of the integral have now be changed. Instead of integrating from the 
initial position 0x  to the final position fx , the limits of integration are from the initial -
component of the velocity  to the final -component of the velocity . Since 

x

,0xv x x, fv
 

 2
x x

1d mv mv dv
2

⎛ ⎞ =⎜ ⎟
⎝ ⎠

x  (C.3.6) 

 
the integral is 

 , ,

,0 ,0

21
2

x f x f

x x

v v

x x xv v
W mv dv d mv⎛= = ⎜

⎝ ⎠∫ ∫ ⎞
⎟  (C.3.7) 

 
It follows that 
 

 , ,

,0 ,0

2 2 2
, ,0

1 1 1
2 2 2

x f x f

x x

v v

x x x x f xv v
W mv dv d mv mv mv K⎛ ⎞= = = −⎜ ⎟

⎝ ⎠∫ ∫ = ∆

k

 (C.3.8) 

 
 
C.3.3 Work-Kinetic Energy Theorem for a Non-Constant Force in Three 

Dimensions 
 
The work energy theorem generalized to three-dimensional motion. Suppose under the 
action of an applied force, an object changes its velocity from an initial velocity 
 
 0 ,0 ,0 ,0

ˆ ˆ ˆ
x y zv v v= + +v i j  (C.3.9) 

 
to a final velocity  
 
 f x , f y , f z , f

ˆ ˆ ˆv v v= + +v i j k  (C.3.10) 
 
The kinetic energy is  
 

 (2 2 2 21 1
2 2 x y zK mv m v v v= = + + )  (C.3.11) 

 
Therefore the change in kinetic energy is 
 

 ( ) ( )2 2 2 2 2 2 2 2
0 , , , ,0 ,0 ,0

1 1 1 1
2 2 2 2f x f y f z f x yK mv mv m v v v m v v v∆ = − = + + − + + z  (C.3.12) 

 
The work done by the force in three dimensions is 
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  (C.3.13) 
0 0 0

0

f
f f f

x yW d F dx F dy F
=

=

= ⋅ = + +∫ ∫ ∫ ∫
r r

r r r

r r r
r r

F r z dz

 
As before ,we can apply Newton’s Second Law to each integral separately using  
 

 yx z
x y z

dvdv dvF m , F m , F m
dt dt dt

= = =  (C.3.14) 

 
The work is then  
 

 0 0 0

0 0 0

f f f

f f f

yx z

x y

dvdv dvW m dx m dy m dz
dt dt dt

dx dy dzmdv mdv mdv
dt dt dt

= + +

= + +

∫ ∫ ∫

∫ ∫ ∫

r r r

r r r

r r r

r r r z

 (C.3.15) 

 
This becomes 
 

  (C.3.16) 
0 0 0

f f f

x x y y z zW m dv v m dv v m dv v= + +∫ ∫ ∫
r r r

r r r

 
These integrals can be integrated explicitly yielding the work-kinetic energy theorem 
 

 2 2 2 2 2 2
, ,0 , ,0 , ,0

1 1 1 1 1 1
2 2 2 2 2 2x f x y f y z f zW mv mv mv mv mv mv⎛ ⎞ ⎛ ⎞ ⎛= − + − + − =⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝
K⎞ ∆⎟

⎠
(C.3.17) 

 
C.3.4 Time Rate of Change of Kinetic Energy 
 
In one dimension, the time rate of change of the kinetic energy,  
 

 21
2

x
x x x x x

dvdK d mv mv mv a F v
dt dt dt

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

x

xa

 (C.3.18) 

 
since by Newton’s Second Law,  
 
  (C.3.19) total

xF m=
 
the time derivative of the kinetic energy is equal to the instantaneous power delivered to 
the body, 
 

 x x
dK F v P
dt

= =  (C.3.20) 

 
The generalization to three dimensions becomes 
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 x x y y z z
dK F v F v F v P
dt

= + + = ⋅ =F v  (C.3.21) 
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