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Potential Energy and the Conservation of Mechanical 
Energy 

 
D.1 Conservative and Non-conservative Force 
 
D.1.1 Introduction 
 
A “physical system” consists of a well-defined set of bodies that are interacting by means 
of forces. Any bodies that lie outside the boundary of the system reside in the 
“surroundings”. A state of the system is a set of measurable physical quantities that 
completely characterize the system. Figure 1 shows this division into system, boundary, 
and surroundings.  
 

 
 

Figure D.1.1: system, boundary, and surroundings. 
 
Up to now we have analyzed the dynamical evolution in time of our system under the 
action of forces using Newton’s Laws of Motion. We shall now introduce the concept of 
Conservation of Energy in order to analyze the change of state of a system. 
 
Definition: Change of Energy  
 

 The total change in energy of a system and its surroundings between the final 
state and the initial state is zero, 
 

  (D.1.1) total system surroundings 0E E E∆ = ∆ + ∆ =
 
Our quest is then to identify experimentally every type of change of energy for all 
physical processes and verify that energy is conserved.  Can we really play this “zero 
sum” game? Is there any physical content to this concept of change of energy? The 
answer is that experimentally we can identify all the changes in energy. One important 
point to keep in mind is that if we add up all the changes in energy and do not arrive at a 
zero sum then we have an open scientific problem: find the missing change in energy!  
 
Our first example of this type of “energy accounting” involves mechanical energy. There 
will be of two types of mechanical energy, kinetic energy and potential energy. Our first 
task is to define what we mean by the change of the potential energy of a system. 
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D.1.2 Conservative and Non-Conservative Forces 
 
We have defined the work done by a force F on an object which moves from an initial 
point 0x  to a final point fx  (with displacement 0fx x x∆ ≡ − ), as the product of the 
component of the force  with the displacementxF x∆ , 
 
 xW F x= ∆  (D.1.2) 
 
Does the work done on the object by the force depend on the path taken by the object? 
For a force such as friction we expect that the work should depend on the path. Let’s 
compare two paths from an initial point 0x  to a final point fx . The first path is a straight-
line path with no reversal of direction. The second path goes past fx  some distance and 
them comes back to fx  (Figure 2). Since the force of friction always opposes the motion, 
the work done by friction is negative, 
  
 friction 0kW N xµ= − ∆ <  (D.1.3) 
 
Therefore the total work depends on the total distance traveled, not the displacement. 
Hence, the magnitude of the work done along the second path is greater than the 
magnitude of the work done along the first path.  
 

 
 

Figure D.1.2 Two different paths from 0x  to fx  
 
Let’s consider the motion of an object under the influence of a gravitational force near 
the surface of the earth. The gravitational force always points downward, so the work 
done by gravity only depends on the change in the vertical position, 
  
 grav grav ,yW F y mg y= ∆ = − ∆  (D.1.4) 
 
Therefore, when an object falls, the work done by gravity is positive and when an object 
rises the work done by gravity is negative. Suppose an object first rises and then falls, 
returning to the original starting height. The positive work done on the falling portion 
exactly cancels the negative work done on the rising portion, (Figure 3). The total work 
done is zero! Thus, the gravitational work done between two points will not depend on 
the path taken, but only on the initial and final positions.   
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Figure D.1.3 Gravitational work cancels. 

 
 
These two examples typify two fundamentally different types of forces and their 
contribution to work. In the first example of sliding friction, the work done depends on 
the path.  
 
Definition: Non-conservative Force 
 

Whenever the work done by a force in moving an object from an initial point to a 
final point depends on the path, then the force is called a non-conservative force.  

 
In the second example of free fall, the work done by the gravitational force is 
independent of the path. 
 
Definition: Conservative Force 

 
Whenever the work done by a force in moving an object from an initial point to a 
final point is independent of the path, then the force is called a conservative force.  

 
D.2 Potential Energy 
 
D.2.1 Change in Potential Energy 
 
Let’s consider an example in which only conservative forces are acting on a system, for 
example the gravitational force considered above. The key concept for a conservative 
force such as gravitation is that the work done by the gravitational force on an object only 
depends on the change of height of the object. Instead of analyzing the forces acting on 
an object, we introduce the idea of changes in the kinetic and potential energy of a 
physical system. This allows us use introduce conservation of energy to describe motion. 
 
In the case of an object falling near the surface of the earth, our system consists of the 
earth and the object and the state is described by the height of the object above the 
surface of the earth. The initial state is at a height  above the surface of the earth and 
the final state is at a height 

0y

fy  above the surface of the earth.  
 
The change in kinetic energy between the initial and final states for both the earth and the 
object is 
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 2 2 2 2
system earth object earth, earth,0 object, object,0

1 1 1 1
2 2 2 2f fK K K mv mv mv mv⎛ ⎞ ⎛∆ = ∆ + ∆ = − + −⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎞
⎟
⎠

(D.2.1) 

 
The change of kinetic energy of the earth due to the gravitational interaction between the 
earth and the object is negligible. So the total change in kinetic energy of the system is 
approximately equal to the change in kinetic energy of the object,  
 

 2 2
system object object, object,0

1 1
2 2fK K mv mv⎛∆ ≅ ∆ = −⎜

⎝ ⎠
⎞
⎟  (D.2.2) 

 
We will enlarge our idea of change of energy by defining a new type of change of energy, 
a change of gravitational potential energy systemU∆ , so that the total change of both kinetic 
and potential energy is zero, 
 
 system system 0K U∆ + ∆ =  (D.2.3) 
 
In what follows, we’ll look at arbitrary conservative forces to obtain a general result, and 
then return to the example of gravity, along with other perhaps familiar examples. 
 
D.2.2 Definition: Change in Potential Energy 
 

The change in potential energy of a body associated with a conservative force is 
the negative of the work done by the conservative force in moving the body along 
any path connecting the initial position to the final position. 

 

 system cons cons

B

A

U W∆ = − = − ⋅∫F dr  (D.2.4) 

 
where A  and B are use to represent the initial and final positions of the body. 

 
 
This definition only holds for conservative forces because the work done by a 
conservative force does not depend on the path and only depends on the initial and final 
positions. 
 
The work-kinetic energy theorem states that if the work done by the conservative force is 
the only work done, and hence is the total work, then that work is equal to the change in 
kinetic energy of the system; 
 
  (D.2.5) total

system consK W W∆ = =
 
The total change in mechanical energy is defined to be the sum of the changes of the 
kinetic and the potential energies, 
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  (D.2.6) mechanical system systemE K U∆ = ∆ + ∆
 
From both the definition of change of potential energy, system consU W∆ = − , and the work-
kinetic energy theorem, the total change in the mechanical energy is zero, 
 
  (D.2.7) mechanical cons cons( )E W W∆ = + − 0=

dr

 
This expression is known as the conservation of mechanical energy. 
 
 
D.2.3 Several Conservative Forces 
 
When there are several conservative forces acting on the system we define a separate 
change in potential energy for the work done by each conservative force,  
 

 system, cons,

B

i i i
A

U W∆ = − = − ⋅∫F  (D.2.8) 

 
The total work done is just the sum of the individual work, 
 
 total

cons cons,1 cons,2W W W= + +  (D.2.9) 
 
The sum of the change in potential for the system is  
 
  (D.2.10) total

system system,1 system,2U U U∆ = ∆ + ∆ +
 
Therefore, the total change in potential energy of the system is equal to the negative of 
the total work done 
 

 total total
system cons cons,

B

i
i A

U W∆ = − = − ⋅∑∫F dr  (D.2.11) 

 
D.2.4 Change in Mechanical Energy and Conservation of Mechanical Energy  
 
We now define the mechanical energy function for a system, 
 
 mechanicalE K U= +  (D.2.12) 
 
where K  is the kinetic energy and U is the potential energy. 
 
Then the change in mechanical energy when the system goes from an initial state to a 
final state is  
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  (D.2.13) mechanical mechanical, mechanical,0 0 0( ) (f f fE E E K U K∆ ≡ − = + − + )U
 
When there are no non-conservative forces acting on the system, the total mechanical 
energy of the system is conserved, and  
 
 mechanical, mechanical,0fE E=  (D.2.14) 
 
or equivalently 
 
 0 0( ) (f fK U K U )+ = +  (D.2.15) 
 
D.2.5 Non-Conservation of Mechanical Energy 
 
The total force acting on a system may, in general, consist of a vector sum of 
conservative forces and non-conservative forces, 
 
 total

cons, non-cons,i
i j

= + j∑ ∑F F F  (D.2.16) 

 
The work done by the total non-conservative force, 
 
 total

non-cons non-cons, j
j

=∑F F  (D.2.17) 

 
between two points A  and B  is a path-dependent quantity which we denote by 
 

 [ ] total
non-cons non-cons,

B

A

W A B d= ⋅∫F r  (D.2.18) 

 
Then the work done by the total force is  

 

[ ]

[ ]

[ ]

total total total
cons, non-cons,

cons, non-cons

total
non-cons

,

,

,

B B

i j
i jA A

B

i
i A

W A B d d

d W A B

U W A B

⎛ ⎞
= ⋅ = + ⋅⎜ ⎟

⎝ ⎠

= ⋅ +

= −∆ +

∑ ∑∫ ∫

∑∫

F r F F

F r

r

 (D.2.19) 

 
The work-kinetic energy theorem states that the work done by the total force is equal to 
the change in kinetic energy,  
 

 2
total 0

1 1
2 2fW K mv mv= ∆ = − 2  (D.2.20) 
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Thus
 

 
 [ ]total

non-cons ,K U W A B∆ = −∆ +  (D.2.21) 
 
We define the change in mechanical energy of the system, between the states represented 
by A  and B ,  
 
 [ ]total total

mechanical ,E A B K U∆ ≡ ∆ + ∆  (D.2.22) 
 
as the sum of the change of the kinetic energy and change of the total potential energy.  
This change [ ]total

mechanical ,E A B∆  is independent of the path between the states A  and B . 
 
Therefore the total change in the mechanical energy of the system between the states A  
and B  is equal to the work done by the non-conservative forces along the chosen path 
connecting the points A  and B , 
 
 [ ]total

mechanical non-cons ,E W A∆ = B  (D.2.23) 
 
When there are no non-conservative forces acting on the system, then the total 
mechanical energy of the system is conserved, 
 
 total

mechanical 0E∆ =  (D.2.24) 
 
D.3 Worked Examples: Calculation of the Change in Potential Energy 
 
There are four examples of conservative forces for which we will calculate the work done 
by the force; constant gravity near the surface of the earth, the ideal spring force, the 
universal gravitational force between two point-like objects, and the electric force 
between charges (this last calculation will not be presented in this review). 
 
For each of these forces we can describe and calculate the change in potential energy 
according to our definition 
 

 system cons cons

B

A

U W∆ = − = − ⋅∫F dr  (D.3.1) 

 
In addition, we would like to choose a “zero point” for the potential energy. This is a 
point where we define potential energy to be zero and all changes in potential energy are 
made relative to this point.  This point will in general be different for different forces. 
 
D.3.1 Example 1: Change in Gravitational Potential Energy – Uniform Gravity 
 
Let’s choose a coordinate system with the origin at the surface of the earth and the + -
direction pointing away from the center of the earth. Suppose an object of mass m  moves 

y
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from an initial point  to a final point0y fy . When an object is placed in the gravitational 
field near the surface of the earth, the gravitational force on the object is given by 
 
 grav grav,

ˆ
ym F mg= = = −F g j ĵ  (D.3.2) 

 
The work done by the gravitational force on the object is then 
 
 grav grav, yW F y mg y= ∆ = − ∆  (D.3.3) 
 
and the change in potential energy is given by 
 
  (D.3.4) system grav 0fU W mg y mg y mg∆ = − = ∆ = − y

U

 
We will introduce a potential energy function U  given by 
 

system 0fU U∆ ≡ − . 
 
Suppose the mass starts out at the surface of the earth with 0 0y = . Then the change in 
potential energy is 
 
  (D.3.5) system 0 0( ) ( 0)fU U y U y mg y mg∆ ≡ − = = −f y
 
We are free to choose the zero point for the potential energy anywhere we like since 
change in potential energy only depends on the displacement, y∆ . We have some 
flexibility to adapt our choice of zero for the potential energy to best fit a particular 
problem.  In the above expression for the change of potential energy, let  be an 
arbitrary point and 0  be the origin. Then we can choose the zero reference point for 
the potential energy to be at the origin,  

fy ≡ y
0y =

 
 ( ) ( )0( ) 0 0 or  with 0 0U y mg y U y mgy U y− = − = = =  (D.3.6) 
 
D.3.2 Example 2: Hooke’s Law Spring-mass system 
 
Consider a spring-object system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to a object of mass m . Choose the 
origin at the position of the center of the object when the spring is unstretched, the 
equilibrium position. Let  be the displacement of the object from the origin. We choose 
the  unit vector to point in the direction the object moves when the spring is being 
stretched. Then the spring force on a mass is given by 

x
+̂i

 
 x

ˆF k= = −F i ˆx i  (D.3.7) 
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The work done by the spring force on the mass is 
 

( ) ( )
0

2 2
0

1
2

fx x

fx x
W kx dx k x

=

=
= − = − −∫ x  (D.3.8) 

ct 
om an initial position 

 

 
Therefore the change in potential energy in the spring-object system in moving the obje

0x  from equilibrium to a final position fx  from equilibrium is  fr
 

( )2 2
spring spring spring 0 spring 0

1( ) ( )
2f fU U x U x W k x x∆ ≡ − = − = −  (D.3.9) 

here the potential 
nergy is zero, the equilibrium position of the spring- object, 

 
For the spring- object system , there is an obvious choice of position w
e
 

spring ( = 0) 0U x ≡  (D.3.10) 
 
Then with this choice of zero point 0 0x = , with fx x= , an arbitrary extension or 
ompression of a spring- object system, the potential energy function is given by c

 
2

spring
1( ) =
2

U x k x  (D.3.11) 

.3.3 Example 3: Inverse Square Gravitational Force 

 center-to-center 
istance . The gravitational force betw o objects is given by 

 

 
D
 
Consider two objects of masses 1m  and 2m  that are separated by a
d r een the tw
 

1 2

1 2
, 2

ˆm m
Gm m

r
= −F r  (D.3.12) 

the masses.  This expression 
ssumes that the objects may be approximated as spherical. 

e
osition in which the center of mass of the two objects are a distance 

 
where r̂  is the unit vector directed along the line joining 
a
 
The work done by this gravitational force in moving the two objects from an initial 
position in which the center of mass of the two objects are a distanc  0r  apart to a final 

fr  apart is given by  p
 

0 0

1 2
2r

f fr r

r

Gm mW d
r

⎛ ⎞= ⋅ = −⎜ ⎟
⎝ ⎠∫ ∫F r dr  (D.3.13) 

pon evaluation of this integral, we have for the work 
 
U
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0
0

1 2 1 2
1 22

fr

r

Gm m Gm mW dr Gm
r r

⎛ ⎞ 
0

1 1fr

r f

m
r r

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (D.3.14) 

 
herefore the change in potential energy of the system is  

 

= =⎜ ⎟
⎝ ⎠∫

T

 grav grav grav 0 1 2
1 1(r ) (r )f gravityU U U W Gm m
r r

∆ ≡ − = − = − −⎜ ⎟⎜ ⎟  (D.3.15) 
0f

⎛ ⎞

⎝ ⎠

e now choose our reference point for the zero of t
 
W he potential energy to be at infinity, 

0r = ∞ , 
 
 rav 0(r = ) 0Ug ∞ ≡  (D.3.16) 
 
The reason for this choice is that the term 01 r  in the expression for the chan n 
potential 

ge i
energy vanishes when 0r = ∞ . Then the gravitational potential energy function 

en their center of mass to center of mass distance is fr r=for the two objects wh , 
becomes 
 

1 2
grav (r) = Gm mU − , 

r

O sional Example: Spring Forces 

rom the above derivation of the potential energy of a compres
ring of spring constant , we have 

 

 
D.4 Energy Diagrams: ne-Dimen
 
F sed or extended ideal 
sp  k
 

 ( )2 2
sprin 0 spring 0

1)U W k x x= − = −  (D.4.1) g spring( ) (
2

x U x−

 
e simplified  

 

 
Taking  and setting , and dropping the subscript “spring”, we have0 0x = spring 0( ) = 0U x
th
 

21( )
2

U x k x=  (D.4.2)  

 
It follows immediately that 

  

 ( ) xU x k x F
dx
d

= = −  (D.4.3) 
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and indeed, this expression follows immediately from the definition of potential energy in 

 
 
In Figure D.4.1 we plot the potential energy function for the spring force as function of 
with  

terms of the force in one dimension, regardless of the functional form of xF  
 

x  
0( = 0) 0U x ≡ . 

 
 

Figure D.4.1: graph of potential energy function for the spring 

The minimum of the potential energy function occurs at the point where the first 
erivative vanishes 

 

d
 

( ) 0dU x
dx

=  (D.4.4) 

 
or the spring force F

 
( )0 dU x k x

dx
= =  (D.4.5)  

 
implies that the minimum occurs at 0x =  (the second derivative 2 2 0d U dx k= >/  shows 
that this point is mum). a mini

e tha

 
Since the force is the negative derivative of the potential energy, and this derivative 
necessarily vanishes at the minimum of the potential, we hav t the spring force is zero 
at the minimum  = 0 x agreeing with our force law, 

0 0
0xF k

x x
x

= =
= − = . 

ll distance awa
tial energy function

 
In general, if the potential energy function has a minimum at some point then the force is 
zero at that point. If the object is extended a sma y from equilibrium, 
the slope of the poten  is positive, 

0x >  
( ) 0dU x dx >  ( 2 2 0d U dx >/  for a 

minimum); hence the component of the force is negative since ( ) 0xF dU x dx= − < . 
hus, the object experiences a restoring force directed towards the minimum point of the 

potential. If the object is compresses with 
T

0x <  then ( ) 0dU x dx < ; the component of 
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the force is positive, ( ) 0xF dU x dx= − >
m of the pot

, and the object again experiences a force back 
towards the minimu ential energy (Figure D.4.2).  
 

 
 

Figure D.4.2 Stability Diagram  
 

 sSuppose our pring-object system has no loss of mechanical energy due to dissipative 
orces such as friction or air resistance. The energy a
nergy and the potential energy 

f t any time is the sum of the kinetic 
 ( )K x ( )U x  e

  
 ( ) ( )E K x U x= +  (D.4.6) 

Both the kinetic energy and the potential energy are functions of the position of the object 
with respect to equilibrium. The energy is a constant of the motion and with o r c

 

u hoice of 
x ≡  the energy can be positive or zero. When the energy is zero, the object is at 

positive valu e energ

he line corresponding to the energy intersects the potential energy function at two points 

0

rest at its equilibrium position. In Figure 5, we draw a straight line corresponding to a 
e for th y on the graph of potential energy as a function of x .  

 

( = 0) 0U

T
{ }max max,x x−  with max 0x > . These points correspond to the maximum compression and 

aximum extension of the spring. They are called the “classical turning points.” 

he kinetic energy is the difference between the energy and the potential energy, 

m
 
T
 
 ( ) ( )K x x= −  (D.4.7) 
 
at the turning points, where 

E U

( )E U x= , the kinetic energy is zero. Regions where the 
kinetic energy is negative, maxx x< −  or maxx x> , are called the classically forbidden 
regions. The object can never reach these regions classically.  In quantum mechanics, 
there is a very small probability that the object can be found in the classically forbidden 
regions.  
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