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Review E: Simple Harmonic Motion and Mechanical Energy 

 
This Worked Example demonstrates the basics of Simple Harmonic Motion (SHO) and 
so is included as a review unit. 
 
An object of mass  sitting on a frictionless surface is attached to one end 
of a spring. The other end of the spring is attached to a wall. Assume that the object is 
constrained to move horizontally along one dimension. The spring has spring 
constant . The spring is initially stretched a distance 2. from the 
equilibrium position and released at rest. 

24.0 10 kgm −= ×

22.0 10 N/ mk = × 0cm

  
a) What is the position of the mass as a function of time? 
 
b) What is the velocity of the mass as a function of time? 

 
c) What is the time that it takes the mass-spring system to first return to its original 

configuration? 
 

d) How do the initial conditions for the position and velocity of the mass-spring 
system enter into the solution? 

 
e) What is the kinetic energy of the mass as a function of time? 

 
f) What is the potential energy of the spring-mass system as a function of time? 

 
g) What is mechanical energy of the spring-mass system as a function of time? 

 
Solutions:  
 
a) Choose the origin at the equilibrium position. Choose the positive x -direction to the 
right. Define ( )x t  to be the position of the mass with respect to the equilibrium position.  
 

 
 

Figure 1 Mass-spring system  
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Newton’s Second law in the horizontal direction xF max= becomes 
 

 
2

2x
d xk x ma m
dt

− = =  (E.1) 

 
This equation is called the simple harmonic oscillator (SHO) equation. Since the spring 
force depends on the distance , the acceleration is not constant. This is a second-order 
linear differential equation in which the second derivative in time of the position of the 
mass is proportional to the negative of the position of the mass, 

x
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2

d x x
dt

∝ −  (E.2) 

 
The constant of proportionality is k m , 
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2

d x k x
dt m

= −  (E.3) 

 
This equation can be solved directly by more advanced techniques, involving 
conservation of energy to obtain the speed as a function of position x and “separation 
of variables.” There is an existence and uniqueness theorem from the theory of 
differential equations which states that a unique solution exists which satisfies a given set 
of initial conditions  and 

xv

(0 0x x t≡ = ) ( )0 0v v t≡ =  where 0x  and  are constants. A 
second approach is to guess the solution and then verify that the guess satisfies the SHO 
differential equation.  The guess for the solution takes the form  

0v

 
 ( ) ( ) ( )cos ω sin ωx t A t B t= +  (E.4) 
 
The term  is called the angular frequency (unfortunately the same symbol is used for 
angular velocity in circular motion but it should be clear that for a mass-spring system 
there is no circular motion). In order for the guess to satisfy the SHO equation, the 
angular frequency must satisfy 

ω

 
 ω k m=  (E.5) 
 
Proof: To verify the guess, take the first and second derivatives of the guess and 
substitute the second derivative into the SHO equation, 
 
 ( ) ( )ω sin ω ω cos ωdx dt A t B t= − +  (E.6) 

 
  

 ( ) ( ) ( ) ( )( )2 2 2 2 2 2ω cos ω ω sin ω cos ω sin ω ω ( )d x dt A t B t A t B t xω= − − = − + = − t  (E.7) 
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The last equality follows from substituting in our guess, ( ) ( ) (cos ω sin ω )x t A t B t= + .  
Thus the SHO equation becomes 
 

 
2

2
2 ωd x kx x

dt m
= − = −  (E.8) 

 
 
This is satisfied providing  
 
 ω k m=  (E.9) 

QED 
 
The graph of position ( )x t  vs. time t  described by our solution is shown in Figure 2 . 
 

 
 

Figure 2 Graph of position ( )x t  vs. time (with 1A B= =  and 1 rad/sω = .)  
 
b) The velocity of the object at time t  is then obtained by differentiating the solution,  
 
 ( ) ( ) ( )ω sin ω ω cos ωv t dx dt A t B t= = − +  (E.10) 
 
The graph of velocity ( )v t  vs. time t  is shown in Figure 3. 

 
 

Figure 3 graph of velocity ( )v t vs. time (with 1A B= =  and 1 rad/sω = .)  
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c) The mass-spring system oscillates and returns back to its initial configuration for the 
first time at a time where the T  is called the period and is defined by the condition t T=
 
 ω 2T π=  (E.11) 
 
since , and ( ) ( )cos 0 cos 2 1π= = ( ) ( )sin 0 sin 2 0π= =  
 
Therefore the period is  
 
 2 ω 2 2T k mπ π π= = = /k m  (E.12) 
 
d) The guess for the solution takes the form  
 
 ( ) ( ) ( )cos ω sin ωx t A t B t= +  (E.13) 
 
where A and B  are constants determined by the specific initial conditions 

 

 0
0  and 

ω
vA x B= =  (E.14) 

 
Proof: To find the constants A  and B , substitute 0t =  into the guess for the solution. 
Since  and , the initial position at time ( )cos 0 1= ( )sin 0 0= 0t =  is  
  
 ( )0 0x x t A≡ = =  (E.15) 
 
The velocity at time  is  0t =
 
 ( ) ( ) ( )0 0 ω sin 0 ω cos 0 ωv v t A B B= = = − + =  (E.16) 
 
Thus  

 0
0  and 

ω
vA x B= =  (E.17) 

 
QED 

 
Then the position of the spring-mass system is  
 

 ( ) ( ) ( )0
0 cos sinvx t x k m t k m t

k m
= +  (E.18) 

 
and the velocity of the spring-mass system is  
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 ( ) ( ) ( )0 0sin cosv t k m x k m t v k m t= − +  (E.19) 

 
 
 In the example, the angular frequency is 
 

 
2

1
2

2.0 10 N/ mω 7.1 10 rad/ s
4.0 10 kg

k
m −

×
= = = ×

×
 (E.20) 

  
  (E.21) 2

0 2.0 10 mA x −= = ×
 

 0 0
ω
vB = =  (E.22) 

 
So the position is 
 
 ( ) ( )0 cosx t x k m t=  (E.23) 

 
and the velocity is  
 
 ( ) ( )0 sinv t k m x k m t= −  (E.24) 

 
e) The kinetic energy is  
 

 ( )2 2 2
0

1 1 sin
2 2

mv k x k m t=  (E.25) 

 
f) The potential energy is  
 

 ( )2 2 2
0

1 1 cos
2 2

k x k x k m t=  (E.26) 

 
g) The total mechanical energy is 
 

 ( ) ( )( )2 2 2 2 2
0 0

1 1 1 1cos sin
2 2 2 2

2E K U mv k x k x k m t k m t k x= + = + = + =  (E.27) 

 
Since 0x  is a constant, the total energy is constant! 
 
For our example the total energy is 
 

 ( )( ) (22 2 2
0

1 1 2.0 10 N/ m 2.0 10 m 2.0 10 J
2 2

E k x −= = × × = × )2  (E.28) 
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