MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

8.02

Review E: Simple Harmonic Motion and Mechanical Energy

This Worked Example demonstrates the basics of Simple Harmonic Motion (SHO) and so is included as a review unit.

An object of mass $m=4.0 \times 10^{-2} \mathrm{~kg}$ sitting on a frictionless surface is attached to one end of a spring. The other end of the spring is attached to a wall. Assume that the object is constrained to move horizontally along one dimension. The spring has spring constant $k=2.0 \times 10^{2} \mathrm{~N} / \mathrm{m}$. The spring is initially stretched a distance 2.0 cm from the equilibrium position and released at rest.
a) What is the position of the mass as a function of time?
b) What is the velocity of the mass as a function of time?
c) What is the time that it takes the mass-spring system to first return to its original configuration?
d) How do the initial conditions for the position and velocity of the mass-spring system enter into the solution?
e) What is the kinetic energy of the mass as a function of time?
f) What is the potential energy of the spring-mass system as a function of time?
g) What is mechanical energy of the spring-mass system as a function of time?

Solutions:

a) Choose the origin at the equilibrium position. Choose the positive x-direction to the right. Define $x(t)$ to be the position of the mass with respect to the equilibrium position.

Figure 1 Mass-spring system

Newton's Second law in the horizontal direction $F_{x}=m a_{x}$ becomes

$$
\begin{equation*}
-k x=m a_{x}=m \frac{d^{2} x}{d t^{2}} \tag{E.1}
\end{equation*}
$$

This equation is called the simple harmonic oscillator (SHO) equation. Since the spring force depends on the distance x, the acceleration is not constant. This is a second-order linear differential equation in which the second derivative in time of the position of the mass is proportional to the negative of the position of the mass,

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}} \propto-x \tag{E.2}
\end{equation*}
$$

The constant of proportionality is k / m,

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x \tag{E.3}
\end{equation*}
$$

This equation can be solved directly by more advanced techniques, involving conservation of energy to obtain the speed v_{x} as a function of position x and "separation of variables." There is an existence and uniqueness theorem from the theory of differential equations which states that a unique solution exists which satisfies a given set of initial conditions $x_{0} \equiv x(t=0)$ and $v_{0} \equiv v(t=0)$ where x_{0} and v_{0} are constants. A second approach is to guess the solution and then verify that the guess satisfies the SHO differential equation. The guess for the solution takes the form

$$
\begin{equation*}
x(t)=A \cos (\omega t)+B \sin (\omega t) \tag{E.4}
\end{equation*}
$$

The term ω is called the angular frequency (unfortunately the same symbol is used for angular velocity in circular motion but it should be clear that for a mass-spring system there is no circular motion). In order for the guess to satisfy the SHO equation, the angular frequency must satisfy

$$
\begin{equation*}
\omega=\sqrt{k / m} \tag{E.5}
\end{equation*}
$$

Proof: To verify the guess, take the first and second derivatives of the guess and substitute the second derivative into the SHO equation,

$$
\begin{gather*}
d x / d t=-\omega A \sin (\omega t)+\omega B \cos (\omega t) \tag{E.6}\\
d^{2} x / d t^{2}=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t)=-\omega^{2}(A \cos (\omega t)+B \sin (\omega t))=-\omega^{2} x(t) \tag{E.7}
\end{gather*}
$$

The last equality follows from substituting in our guess, $x(t)=A \cos (\omega t)+B \sin (\omega t)$.
Thus the SHO equation becomes

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=-\omega^{2} x=-\frac{k}{m} x \tag{E.8}
\end{equation*}
$$

This is satisfied providing

$$
\begin{equation*}
\omega=\sqrt{k / m} \tag{E.9}
\end{equation*}
$$

The graph of position $x(t) v s$. time t described by our solution is shown in Figure 2 .

Figure 2 Graph of position $x(t)$ vs. time (with $A=B=1$ and $\omega=1 \mathrm{rad} / \mathrm{s}$.)
b) The velocity of the object at time t is then obtained by differentiating the solution,

$$
\begin{equation*}
v(t)=d x / d t=-\omega A \sin (\omega t)+\omega B \cos (\omega t) \tag{E.10}
\end{equation*}
$$

The graph of velocity $v(t)$ vs. time t is shown in Figure 3.

Figure 3 graph of velocity $v(t) v s$. time (with $A=B=1$ and $\omega=1 \mathrm{rad} / \mathrm{s}$.)
c) The mass-spring system oscillates and returns back to its initial configuration for the first time at a time $t=T$ where the T is called the period and is defined by the condition

$$
\begin{equation*}
\omega T=2 \pi \tag{E.11}
\end{equation*}
$$

since $\cos (0)=\cos (2 \pi)=1$, and $\sin (0)=\sin (2 \pi)=0$

Therefore the period is

$$
\begin{equation*}
T=2 \pi / \omega=2 \pi / \sqrt{k / m}=2 \pi \sqrt{k / m} \tag{E.12}
\end{equation*}
$$

d) The guess for the solution takes the form

$$
\begin{equation*}
x(t)=A \cos (\omega t)+B \sin (\omega t) \tag{E.13}
\end{equation*}
$$

where A and B are constants determined by the specific initial conditions

$$
\begin{equation*}
A=x_{0} \text { and } B=\frac{v_{0}}{\omega} \tag{E.14}
\end{equation*}
$$

Proof: To find the constants A and B, substitute $t=0$ into the guess for the solution. Since $\cos (0)=1$ and $\sin (0)=0$, the initial position at time $t=0$ is

$$
\begin{equation*}
x_{0} \equiv x(t=0)=A \tag{E.15}
\end{equation*}
$$

The velocity at time $t=0$ is

$$
\begin{equation*}
v_{0}=v(t=0)=-\omega A \sin (0)+\omega B \cos (0)=\omega B \tag{E.16}
\end{equation*}
$$

Thus

$$
\begin{equation*}
A=x_{0} \text { and } B=\frac{v_{0}}{\omega} \tag{E.17}
\end{equation*}
$$

QED
Then the position of the spring-mass system is

$$
\begin{equation*}
x(t)=x_{0} \cos (\sqrt{k / m} t)+\frac{v_{0}}{\sqrt{k / m}} \sin (\sqrt{k / m} t) \tag{E.18}
\end{equation*}
$$

and the velocity of the spring-mass system is

$$
\begin{equation*}
v(t)=-\sqrt{k / m} x_{0} \sin (\sqrt{k / m} t)+v_{0} \cos (\sqrt{k / m} t) \tag{E.19}
\end{equation*}
$$

In the example, the angular frequency is

$$
\begin{gather*}
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{2.0 \times 10^{2} \mathrm{~N} / \mathrm{m}}{4.0 \times 10^{-2} \mathrm{~kg}}}=7.1 \times 10^{1} \mathrm{rad} / \mathrm{s} \tag{E.20}\\
A=x_{0}=2.0 \times 10^{-2} \mathrm{~m} \tag{E.21}\\
B=\frac{v_{0}}{\omega}=0 \tag{E.22}
\end{gather*}
$$

So the position is

$$
\begin{equation*}
x(t)=x_{0} \cos (\sqrt{k / m} t) \tag{E.23}
\end{equation*}
$$

and the velocity is

$$
\begin{equation*}
v(t)=-\sqrt{k / m} x_{0} \sin (\sqrt{k / m} t) \tag{E.24}
\end{equation*}
$$

e) The kinetic energy is

$$
\begin{equation*}
\frac{1}{2} m v^{2}=\frac{1}{2} k x_{0}^{2} \sin ^{2}(\sqrt{k / m} t) \tag{E.25}
\end{equation*}
$$

f) The potential energy is

$$
\begin{equation*}
\frac{1}{2} k x^{2}=\frac{1}{2} k x_{0}^{2} \cos ^{2}(\sqrt{k / m} t) \tag{E.26}
\end{equation*}
$$

g) The total mechanical energy is

$$
\begin{equation*}
E=K+U=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\frac{1}{2} k x_{0}^{2}\left(\cos ^{2}(\sqrt{k / m} t)+\sin ^{2}(\sqrt{k / m} t)\right)=\frac{1}{2} k x_{0}^{2} \tag{E.27}
\end{equation*}
$$

Since x_{0} is a constant, the total energy is constant!
For our example the total energy is

$$
\begin{equation*}
E=\frac{1}{2} k x_{0}^{2}=\frac{1}{2}\left(2.0 \times 10^{2} \mathrm{~N} / \mathrm{m}\right)\left(2.0 \times 10^{-2} \mathrm{~m}\right)^{2}=\left(2.0 \times 10^{2} \mathrm{~J}\right) \tag{E.28}
\end{equation*}
$$

