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Introduction  
• Stress and strain are important aspects of Mechanical Engineering, especially in structural design. 
• In this learning module, we discuss stress and strain and their relationship, and how to measure them. 

 

Definitions  
• Stress  

o When a material is loaded with a force, the stress at some location in the material is 
defined as the applied force per unit of cross-sectional area.  

o For example, consider a wire or cylinder, anchored at the top, and hanging down. Some 
force F (for example, from a hanging weight) pulls at the bottom, as sketched, where A is 
the original cross-sectional area of the wire, and L is the original wire length.  

o In this situation, the material experiences a stress, called an axial stress, denoted by the 

subscript a, and defined as a
F
A

σ = . 

o Notice that the dimensions of stress are the same as those of pressure – force per 
unit area.  

• Strain  
o In the above simple example, the wire stretches vertically as a result of the force. 

Strain is defined as the ratio of increase in length to original length.  
o Specifically, when force is applied to the wire, its length L increases by a small 

increment δL, while its cross-sectional area A decreases, as sketched. 
o In the axial direction (the direction of the applied force), axial strain εa is defined 

as a
L

L
δε = . 

o The dimensions of strain are unity – strain is a nondimensional quantity.  
• Hooke’s law  

o It turns out that for elastic materials, stress is linearly proportional to strain.  
o Mathematically, this is expressed by Hooke’s law, which states a aEσ ε= , where E = Young’s modulus, 

also called the modulus of elasticity.  
o Young’s modulus is assumed to be constant for a given material.  
o Hooke’s law breaks down when the strain gets too high. On a typical 

stress-strain diagram, Hooke’s law applies only in the elastic stress 
region, in which the loading is reversible. Beyond the elastic limit (or 
proportional limit), the material starts to behave irreversibly in the 
plastic deformation region, in which the stress vs. strain curve deviates 
from linear, and Hooke’s law no longer holds, as sketched. 

o In this learning module, only the elastic stress region is considered. 
 

Wire resistance 

• The electrical resistance R of a wire of length L and cross-sectional area A is given by 
LR

A
ρ

= , where ρ is 

the resistivity of the wire material. (Do not confuse ρ with density, for which the same symbol is used.)  
• The electrical resistance of the wire changes with strain:  

o As strain increases, the wire length L increases, which increases R.  
o As strain increases, the wire cross-sectional area A decreases, which increases R.  
o For most materials, as strain increases, the wire resistivity ρ also increases, which further increases R.  

• The bottom line is that wire resistance increases with strain.  
• In fact, it turns out that at constant temperature, wire resistance increases linearly with strain.  

• Mathematically, a
R S

R
δ ε= , where S is the strain gage factor, defined as 

/

a

R RS δ
ε

= . 

• S is typically around 2.0 for commercially available strain gages. S is dimensionless. 
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Strain gage 

• The principle discussed above, namely that a wire’s resistance increases 
with strain, is key to understanding how a strain gage works.  
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Direction 
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• A strain gage consists of a small diameter wire (actually an etched metal 
foil) that is attached to a backing material (usually made of plastic) as 
sketched. The wire is looped back and forth several times to create an 
effectively longer wire. The longer the wire, the larger the resistance, and 
the larger the change in resistance with strain. 

• Here, four loops of metal foil are shown, providing an effective total foil 
length L that is eight times greater than if a single wire, rather than a 
looping pattern, were used. Commercially available strain gages have 
even more loops than this. The ones used in our lab have six loops.  

• The direction of the applied strain is indicated on the sketch. The 
connecting wires or leads go to an electronic circuit (discussed below) 
that measures the change in resistance.  

• Consider a beam undergoing axial strain; the strain is to be measured.  
• A strain gage is glued to the surface of the beam, with the long sections of the etched metal foil aligned with 

the applied axial strain as sketched below left (the strain gage is mounted on the front face of the beam). 
• As the surface stretches (strains), the strain gage stretches along with it. The resistance of the strain gage 

therefore increases with applied strain. Assuming the change in resistance can be measured, the strain gage 
provides a method for measuring strain. 

• Other practical applications are shown below – a strain gage glued (rather sloppily) onto a cylindrical rod, 
and a strain gage mounted on a re-bar, which is then encased in concrete, used to measure shrinkage and to 
monitor the strain on structural components in bridges, buildings, etc. 
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Typical strain gage values 
• Here are some typical values for resistance, strain gage factor, and strain, along with the predicted values of 

change in resistance:  
o The electrical resistance R of a commercial strain gage (with no applied strain) is typically either 120 Ω 

or 350 Ω.  
o The most widely used commercially available strain gages have R = 120 Ω.  
o The strain gage factor S of the metal foil used in strain gages is typically around 2.0.  
o In typical engineering applications with metal beams, the range of axial strain is 10-6 < εa < 10-3.  

• Using these limits and the above equation for change in resistance as a function of strain and strain gage 
factor, aR RSδ ε= , and the typical range of δR is ( )( )( ) ( )( )( )6 3120 2.0 10 120 2.0 10Rδ− −Ω < < Ω , or 

0.00024 Ω < δR < 0.24 Ω. 
• Notice how small δR is!  
• For a typical 120 Ω strain gage, the range of fractional change in resistance is 2 × 10-6 < δR/R < 2 × 10-3.  
• This is the main problem when working with strain gages: We cannot use a simple ohm meter to measure the 

change in resistance, because δR/R is so small. Most ohm meters do not have sufficient resolution to measure 
changes in resistance that are 3 to 6 orders of magnitude smaller than the resistance itself. 
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Strain gage electronics 
Since δR/R is very small and difficult to measure directly, electronic circuits must be designed to measure the change 
in resistance rather than the resistance itself. Fortunately, there are circuits available to do just that. 
 

The Wheatstone bridge 
• A clever circuit to measure very small changes in resistance is called a Wheatstone bridge.  
• A schematic diagram of a simple Wheatstone bridge circuit is shown to 

the right. 
• As seen in the sketch, a supply voltage is supplied (top to bottom) 

across the bridge, which contains four resistors (two parallel legs of two 
resistors each in series). 

• The output voltage is measured across the legs in the middle of the 
bridge.  

• In the analysis here, it is assumed that the measuring device (voltmeter, 
oscilloscope, computerized digital data acquisition system, etc.) used to measure output voltage Vo has an 
infinite input impedance, and therefore has no effect on the circuit.  

Vs = supply 
voltage 

R1 R2 

R4 R3 

Vo 
+−

+ 

− 
Vo

– Vo
+

• Output voltage Vo = Vo
+ – Vo

–  is calculated by analyzing the circuit. Namely, 
( )( )

3 1 4 2
o

2 3 1 4
s

R R R RV V −
R R R R

=
+ +

. 

[This equation is “exact” – no approximations of small change in resistance were made in its derivation.] 
• How does the Wheatstone bridge work? Well, if all four resistors are identical (R1 = R2 = R3 = R4), the bridge 

is balanced since the same current flows through the left leg and the right leg of the bridge. For a balanced 
bridge, Vo = 0.  

• More generally (as can be seen from the above equation), a Wheatstone bridge can be balanced even if the 
resistors do not all have the same value, so long as the numerator in the above equation is zero, i.e., if 

3 1 4 2R R R R= . Or, expressed as ratios, the bridge is balanced if 1 4

2 3

R R
R R

= . 

• In practice, the bridge will not be balanced automatically, since “identical” resistors are not actually 
identical, with resistance varying by up to several percent. Thus, a potentiometer (variable resistor) is 
sometimes applied in place of one of the resistors in the bridge so that 
minor adjustments can be made in order to balance the bridge. 

 

Vs = supply 
voltage 
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−

+ 

− 

Pot o An arrow through the resistor indicates that its resistance can vary, 
as sketched to the right. 

o In this circuit, resistor R2 was arbitrarily chosen to be replaced by a 
potentiometer, but any of the four resistors could have been used 
instead.  

 
Quarter bridge circuit 

• To measure strain, one of the resistors, in this case R3, is replaced by the 
strain gage, as sketched to the right. (Note that one of the other resistors 
may still be a potentiometer rather than a fixed resistor, but that will not 
be indicated on the circuit diagrams to follow.) 

 

Vs = supply 
voltage 
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− 

R3 = strain gage 

• Again, an arrow through the resistor indicates that its resistance can 
vary − this time because R3 is an active strain gage, not a potentiometer.  

• With only one out of the four available resistors substituted by a strain 
gage, as in the above schematic, the circuit is called a quarter bridge 
circuit.  

• The output voltage Vo is calculated from Ohm’s law, as previously, 
( )( )

3 1 4 2
o

2 3 1 4
s

R R R RV V
R R R R

−
=

+ +
. 

• Let R1 = R2 = R4 = 120 Ω, and let the initial resistance of the strain gage (with no load) be R3,initial = 120 Ω. 
• The bridge is therefore initially balanced when R3 = R3,initial, since R3,initialR1 – R4R2 = 0, and Vo is thus zero. 
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Unbalanced quarter bridge circuit - to measure strain 

• In normal operation, the Wheatstone bridge is initially balanced as above. Now suppose strain is applied to 
the strain gage, such that its resistance changes by some small amount δR3. In other words, R3 changes from 
R3,initial to R3,initial + δR3.  

• Under these conditions the bridge is unbalanced, and the resulting output voltage Vo is not zero, but can be 

calculated as 
( )

( )( )
3,initial 3 1 4 2

o
2 3,initial 3 1 4

s

R R R R R
V V

R R R R
δ

δ

+ −
=

+ + + R
. 

• We simplify the numerator by applying the initial balance equation, R3,initialR1 – R4R2 = 0, yielding 

( )( )
3 1

o
2 3,initial 3 1 4

s
R RV V

R R R R R
δ

δ
⋅

=
+ + +

. [This equation is exact only if the bridge is initially balanced.] 

• We simplify the denominator by recognizing, as pointed out previously, that the change in resistance of a 

strain gage is very small; in other words, δR3/R3,initial << 1. This yields ( )( )
3 1

o
2 3,initial 1 4

s
R RV V δ

R R R R
⋅

≈
+ +

.  

• We apply the relationship derived earlier for change in resistance of a strain gage as a function of axial strain, 

resistance, and strain gage factor, namely, 3 3,initial aR R Sδ ε= . After some algebra, 
( )2

2 3,initialo

2 3,initial

1
a

s

R RV
V S R R

ε
+

≈ . 

• Furthermore, since R2 = R3,initial (e.g., both are 120 Ω), this reduces to o 14a
s

V
V S

ε ≈  or o 4
a

s
SV Vε

≈ . 

• The significance of this result is this: 
For constant supply voltage Vs and constant strain gage factor S, axial strain at the location of the strain gage 
is a linear function of the output voltage from the Wheatstone bridge circuit.  

• Even more significantly:  
For known values of S and Vs, the actual value of the strain can be calculated from the above equation after 
measurement of output voltage Vo. 

 
• Example: 

Given: A standard strain gage is used in a quarter bridge circuit to measure the strain of a beam in tension. 
The strain gage factor is S = 2.0, and the supply voltage to the Wheatstone bridge is Vs = 5.00 V. The 
bridge is balanced when no load is applied. Assume all resistors are equal when the strain gage circuit is 
initially balanced with no load. For a certain non-zero load, the measured output voltage is Vo = 1.13 mV. 

To do: Calculate the axial strain on the beam. 
Solution: 
o We apply the above equation for axial strain for a quarter bridge circuit, yielding 

o 1 1.13 mV 1 1 V4 4
5.00 V 2.0 1000 mVa

s

V
V S

ε ⎛≈ = ⎜
⎝ ⎠

⎞
⎟  = 0.000452. 

o Since strain is such a small number, it is common to report strain in units of microstrain (μstrain), 
defined as the strain times 106. Note that strain is dimensionless, so microstrain is a dimensionless unit.  

o The unit conversion between strain and microstrain, expressed as a 
dimensionless ratio, is (106 microstrain/strain). Thus, 

610  strain0.000452
straina
με

⎛ ⎞
= ⎜

⎝ ⎠

F 

Front 
strain 
gage 

Beam

Rear 
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gage 

⎟  = 452 μstrain. 

o Finally, keeping to two significant digits (since S is given to only two digits), 
450 strainaε μ= . 

Discussion: It is also correct to give the final answer as 0.00045aε = . 
 

Half bridge circuit 
• Suppose we mount two active strain gages on the beam, one at the front and one 

at the back as sketched to the right. 
• Also suppose that both strain gages are put into the Wheatstone bridge circuit, as 

shown in the circuit diagram below, noting that resistors R1 and R3 have been 
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replaced by the two strain gages. 

• Since half of the four available resistors in the bridge are strain gages, this is called a half bridge circuit.  
• After some algebra, assuming that both strain gage resistances change identically as the strain is applied, it 

can be shown that 
( )2

2 3,initialo

2 3,initial

1
2a

s

R RV
V S R R

ε
+

≈ . 

• Furthermore, since R2 = R3,initial = 120 Ω, the above equation reduces to 
o 12a
s

V
V S

ε ≈  or o 2
a

s
SV Vε

≈ . 

• Compared to the quarter bridge circuit, the half bridge circuit yields 
twice the output voltage for a given strain. We say that the sensitivity of 
the circuit has improved by a factor of two.  

• You might ask why R1 (rather than R2 or R4) was chosen as the resistor 
to replace with the second strain gage. It turns out that R1 is used for the 
second strain gage if its strain is of the same sign as that of R3.  

• To prove the above statement, suppose all four resistors are strain gages 
with initial values R1,initial, R2,initial, etc. The corresponding changes in resistance due to applied strain are δR1, 
δR2, etc. It can be shown (via application of Ohm’s law, and neglecting higher-order terms as previously) that 

the output voltage varies as 
( )

2,initial 3,initialo 31 2 4
2

1,initial 2,initial 3,initial 4,initial2,initial 3,initials

R RV RR R R
V R R RR R

δδ δ δ⎛ ⎞
≈ − + −⎜ ⎟⎜ ⎟+ ⎝ ⎠

 

Vs = supply 
voltage 

R1 R2 

R4 R3 

Vo 
+−

+ 

− 

R1 = strain gage 

R3 = strain gage 

R
. [This equation is 

approximate – assumes initially balanced bridge and small changes in resistance.] 
• As can be seen, the terms with δR1 and δR3 are of positive sign, and therefore contribute to a positive output 

voltage when the applied strain is positive (strain gage in tension). 
• However, the terms with δR2 and δR4 are of negative sign, and therefore contribute to a negative output 

voltage when the applied strain is positive (strain gage in tension).  
• In the above beam example, in which both strain gages measure the same strain, it is appropriate to choose R1 

for the second strain gage. If R2 or R4 had been chosen instead, the output voltage would not change at all as 
strain is increased, because of the signs in the above equation. (The change in resistance of the two strain 
gages would cancel each other out!) 

 
Example − a cantilever beam experiment 

• As an example, consider a simple 
lab experiment. A cantilevered 
beam is clamped to the lab bench, 
and a weight is applied at the end 
of the beam as sketched to the 
right. A strain gage is attached on 
the top surface of the beam, and 
another is attached at the bottom surface, as shown.  

 

Bench
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F 

Cantilevered beam 

• As the beam is strained due to the applied force, the top strain gage is stretched (positive axial strain), but 
the bottom strain gage is compressed (negative axial strain).  

• If the beam is symmetric in cross section, and if the two strain gages are identical, the two strain gages have 
approximately the same magnitude of change in resistance, but opposite signs, i.e., δRbottom = −δRtop.  

• In this case, if R1 and R3 were chosen for the two strain gages in the bridge circuit, the Wheatstone bridge 
would remain balanced for any applied load, since δR1 and δR3 would cancel each other out.  

• In this example, the half bridge circuit should be constructed with 
pairs of resistors that have opposite signs in the above general 
equation – the choices are R1 and R2, R1 and R4, R2 and R3, or R3 
and R4 as the two resistors to be substituted by the strain gages.  
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• An example circuit for this simple experiment uses R3 for the top 
strain gage and R4 for the bottom strain gage, with the Wheatstone 
bridge circuit wired as sketched to the right. 
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• Circuit analysis for this case yields o 12a
s

V
V S

ε ≈  or o 2
a

s
SV Vε

≈ . 

• Compared to the quarter bridge circuit, the voltage output of this half bridge circuit (with two active strain 
gages) is twice that of the quarter bridge circuit (with only one active strain gage), all else being equal.  

• In general, for any system, sensitivity is defined as the ratio of output to input. In this case, the output is the 
voltage Vo, and the input is the axial strain being measured.  

• Thus, we conclude: The sensitivity of a half bridge Wheatstone bridge 
circuit is twice that of a quarter bridge Wheatstone bridge circuit.  

Vs = supply 
voltage 

R1 R2 

R4 R3 

Vo 
+−

+ 

− 

 
Full bridge circuit 

• If we substitute strain gages for all four resistors in a Wheatstone 
bridge, the result is called a full bridge circuit, as sketched to the right. 

• Warning: You need to be very careful with the signs when wiring a full 
bridge circuit!  

• If the wiring is done properly (e.g., R1 and R3 have positive strain, while R2 and R4 have negative strain), the 

sensitivity of the full bridge circuit is four times that of a quarter bridge circuit, o 1
a

s

V
V S

ε ≈  or o a sV SVε≈ . 

• In general, we define n as the number of active gages in the Wheatstone bridge: 
o n = 1 for a quarter bridge 
o n = 2 for a half bridge 
o n = 4 for a full bridge 

• Then the strain can be generalized to o4 1
a

s

V
n V S

ε ≈  or o 4 a s
nV SVε≈ . 

• One cautionary note: In derivation of the above equation, it is assumed that positive strain gages (R1 and R3) 
are chosen for positive strain (tension), and negative strain gages (R2 and R4) are chosen for negative strain 
(compression). If instead we were to wire the circuit such that the positive gages are in compression and the 
negative gages are in tension, a negative sign would appear in the above equation.  

• On a final note, it is not always necessary to initially balance the bridge. In other words, suppose there is 
some initial non-zero value of bridge output voltage, namely Vo,reference ≠ 0. This voltage represents the 
reference output voltage at some initial conditions of the experiment, which may not necessarily even be 
zero strain.  

• We can still calculate the strain by using the output voltage difference rather than the output voltage itself, 
( )o o,reference4 1

a
s

V V
n V

ε
−

≈
S

 or o o,reference 4 a s
nV V SVε≈ + . 

• In the lab, we use voltmeters with a “REL” button, which stands for “relative” voltage. [On some voltmeters, 
the REL button is indicated by triangular symbol “Δ” instead. 

• Under conditions of zero strain with a slightly unbalanced bridge, the reference output voltage is not zero 
(Vo,reference ≠ 0). However, pushing the REL button causes the voltmeter to read all subsequent voltages 
relative to Vo,reference. In other words, the voltmeter reads Vo – Vo,reference instead of Vo itself.  

 


