Thermal Physics EE1

Lecture 1
lan MacLaren
i.maclaren@physics.gla.ac.uk

Recommended books

- Benson University Physics
 - Chapters 18-20 and parts of 21
- Extra info in C.B.P. Finn Thermal Physics

Thermodynamics

- Understanding the words
 - Temperature
 - # Heat
 - Heat capacity
 - The 0, 1, 2 laws of thermodynamics
- (one of) Kelvin's legacy's

WilliamThompson (Lord Kelvin)

Why study thermal physics???

- Temperature affects material properties, dimensions
- Electrical or electronic components need cooling
 - Transformers
 - ICs
- Thermodynamic effects often used
 - E.g. heat pump in refrigeration
- Efficiency why can't I turn all my energy into useful work???

What is it all about?

- Describe a system in terms of simple State Variables
 - E.g. Temperature, pressure, volume, amount of substance
- Independent of microscopic structure
- But consistent with microscopic understanding
- Very powerful for all sorts of systems!!

Einstein thought:

A theory is the more **impressive** the greater the **simplicity** of its premises, the more varied the kinds of things it relates and the more extended the area of its applicability. Therefore classical thermodynamics has made a deep impression upon me. It is the only physical theory of universal content which I am convinced, within the areas of the applicability of its basic concepts, will never be overthrown.

What is Temperature?

- Perception as to hot and cold defined relative to our own body temperature, i.e. object is hotter or colder than oneself
- Own perception misleading
 - Door and doorhandle
 - 21°C air and water
 - Hand in hot then lukewarm water
 - Hand in cold then lukewarm water

What is Temperature - 2?

- Objective measurement of temperature
 - Macroscopic, display of temperature gauge
 - Microscopic behaviour of atoms and molecules

Measuring temperature

- Properties of materials change with temperature
 - Length
 - * Volume
 - Electrical Resistance

Hotter things become longer

- Most solids get bigger when they get hot
 - A 1 metre long bar heated by 1 degree gets bigger by
 - Steel ≈0.01 mm
 - Glass ≈ 0.001 mm
 - Zerodur ≈ 0.0001mm

Rails expand and may buckle on a hot summer day

A bimetallic strip

 Join two metals with different coefficient of thermal expansion

e.g. fire alarm

Hotter things take up more volume -1

- Most materials get bigger when they get hot (but not water 0°C -> 4°C gets smaller!)
 - Thermometer relies on a thermal expansion of a liquid (e.g.mercury)

Thin tube
(Gives big
length change
for small
increase in
volume)

Large volume of reservoir

Hotter things take up more volume -2

Gases (as we will see)can behave nearperfectly

Hotter

Hotter things change their resistance

- All hotter metals have a higher electrical resistance
 - e.g. platinum resistance thermometer
- Hotter (undoped) semiconductors have a lower electrical resistance
 - * key distinction between metals and insulators!
- Superconductors lose all electrical resistance at low T

How long do you have to leave a thermometer in your mouth?

- Hot things stay hot if you insulate them, e.g.
 - coffee in a vacuum flask (keeps things cold too)
 - an explorer in a fur coat
- The mercury in the thermometer must reach the same temperature and you

Insulation

- Example of good (thermal) insulators
 - A vacuum, polystyrene, fibreglass, plastic, wood, brick
 - (low density/foam structure, poor electrical conductors)
- Examples of poor insulators, i.e. good conductors
 - Most metals (but stainless steel better than copper)
 e.g. gold contact used within IC chips to prevent
 heating
 - Gases, liquids
 - (high density, "mobile", good electrical conductors)

Ask a friend if it's cool enough to eat

- Your friend eats the "hot" loaf and says it cool enough to eat (i.e it is "close" enough to their own temperature that it does not burn)
- Is it safe for you to eat too?
- If it is safe for them, it's safe for you!

The 0th law of thermodynamics

If A and B are each in thermal equilibrium with C then A and B are in thermal equilibrium with each other

If Alfred and the Bread are the same temperature as Cliff then Alf is the same temperature as the Bread.

So what is temperature?

- A State Variable
 - Independent of structure, path to current state etc.
- Describes thermal equilibrium
- Two objects in thermal contact will reach thermal equilibrium only when they have the same temperature
- Microscopically to do with motion or vibration of atoms and molecules

Temperature and scales

- We need a linear scale for temperature
- Could use any two fixed points
- Temperature scales in historical order (melting & boiling of water)
 - Degrees Fahrenheit (MP 32° F BP 212°F)
 - 0° F cold day, 100° F body temperature (with a cold!!)
 - Degrees Celsius (MP 0°C 100°C)
 - Degrees Kelvin (MP 273.15 K BP 373.15 K)

Converting between scales

Kelvin to Celsius

$$*K = C + 273.15$$

$$*C = K - 273.15$$

Fahrenheit to Celsius

$$F = C \times (9/5) + 32$$

$$*C = (F - 32) \times (5/9)$$

Example

- Convert the following temperatures into °F and K
- Boiling water, 100°C
- Freezing water, 0°C
- Absolute zero,-273.15°C

212°F, 373.15K

32°F, 273.15K

-460°F, 0K

Types of thermometer

- Change in electrical resistance (convenient but not very linear)
- Change in length of a bar (bimetallic strip)
- Change in volume of a liquid
- Change in volume of gas (very accurate but slow and bulky)
- Thermocouple

Linear expansion

- Objects get longer when they get hotter
- Approximately linear over small range
- Their *fractional* change in length is proportional to the change in temperature
 - * $\Delta L/L = \alpha \Delta T$ or $\Delta L = \alpha L \Delta T$

* or
$$\frac{dL}{dT} = \alpha L$$

Thermal expansion ($\alpha[K^{-1}]$)

- Aluminium, $\alpha = 2.4 \times 10^{-5} \text{ K}^{-1}$
- Steel, $\alpha = 1.2 \times 10^{-5} \text{ K}^{-1}$
- Glass, $\alpha \approx 5 \times 10^{-6} \text{ K}^{-1}$
- Invar, $\alpha \approx 9 \times 10^{-7} \text{ K}^{-1}$
- Quartz, $\alpha \approx 4 \times 10^{-7} \text{ K}^{-1}$

Example

- Metre rules are calibrated at 20°C
- What is the error in a measurement of 500mm if made at 45°C?
- $\alpha_{\text{steel}} = 1.2 \times 10^{-5} \text{ K}^{-1}$

$$\Delta L/L = \alpha \Delta T$$

$$\Delta L = L \alpha \Delta T$$

$$\Delta L = 500 \times 10^{-3} \times 1.2 \times 10^{-5} \times 25$$

$$\Delta L = 1.5 \times 10^{-6} \text{m} = 1.5 \mu \text{m}$$

Thermal expansion, why?

- Every microscopic object moves due to thermal excitation -Brownian motion
- Atoms too vibrate with respect to each other
- Hotter atoms vibrate more
 - Asymmetric potential means average separation increases

Thermal Physics – EE1

Lecture 2
Ian MacLaren
i.maclaren@physics.gla.ac.uk

Volume Expansion

- Every length goes from L to L+ Δ L = L + L α Δ T
- Old volume = L³
- New volume = $(L + \Delta L)^3$
- Ignore terms like ΔL^2 and ΔL^3

•
$$V_{\text{new}}$$
= $(L + \Delta L)^3$ ≈ L^3 + $3L^2$ ΔL

*
$$V_{new} = L^3 + 3L^2 \Delta L = L^3 + 3L^2 \alpha L \Delta T = L^3 + 3L^3 \alpha \Delta T$$

*
$$\Delta V = 3L^3 \alpha \Delta T$$

*
$$\Delta V / V = 3\alpha \Delta T$$
 or $\Delta L = 3\alpha V \Delta T$

■ 3α often called β

Example

- If whisky bottles are made to be exactly 1 litre at 20°C
- but, whisky is bottled at 10°C
- How much whisky do you actually get if it is served at 20°C?

•
$$\beta_{glass} = 2x10^{-5} \text{ K}^{-1}$$

•
$$\beta_{\text{whisky}} = 75 \times 10^{-5} \text{ K}^{-1}$$

$$V_{\text{bottle@10}^{\circ}\text{C}} = V_{\text{bottle@20}^{\circ}\text{C}} (1 + \Delta T\beta)$$

$$V_{\text{bottle@}10^{\circ}\text{C}} = 1 (1 - 10 \times 2 \times 10^{-5})$$

$$V_{\text{bottle@10}^{\circ}\text{C}} = 0.9998 \text{ litres}$$

What does 0.9998 litres of whisky at 10°C occupy at 20°C?

$$V_{\text{whisky}@20^{\circ}\text{C}} = V_{\text{whisky}@10^{\circ}\text{C}} (1 + \Delta T\beta)$$

$$V_{\text{whisky}@20^{\circ}C} = 0.9998 (1+10 \times 2\times10^{-5})$$

$$V_{\text{whisky@20^{\circ}C}} = 0.9998 \ (1+10 \ x75x10^{-5})$$

$$V_{\text{whisky}@20^{\circ}\text{C}} = 1.0073 \text{ litres}$$

Shape change on expansion

- This can be very complex for mismatched materials
- Single material (or matched α) much simpler

hotter

Thermal expansion of water

- Density of ice is less than water!!!
 - Icebergs float
- Density of water maximum at 4°C
 - Nearly frozen water floats to the top of the lake and hence freezes at surface

Volume and pressure of a gas

- Gases (at constant pressure) expand with increasing temperature
 - ideal gases tend to zero volume at - 273.15°C!
- Gases (at constant volume) increase pressure with increasing temperature
 - ideal gases tend to zero pressure at - 273.15°C!
- In reality, gases liquefy when they get cold

Pressure

- Pressure is defined as force per unit area
 - Newtons per square metre N/m² = Pa
- The pressure exerted by a gas results from the atoms/ molecules "bumping" into the container walls
 - More atoms gives more bumps and higher pressure
 - Higher temperature gives faster bumps and higher pressure
- At sea level and 20°C, normal atmospheric pressure is
 - * $1atm \approx 1 \times 10^5 \text{ N/m}^2 = 0.1 \text{ MPa}$

Volume and Pressure of a Gas

- Ideal gas law:
 - ♣ P V = const.
- Can define PV = NkT
 - Where N is the number of molecules
 - ♣ And k is Boltzmann's constant, 1.38x10⁻²³ J K⁻¹
- Alternatively PV = nRT
 - Where n is the number of moles of a gas
 - $*N = nN_A$
 - ♦ where N_A is Avogadro's number, 6.02x10²³ mol⁻¹
 - $R = k N_A = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

Volume and pressure 2

Any two temperatures defined by the ratio

$$P_1 T_2 = P_2 T_1$$
 or $V_1 T_2 = V_2 T_1$

 Can use this to calculate volume or pressure changes with temperature

Example

- A bottle of hair spray is filled to a pressure of 1 atm at 20°C
- What is the canister pressure if it is placed into boiling water?

$$P_1 T_2 = P_2 T_1$$

 $1 \times 373 = P_2 \times 293$
 $P_2 = 373/293$
 $P_2 = 1.27 \text{ atm}$

Absolute zero 1

- On the Kelvin scale, the lowest possible temperature is 0 K. (zero volume and zero pressure)
- The zero point is fixed -
 - Absolute Zero (≈ -273.15°C)
- Additional point defined at triple point of water (occurs at one temp and pressure where ice, steam and liquid all coexist (≈ 0.01°C and 0.006 atm)
- $T_{\text{triple}} = 273.16 \text{K}$
- $T = 273.16 \times (p/p_{triple})$

Absolute zero 2

- Ideal gas has zero volume
- Resistance of metal drops to zero (superconductivity cuts in above 0K)
- Brownian motion ceases (kinetic energy due to thermal excitation ≈ 3/2 kT, see later)
- But lowest temperature yet attained in lab is ≈ 10⁻⁹K
- Very difficult to get really cold!!!

Lord Kelvin

- William Thompson, born Belfast 1824
- Student in Natural Philosophy
- Professor at 22!
- Baron Kelvin of Largs in 1897
- Lived at 11 The Square
- A giant
 - Thermodynamics, Foams, Age of the Earth, Patents galore!

Thermal expansion solid-liquidgas

Normally, density(ρ) changes as

How much energy required to heat object?

- Heat (energy) flows because of temperature difference
 - Bigger temperature difference bigger heat flow
 - Less insulation gives more heat flow for the same temperature difference
- Heat will not flow between two bodies of the same temperature

What is heat?

- Heat flows from hot bodies to cold bodies until the temperature of the two is the same
- Early researchers thought it was a substance called caloric

Equilibrium

Two objects of different temperature when placed in contact will reach the same temperature

Sir James Joule

- James Joule 1818-1889
- Stirring water made it warm
 - Change in temperature proportional to work done
 - Showing equivalence of heat and energy
- Also that electrical current flow through a resistor gives heating

Sir James Joule 2

- Heat and energy are the same thing
- Measured in Joules (J)
- Sometimes measured in calories
 - One cal raises one gram of water from 14.5°C to 15.5°C
 - * 1 cal 4.186J

1st Law of Thermodynamics Heat transfer = energy transfer

- Doing work on something usually makes it hot
 - Splash in the bath and the water will get warmer!
- 1st law of thermodynamics heat and work are both forms of energy
- $\Delta U = Q W$
- Same as conservation of energy
 - Can neither be created nor destroyed, just changes form

Thermal Physics – EE1

Lecture 3
Heat capacity and heat transfer
Ian MacLaren
i.maclaren@physics.gla.ac.uk

How quickly do things get hot?

- If you give heat to something
 - T increases
 - How fast?
 - Depends on the substance
 - * Alcohol heats quicker than water
 - * Also depends on how much you have of the substance

Specific heat capacity

- \blacksquare Q = mc \triangle T
 - Q is heat required
 - m is the mass of substance
- c is called the specific heat capacity
 - \star c_{water} = 4190 J kg⁻¹ K⁻¹ very difficult to heat
 - $c_{ice} = 2000 \text{ J kg}^{-1} \text{ K}^{-1}$
 - ★ c_{ethanol} = 2428 J kg⁻¹ K⁻¹ easier to heat
 - * $c_{\text{mercury}} = 138 \text{ J kg}^{-1} \text{ K}^{-1}$ very easy to heat
- The higher c is, the more energy we need for heating

Example – heat capacity

- "thrashing" around in the bath should heat up the water.
- How much will the water heat up after one minute of "thrashing"

Estimate volume of water $\approx 0.5 \text{m}^3$ Estimate power of thrashing $\approx 500 \text{W}$

 $\Delta T = Q/mc_{water}$ $\Delta T = 500 \times 60 /500 \times 4190$ $\Delta T = 0.015^{\circ}C$

Reaching thermal equilibrium

- Total energy (heat) of a closed system is constant, $\Delta Q_{coffee} = -\Delta Q_{milk}$ i.e $\Sigma \Delta Q = 0$
- By convention heat flowing into a body ∆Q +ve

Hot black coffee at T_H

Cold milk at T_C

Warm white coffee at T_w

$$(T_H - T_w)m_{coffee}c_{coffee} = -(T_c - T_w)m_{milk}c_{milk}$$

Example 2 – heat capacity

- A 2.5 kg steel bar is heated to 1000 °C
- It is then dropped into a 10 I tank of cold water at 10 °C (approx 10 kg water)
- What is the final temperature of the water?
- $c_{\text{steel}} = 420 \text{ J kg}^{-1} \text{ K}^{-1}$
- $c_{water} = 4190 \text{ J kg}^{-1} \text{ K}^{-1}$
- $\Delta T_{\text{steel}} / \Delta T_{\text{water}} = -39.9$
- $\Delta T_{water} \Delta T_{steel} = 990$
- $\Delta T_{water} + 39.9 \Delta T_{water} = 990$
- $\Delta T_{water} = 990/40.9 = 24.2 \, ^{\circ}C \implies T_{final} = 34.2 \, ^{\circ}C$
- $\Delta T_{\text{steel}} = -990/1.025 = 965.8 \, ^{\circ}\text{C} !!!!!!!$

Molar heat capacity

- Quote Joules per mole rather than Joules per kilogram
- i.e. $Q = nMc \Delta T$
 - n is the number of moles
 - Mc is the molar heat capacity (J mol⁻¹ K ⁻¹)
- Mc ≈ 25 J mol ⁻¹ K ⁻¹ for solids!
 - i.e. energy required to heat one atom of anything is about the same
 - Realised by Dulong and Petit

Phase changes (e.g. solid to liquid)

- When heating ice into water and then into steam the temperature does not go up uniformly
 - Different gradients (c_{water} > c_{ice})
 - Flat bits at phase changes
 - Need heat to convert
 - Solid to liquid
 - Liquid to vapour

Energy required for phase change

- Heat of fusion (Q), solid -> liquid
 - \bullet Q = mL_f (L_f is latent heat of fusion)
 - $L_{f \text{ (water)}} = 334 \text{ x} 10^3 \text{ J/kg}$
 - $L_{f \text{ (mercury)}} = 11.8 \times 10^3 \text{ J/kg}$
- Heat of vapourisation (Q), liquid -> gas
 - ♠ Q = mL_v (L_v is latent heat of vapourisation)
 - $L_{v \text{ (water)}} = 2256 \text{ x} 10^3 \text{ J/kg}$
 - $L_{v \text{ (mercury)}} = 272 \text{ x} 10^3 \text{ J/kg}$
- Heat of sublimation (Q), solid -> gas
 - \bullet Q = mL_s (L_s is latent heat of sublimation)

Other phase changes

- Magnetic transitions
 - Iron is paramagnetic at high temperature
 - Can be magnetised
 - Not permanently magnetised
 - Is ferromagnetic at lower temperatures
 - Change happens at the Curie Temperature
- Changes in crystal structure, ferroelectrics etc.
- May also have latent heats associated

Using condensation to transfer energy

- Steam has two contributions to its stored thermal energy
 - The energy it took to heat it to 100°C
 - The energy it took turn it from water at 100°C to steam at 100°C
- Same idea with sweating
 - Sweat forms on the skin
 - It evaporates and this requires energy
 - Your skin gets cooler

Turning water into steam is a thermally efficient way of cooling things down

Example

- If it takes 2 mins for your kettle to begin boiling how much longer does it take to boil dry?
 - Assume kettle is 3kW
 - Starting temp of water 20°C

```
Work done by kettle = power x time
= 2 \times 60 \times 3000 = 360000J
```

- = Work to boil water of mass M
 - $= \Delta T \times M \times C_{\text{water}}$
 - $= 80 \times M \times 4190 = 335200 M$

 \rightarrow Mass of water = 1.07kg

Energy to boil water = $M \times L_{v \text{ (water)}}$ = 1.07 x 2256 x10³ = 2420 000J

Time required = Energy /power = $2420\ 000/3000 = 808\ s \approx 13mins$

Transferring heat energy

- 3 mechanisms
 - Conduction
 - Heat transfer through material
 - Convection
 - Heat transfer by movement of hot material
 - Radiation
 - Heat transfer by electromagnetic radiation (light, IR, etc.)

Conduction of heat

- Conduction in solids
 - Heat energy causes atoms to vibrate, a vibrating atom passes this vibration to the next and so on
- Conduction in metal
 - Have free electron "gas"
 - Conduction electrons can move where they wish
 - Heat energy causes electrons to gain energy
 - This energy is rapidly spread out through entire free electron gas
 - Metals are good conductors of both heat and electricity

Rate of heat flow

- Heat flow (H) is energy transfer per unit time, depends on
 - Temperature difference
 - Thermal conductivity (κ)

•
$$k_{(copper)} = 385 \text{ W/(m K)}$$

•
$$k_{(glass)} = 0.8 \text{ W/(m K)}$$

•
$$k_{(air)} = 0.02 \text{ W/(m K)}$$

Thermal conductivity (
$$\kappa$$
)
• $k_{\text{(copper)}} = 385 \text{ W/(m K)}$

$$H = \frac{dQ}{dt} = \kappa A \frac{T_H - T_C}{L}$$

Example

- You poke a 1.2m long, 10mm dia. copper bar into molten lead
- How much heat energy flows through the bar to you?
 - Lead melts at 600K

Temperature difference along rod $\Delta T = 600 - 311 = 289K$

$$H = k_{copper} A (\Delta T/L)$$

 $A=\pi \times r^2=3.142 \times 0.005^2=0.000078m^2$

$$H = k A (\Delta T/L) = 7.3$$
units?

Units = $\{W/(mK)\}\ m^2 K / m = Watts$

Thermal conduction vs thermal resistance

Can also use thermal resistance, R

$$H = \frac{dQ}{dt} = \kappa A \frac{T_H - T_C}{L} = A \frac{T_H - T_C}{R}$$
 i.e. $R = \frac{L}{\kappa}$

- R values often quoted for household insulation (in absurd imperial units!!)
- Can make equation of heat flow more general $H = \frac{dQ}{dt} = \kappa A \frac{dT}{dx}$

Convection of heat

- "Hot air rises" (and takes its heat with it!)
 - Radiators
 - Cumulus clouds

Radiation of heat

- Don't confuse with radioactivity
- Instead realise that EM radiation (light etc.) carries heat (e.g. the sun heats the earth)
- Anything above absolute zero radiates heat

Not all things emit heat the same

Heat emission from an object of surface area A

- $H = Ae\sigma T^4$
 - σ = Stafan's constant = 5.6x10⁻⁸ W m⁻² K⁻⁴)
 - e = emissivity of a body, 0 -1
 - $e_{copper} = 0.3$
 - $e_{\text{charcoal}} \approx 1$

Example

- Estimate the upper limit to the heat emission of the sun
 - Sun's surface temperature 6000k
 - ♣ Sun's radius 7x10⁸m

Emission, $H = Ae\sigma T^4$

Area = $4\pi r^2 = 6.2 \times 10^{18} \text{ m}^2$

Emissivity ≈ 1

 $H = 6.2 \times 10^{18} \times 5.6 \times 10^{-8} \times 6000^{4}$

Sun's output = $4.5 \times 10^{26} \text{ W}$

Are heat emitters also good absorbers?

- Two bodies close
 - All heat emitted from A hits B
 - All heat emitted from B hits A
 - A is a perfect absorber & emitter
 - B emissivity e, absorptivity η
- B in thermal equilibrium with A, i.e. heat in = heat out
 - Area $\eta_B \sigma T_A^4 = \text{Area } e_B \sigma T_B^4$
 - $T_A = T_B$ therefore $e_B = \eta_B$

The "colour" of heat

- Peak wavelength of EM radiation emitted depends on temperature
- Spectrum includes all wavelength longer than the peak but not many above
 - 20°C peak in infrared (need thermal imaging camera to see body heat)
 - * 800°C peak in red (electric fire glows red)
 - 3000° peak in blue (but includes green and red light hence appears white)
 - 2.7K peak in microwave (background emission in the universe left over from the Big Bang)

Thermal Physics – EE1

Lecture 4
Ideal gases
Ian MacLaren
i.maclaren@physics.gla.ac.uk

Equations of state

- State, identifies whether solid liquid or gas
- Key parameters or state variables
 - ♦ Volume, V (m³)
 - Pressure, P (N/m²)
 - Temperature, T (K)
 - Mass, M (kg) or number of moles, n
- Equation of state relates V, P, T, M or n

Equation of state for a solid

- Increasing the temperature causes solid to expand
- Increasing the pressure causes solid to contract (0 subscript indicates initial value)
 - $V = V_0 [1 + \beta(T-T_0) k(p-p_0)]$
 - β = thermal (volume) expansion coefficient
 - k = pressure induced volume expansion coefficient

Amount of gas

- Better to describe gas in terms of number of moles (we shall see that all gases act the same!)
- Mass, m related to number of moles, n
 - *m = nM
 - M = molecular mass (g/mole, 1mole = 6x10²³ atoms or molecules

Equation of state for a gas

- All gases behave nearly the same
 - ***** pV = *n*RT
 - R = 8.3 J mol⁻¹ K ⁻¹) for <u>all</u> gases (as long as they remain a gas)
 - T is in K!!!!!!
- Re-express
 - pV = (m/M) RT
- Density ρ = (m/V)
 - $\rho = pM/RT$

Example

- What is the mass of a cubic metre of air?
 - Molecular weight of air ≈ 32 g

$$pV = nRT$$

Atmospheric pressure = 10⁵ Pa Atmospheric temp. = 300 K

For a volume of 1 m³

$$n = pV/RT = 10^5 / (8.3 \times 300)$$

= 40 moles

$$M = 40 \times 0.032 = 1.3 \text{ kg}$$

Constant mass of gas

- For a fixed amount of gas, its mass or number of moles remains the same
 - **♦** pV/T = nR = constant
- Comparing the same gas under different conditions
 - $p_1V_1/T_1 = p_2V_2/T_2$
 - Hence can use pressure of a constant volume of gas to define temperature (works even if gas is impure - since all gases the same)
 - Must use T in K!!!!!!

Example

- A hot air balloon has a volume of 150m³
- If heated from 20°C to 60°C how much lighter does it get?
 - Molecular weight of air ≈32 g mol⁻¹

$$pV/T = nR$$

 $n = pV/RT$

Balloon has constant volume and constant pressure

$$n_{cool} = 10^5 x 150 / (8.3 x 293) = 6168$$

$$n_{hot} = 10^5 x 150 / (8.3 x 333) = 5427.1$$

 $\Delta n = 7409 \text{ moles}$

$$\Delta M = 740.9 \times 0.032 = 23.7 \text{kg}$$

Work on and by gases

- Compress
 - ***** V → V-dV
 - Work done on the gas by the piston
 - W is -ve
- Expand
 - $*V \rightarrow V+dV$
 - Work done on the piston by the gas
 - * W is +ve

Work done on/by gas

- \blacksquare dW = F dx
- P = F/A
- \blacksquare dW = P Adx
- \blacksquare Adx = dV
- dW = PdV
- P = nRT/V so P depends on V

Change of State processes

- How to get "there" from "here"
- Isothermal
 - Same temperature
- Isobaric
 - Same pressure
- Isovolumetric
 - Same volume
- Can relate to first law of thermodynamics
 - **★** ∆U=Q-W

Isothermal

- Iso same
- Thermal temperature
- Pressure and volume change inversely
- PV = const
 - Boyle's law
- For ideal gas, if T is constant, U is constant
- $\Delta U=0=Q-W \Rightarrow Q=W$
- Heat input = Work done

Isobaric

- Iso same
- Baric pressure
 V increases with T or vice versa

Isovolumetric

- Iso Same
- Volumetric volume
- As P increases, T increases
- $V_1 = V_2$ $W = \int PdV = 0$ $\Delta U = Q$
- All heat converted to internal energy

Adiabatic

- A not
- Dia through
- Batic passable
- i.e. No heat flow
- $\mathbf{Q} = \mathbf{Q} \Rightarrow \Delta \mathbf{U} = -\mathbf{W}$
- Process occurs fast

or

- Container is well insulated
- Adiabats obey PV^γ = const.

Cyclic processes

- Go from one state (point) to another and return by different route
- Net work: area of cycle (shaded)

- Quasistatic process
 - Slow change in state variables P, V, T

Example

- Ideal gas expands isobarically at P = 120 kPa from A to B
- It is then compressed isothermally from B to C
- Find the work done

$$W = \int PdV$$

A to B: P const

$$W = P \int dV = P(V_2 - V_1)$$

= 120x10³ x(50 - 30)x10⁻³ = 2400J

Example continued

B-C: T constant

$$W = \int_{V_1}^{V_2} PdV = nRT \int_{V_1}^{V_2} \frac{dV}{V}$$
$$= nRT(\ln V_2 - \ln V_1)$$

C A B B 30 40 50

At B

$$\begin{aligned} PV &= 120x10^3x50x10^{-3} = 6000J = nRT \\ W &= 6000(ln\,V_2 - ln\,V_1) = 6000\,ln\frac{V_2}{V_1} = -1339J \\ W_{total} &= 2400 - 1339 = 1061J \quad \text{Done by the gas} \end{aligned}$$