SENSORS and TRANSDUCERS

Tadeusz Stepinski, Signaler och system

* The Thermal Energy Domain

- Physics
 - » Seebeck effect
 - » Peltier effect
 - » Thomson effect
- Thermal effects in semiconductors
- Thermoelectric sensors
- Thermoresistive sensors

- * We are considering thermal transducers that are used for converting thermal information into electrical signals.
- * Basic mechanisms relevant for our discussion:
 - Seebeck effect
 - Peltier effect
 - Thomson effect
 - Thermoresistance

* The Seebeck effect

Generation of electrical voltage due to temperature difference between a weld of two different materials and the other ends of these wires

- * Seebeck coefficient describes a bulk effect, determined by the following effects:
 - Temperature difference generates a difference in Fermi level
 - Bandgap distance changes with temperature
 - The gradient of charge carriers changes for n and p type as a function of temperature
 - Diffusion coefficient is a function of temperature
 - Charge carriers move from the heated side to cold side thermodiffusion
 - Electric field will be generated due to the transport of charge carriers
- Seebeck effect is used mainly in thermocouples used for temperatures ranging from 200 to 1600 °C

* Peltier effect

A reverse effect to Seebeck effect, discovered in 1834 by Peltier.

When a current flows through a junction of two different metals heat is dissipated or absorbed towards or from the the environment.

$$Q = -\Pi_{ab} J_{ab}$$

where:

Q (J m⁻²) - dissipated or absorbed heat

 $\Pi_{\mathrm{ab}} \left(\mathrm{J} \ \mathrm{C}^{-1}
ight)$ - Peltier coefficient for a junction with materials a and b

 J_{ab} (C m⁻²) - charge carrier density flowing from *a* to *b*

Relationship between Peltier and Seebeck coefficients (under certain conditions)

$$\Pi_{ab} = a_s T$$

* Thomson effect (reversible)

Current flowing in a wire in which temperature gradient is present shows a heat exchange with its environment.

* Thomson effect

$$Q_{th} = \mathbf{g} \cdot J \cdot \Delta T$$

where $Q_{th} (W m^{-2})$ - heat flaw $\gamma (VK^{-1})$ - Thomson coefficient J (Am⁻²) - current density T (K) - temperature

Kelvin proved the following relationship between Seebeck and Thomson coefficients

$$g = T \frac{\P a_s}{\P T}$$

***** Thermoresitance

Macroscopic description

 $R(T) = R(0) \cdot (1 + AT + BT^2)$

where: R(T), R(0) - resistance at temperature T and -273°K, respectively

A, B - temperature coefficients

Term *B* can be neglected for for most materials

Microscopic description

S =
$$n \cdot q \cdot M$$

where: $\sigma (\Omega m)$ - conductivity
 $n (m^{-3})$ - number of charge carriers per unit volume
 $q (1.6 \ 10^{-19} \text{ C})$ - specific charge
 $\mu (m^2 \text{V}^{-1} \text{ s}^{-1})$ - electron mobility

Thermal effects in semiconductors

Thermistors are composed of sintered ceramic semiconductor and metal oxides - manganese, cobalt, copper and iron Thermistor resistance

$$\Gamma(T) = \Gamma(T_0) \cdot \exp[-B \cdot (1/T - 1/T_0)]$$

where

 $\Gamma(T_0)$ - resistivity at $T=T_0$

B - constant (in the range of 4000K)

Most thermistors have negative temperature coefficient (NTC)

$$a = \frac{dr}{r} = -\frac{B}{T^2}$$

Review of thermal effects

Name of effect	Notation	Macroscopic description
Thermoelectric, Seebec	[th,el,00]	Generation of electrical potential by a joint of two dissimilar conductors
Pyroelectric	[th,el,00]	Change of polarization due to temperature change
Nernst	[th,el,ma]	Generation of electromagnetic field due to temperature gradient
Thermodielectric	[el,el,th]	Change of permitivity of a ferroelectric due to temperature
Thermoconductivity	[el,el,th]	Change of conductivity due to temperature
Thermoluminescence	[th,ra,00]	Emission of radiant energy of certain crystals due to temperature
Curie temperature	[th,ma,00]	Change to paramagnetism of ferromagnetic material at specified temperature
Incadescence	[th,ra,00]	Emission of radiant energy when material is heated
Therochemical	[th,el,00]	Change of structure due to temperature
Electrothermal	[el,th,00]	Generation of heat in a conductor by electric current
Peltier	[el,th, 00]	Generation of temperature difference between two junctions when current passes
		through them

* Thermocouples

 (σ)

* Thermocouple laws

Thermal emf is unaffected by temperature elsewhere in the circuit

A third homogenous metal C does not affect the emf as long as the new junctions have the same temperatures

Thermocouple - mV output versus temperature

Thermocouple temperature/voltage curves.

Thermoelectric sensors - applications

***** Thermocouple grid applied space shuttles frond end

Thermoelectric sensors - applications

Pyrometer using thermopile circuit

Thermopile - a circuit arranged of a number of thermocouples in series

Thermoelectric sensors - applications

* Infrared pyrometer (Omega Eng. Inc.)

RTD signa-conditioning circuits

RTD - resistance temperature detector

• Two-wire uncompensated RTD circuit

• Two-wire compensated RTD circuit

• Three-wire RTD circuit

UPPSALA UNIVERSITY

Thermoeresistive sensors - applications

Thermoeresistive sensors - applications

***** Thermistor used as level indicating device

Review Questions

- Describe in detail the Peltier, Seebeck and Thomson effects.
- What effects contribute to Seebeck effect?
- What would you think the dc resistance would be for thermocouple? Do you think the resistance would be thousand, hundreds of ohms, or just few ohms?
- What is a thermopile? Where are they used?
- Explain the difference between material having a positive and negative temperature coefficient
- What is the advantage of using a platinum RTD versus one made of nickel? What is the advantage of a nickel RTD?
- Explain the circuit for three-wire RTD and explain its advantages over a standard two-wire uncompensated circuit.

