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“I often say that when you can measure what you are
speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when
you cannot express it in numbers, your knowledge is of a
meagre and unsatisfactory kind.”

Lord Kelvin
(1824-1907; William Thomson)

From Lecture to the
Institution of Civil Engineers, 3 May 1883

Seebeck effect: A temperature difference between two points in a conductor or semiconductor results in a
voltage difference between these two points. Stated differently, a temperature gradient in a conductor or a
semiconductor gives rise to a built-in electric field. This phenomenon is called the Seebeck effect or the
thermoelectric effect. The Seebeck coefficient gauges the magnitude of this effect. The thermoelectric
voltage developed per unit temperature difference in a conductor is called the Seebeck coefficient. Only the
net Seebeck voltage difference between different metals can be measured. The principle of the
thermocouple is based on the Seebeck effect.

1. The Seebeck Effect and Normal Metals

Consider an aluminum rod that is heated at one end and cooled at the other end as depicted in Figure 1. The
electrons in the hot region are more energetic and therefore have greater velocities than those in the cold
region1. Consequently there is a net diffusion of electrons from the hot end toward the cold end which
leaves behind exposed positive metal ions in the hot region and accumulates electrons in the cold region.
This situation prevails until the electric field developed between the positive ions in the hot region and the
excess electrons in the cold region prevents further electron motion from the hot to cold end. A voltage is
therefore developed between the hot and cold ends with the hot end at positive potential. The potential

                                                
1 The conduction electrons around the Fermi energy have a mean speed that only has a small temperature dependence. This
small change in the mean speed with temperature is, nonetheless, important in understanding the thermoelectric effect.
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difference ∆V across a piece of metal due to a temperature difference ∆T is called the Seebeck effect2. To
gauge the magnitude of this effect we introduce a special coefficient which is defined as the potential
difference developed per unit temperature difference, i.e.

S
dV

dT
= Seebeck coefficient (1)
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The Seebeck effect. A temperature gradient along a conductor gives rise
to a potential difference.

Figure 1

By convention, the sign of S represents the potential of the cold side with respect to the hot side. If
electrons diffuse from hot to cold end, then the cold side is negative with respect to the hot side and the
Seebeck coefficient is negative. In a p-type semiconductor, on the other hand, holes would diffuse from the
hot to the cold end. The cold side would be positive with respect to the hot side which would make S a
positive quantity.

The coefficient S is widely referred to as the thermoelectric power even though this term is certainly
misleading as it refers to a voltage difference rather than power. The term, however, has stuck and we have
to learn the misnomer. An alternative recent and more appropriate term is the Seebeck coefficient. S is a
material property that depends on temperature; S = S(T). It is tabulated for many materials as a function of
temperature. Given the Seebeck coefficient S(T) for a material, the voltage difference between two points
where temperatures are To and T, from Equation (1), is given by

∆V SdT
T

T

o

= ∫  (2)

The voltage difference in Equation (2) above is for the cold end with respect to hot as in the
convention for S.

The average energy Eav per electron in a metal in which the density of states g(E) ∝  E1/2 is given by
(see, for example, Ch. 4 in Principles of Electronic Materials and Devices, McGraw-Hill),

                                                
2 Thomas Seebeck observed the thermoelectric effect in 1821 using two different metals as in the thermocouple which is the
only way to observe the phenomenon. It was Thompson (Lord Kelvin) who explained the observed effect.
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where EFO is the Fermi energy at 0 K. It is clear from Equation (3) that the Fermi-Dirac distribution actually
extends to much higher energies when the temperature is raised, as depicted in Figure 1, so that the average
energy per electron, as determined by Equation (3), is actually greater in the hot end. Consequently the
more energetic electrons in the hot end diffuse toward the cold region until a potential difference ∆V is built
up which prevents further diffusion. We should also note that the average energy per electron as
determined by Equation (3) also depends on the material by virtue of EFO.

Hot

T

+ –
V

TT + T

Cold–e

Consider a small length x over
which the temperature difference
is T and voltage difference is

V. Suppose that one electron
diffuses from hot to cold region
across this potential difference.

Figure 2

Table 1
Seebeck coefficients of selected metals (from various sources).

Metal S  at 0 °°°°C

((((µµµµV K-1)

S  at 27 °°°°C

((((µµµµV K-1)

EF

(eV)

x

Na −5 3.1 2.2

K -12.5 2.0 3.8

Al −1.6 −1.8 11.6 2.78

Mg −1.3 7.1 1.38

Pb −1.15 −1.3

Pd −9.00 −9.99

Pt −4.45 −5.28

Mo +4.71 +5.57

Li +14 4.7 −9.7

Cu +1.70 +1.84 7.0 −1.79

Ag +1.38 +1.51 5.5 −1.14

Au +1.79 +1.94 5.5 −1.48

Zn 9.4
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Suppose that a small temperature difference of δT results in a voltage difference δV between the
accumulated electrons and exposed positive metal ions as depicted in Figure 2. Suppose that one electron
manages to diffuse from the hot region to the cold region. It has to do work against the potential difference
δV which is −eδV. This work done against δV decreases the average energy of the electron by δEav from
Eav(hot) to Eav(cold):

−eδV = Eav(T + δT) − Eav(T)

Substituting for Eav(T) from Equation (3) and expanding (T + δT) and neglecting δT2 term we
obtain,

− ≈e V
k T T

EFO

δ π δ2 2

2

Since S = δV/δT, the Seebeck coefficient is given by

S
k T

eEFO

≈ −π2 2

2
Seebeck coefficient metals (4)

For example, for Al, EFO = 11.6 eV so that at T = 300 K (27 °C), Equation (4) predicts −0.94 µV K-

1 which is of the order of the experimentally inferred value of about −1.8 µV K-1. Table 1 summarizes some
typical experimental values for the Seebeck coefficient of a selection of metals where it is apparent that the
values are in the microvolt per Kelvin range. It is also startlingly apparent that there are metals with positive
Seebeck coefficients such as copper. This mean that electrons migrate from cold to hot end of a copper bar.

It should be emphasized that the above explanation is based on assuming that the conduction
electrons in the metal behave as if they were “free”. This means that the density of states g(E) ∝  E1/2 up to
and beyond the Fermi energy. It also means that the electron energy E = KE = 1/2me*v2 and that the
effective electron mass me* is constant; energy independent. Further, electrons with higher energy have
greater mean speeds and longer mean free paths so that they diffuse from the hot to cold region. These
assumptions only apply to what are called normal metals (e.g. Na, K, Al etc.).

2. The Sign of the Seebeck Coefficient and Scattering in Metals

The diffusion of electrons from the hot to cold region assumes that the electrons in the hot region have
higher speeds as in the “free electron theory of metals”; the conduction electrons are taken to be free
within the metal. This means that the mean speed v and the mean free path (MFP) λ increase with the
electron energy.

In reality, however, we have to consider the interactions of the conduction electrons with the metal
ions and the lattice vibrations and thus on how the conduction electrons are scattered. Except for certain
metals, the free electron theory is unable to account for the sign of the thermoelectric effect. We can
understand the importance of scattering from a classical argument as follows.
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the mean free paths  and '  in H and
C. Half the electrons in H would be
moving in +x direction and the other
half in –x direction. Half of the
electrons in H therefore cross into C,
and half in C cross into H.

Figure 3

Consider two neighboring relatively hot and cold regions, H and C, in a conductor at one instant as
shown in Figure 3. The electron concentrations in H and C are n and n′. The width of the H region is λ, the
mean free path (MFP) along x in H and that of C is λ′ , the MFP along x in C. Electrons in H moving
towards the interface and, within a distance λ, cross the interface into C. Only half of these would be
moving towards C so that the number of electrons that cross into C is 1/2(nλ); assume that the cross
sectional area is unity. If τ is the mean scattering time then the electron flux (number of electrons flowing
per unit area per unit time) from H to C is 1/2(nλ)/τ. There is a similar electron flux from C to H so that the
net flux from H to C is

Γ = − ′ ′
′

n nλ
τ

λ
τ2 2

(5)

We can write n′ ≈ n + (dn/dx)∆x, λ′  ≈ λ + (dλ/dx)∆x, and τ′  ≈ τ + (dτ/dx)∆x. Taking ∆x = (λ +
λ′)/2 ≈ λ, then Equation (5) becomes,
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It is clear that the net electron migration, whether from hot to cold, or cold to hot, is determined by
the energy dependence of the electron concentration n, MFP λ and the mean scattering time τ. For example,
if the MFP increases strongly with energy, ∂λ/∂E and hence ∂λ/∂x will be negative. This will make Γ in
Equation (6b) positive (+x direction) so that electron diffusion will be from hot to cold and the
thermoelectric power will be negative. In those metals in which λ decreases strongly with the energy,
electrons migrate from cold to hot and the thermoelectric power is positive. These conclusions apply
primarily to metals.

By including the energy dependence of the scattering processes, Mott and Jones have derived the
following expression for the Seebeck coefficient,
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Mott-Jones thermoelectric power (7)

where x is a numerical constant that depends on the energy dependences of various charge transport
parameters; a few examples for x are given in Table 1. These x values allow Equation (7) to agree with the
experimental Seebeck coefficients at 273 K given EFO.

Equation (7) does not apply to metals in which electrons can be scattered from one transport band
to another transport band as in transition metals. In transitions metals (e.g. Ni) s and d bands overlap and
indeed the d-band may even be substantially full. The electrons in these two bands have different effective
masses and different mean free paths with different energy dependences.

3. The Thermocouple

Consider an aluminum rod heated at one end and cooled at the other end. Suppose that we try to measure
the voltage difference ∆V across the aluminum rod by using aluminum connecting wires to a voltmeter as
indicated in Figure 4. The same temperature difference, however, now also exists across the aluminum
connecting wires and therefore an identical voltage also develops across the connecting wires, opposing that
across the aluminum rod. Consequently no net voltage will be registered by the voltmeter. It is, however,
possible to read a net voltage difference, if the connecting wires are of different material, i.e. have a different
Seebeck coefficient than that of aluminum, so that across this material the thermoelectric voltage is different
than that across the aluminum rod as in Figure 5.

The Seebeck effect is fruitfully utilized in the thermocouple (TC), shown in Figure 5, which uses
two different metals with one junction maintained at a reference temperature T0 and the other used to sense
the temperature T. The voltage across each metal element depends on its Seebeck coefficient so that the
potential difference between the two wires will depend on SA − SB. The emf between the two wires, VAB =
∆VA − ∆VB, by virtue of Equation (2), is then given by

V S S dT S dTAB A B AB

T

T

T

T

= − = ∫∫ ( )
00

(8)

where SAB = SA − SB is defined as the thermoelectric power for the thermocouple pair A-B. For the chromel-
alumel (K-type) TC, for example, SAB ≈ 40 µV K-1 at 300 K.

Al

Al

100 °C 0 °C ColdHot

V

0

Al

If Al wires are used to measure the
Seebeck voltage across the Al rod, then
the net emf is zero.

Figure 4

The Al and Ni have different Seebeck
coefficients. There is therefore a net emf
in the Al-Ni circuit between the hot and
cold ends that can be measured.

Al

Ni

100 °C 0 °C ColdHot

V

0

Ni

Figure 5
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The output voltage from a TC pair obviously depends on the two metals used. Instead of tabulating
the emf from all possible pairs of materials in the world, which is an impossible task, engineers have
tabulated the emfs available when a given material is used with a reference metal which is chosen to be
platinum. The reference junction is kept at 0 °C (273.16 K) which corresponds to a mixture of ice and
water. Some typical materials are listed in Table 2 to compare their emfs.

By using the expression for the Seebeck coefficient, Equation (7), in Equation (8) we can readily
show, through simple mathematics, that the integration leads to the familiar thermocouple equation,

V a T b TAB = +∆ ∆( )2
Thermocouple Equation (9)

where a and b are the thermocouple coefficients and ∆T = T − T0 is the temperature with respect to the
reference temperature, T0 (273.16 K). The inference to engineers from Equation (9) is that the emf output
from the thermocouple wire does not depend linearly on the temperature difference, ∆T, and consequently
we have to use a look-up table either ourselves or on the computer memory to convert the emf to the
temperature difference.

Figure 5 shows the emf output vs. temperature for various thermocouples where it should be
immediately obvious that the voltages are small, typically few tens of a microvolt per degree temperature
difference. At 0 °C, by definition, the TC emf is zero. The K-type thermocouple, the chromel-alumel pair, is
a widely employed general purpose thermocouple sensor up to ∼ 1200 °C.
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Table 2
Thermoelectric emf for metals at 100 and 200 °C with respect to Pt and the reference junction at 0 °C.

MATERIAL EMF, mV EMF, mV

Elements At 100 °°°°C At 200 °°°°C

Copper, Cu 0.76 1.83

Gold, Au 0.78 1.84

Aluminum, Al 0.42 1.06

Molybdenum 1.45 3.19

Nickel, Ni −1.48 −3.10

Palladium, Pd −0.57 −1.23

Platinum, Pt 0 0

Silver, Ag 0.74 1.77

Tungsten, W 1.12 2.62

  Thermocouple      Materials  

Alumel −1.29 −2.17

Chromel 2.81 5.96

Constantan −3.51 −7.45

Copper, Cu 0.76 1.83

Iron, Fe 1.89 3.54

90%Pt-10%Rh
(Platinum-Rhodium)

0.643 1.44

3.1. Example 1: The thermocouple EMF
Consider a thermocouple pair from Al and Cu which have Fermi energies and x in Table 1. Estimate the
emf available from this thermocouple if one junction is held at 0 °C and the other at 100 °C? Which end is
positive?

The Al-Cu thermocouple. The cold end
is maintained at 0 °C which is the
reference temperature. The other
junction is used to sense the
temperature. In this example it is heated
to 100 °C.

Al

Cu

100 °C 0 °C ColdHot

Cu
V

0

Figure 6

Solution

We essentially have the arrangement shown in Figure 6. For each metal there will be a voltage across it
given by integrating the Seebeck coefficient. From the Mott-Jones equation,
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The emf (VAB) available is the difference in ∆V for the two metals so that
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where in this example T = 373 K and T0 = 273 K.

For Al (A), EFAO = 11.6 eV, xA = 2.78, and for copper (B), EFBO = 7.01 eV, xB = −1.79. Thus,

VAB = −189.3 µV − 201.14 µV = −390.4 µV

To find which end is positive, we put in the resistance of the voltmeter and replace each metal by its
emf, ∆VCu and ∆VAl and determine the direction of current flow as in Figure 7. For the particular circuit
shown, positive end is at the hot side.

Cu

Al

I

HotCold

Meter

189 V

201 V

The polarity of the measured
voltage in terms of hot side being
positive or negative depends where
the voltmeter is inserted.

Figure 7

Thermocouple EMF calculations that closely represent experimental observations require
thermocouple voltages for various metals listed against some reference metal. The reference is usually Pt
with the reference junction at 0 °C. From Table 2 we can read Al-Pt and Cu-Pt emfs as VAl-Pt = 0.42 mV and
VCu-Pt = 0.76 mV at 100 °C with the experimental error being around ± 0.01mV, so that for the Al-Cu pair,

VAl-Cu = VAl-Pt − VCu-Pt = 0.42 mV − 0.76 mV = −0.34 mV or −340 µV

There is a reasonable agreement with the calculation using the Mott-Jones equation.

3.2. Example 2: The thermocouple equation
We know that we can only measure differences between thermoelectric powers of materials as in the
thermocouple since the thermally induced voltages cancel when both metals are the same. When two
different metals, A and B, are connected to make a thermocouple as in Figure 6, then the net emf is the
voltage difference between the two elements from Equation (10).
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i.e. VAB = C(T2 − T0
2)

where C is a constant that is independent of T but dependent on the material properties (x, EFO for the
metals).
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We can now expand VAB about T0 by using Taylor's expansion for a function f(T),

f(T) ≈ f(T0) + ∆T(df/dT)0 + 1/2(∆T)2(d2f/dT2)0

where F = VAB and ∆T = T− T0 and the derivatives are evaluated at T0. The result is the thermocouple
equation:

VAB(T) = a(∆T) + b(∆T)2

where the coefficients a and b are 2CT0 and C respectively.

NOTATION

C cold

e electronic charge (magnitude only)

E energy of an electron

Eav average electron energy (depends on the density of states)

EF Fermi energy

EFO Fermi energy at 0 K

EMF emf, electromotive force (open circuit voltage)

F(T) function of temperature

g(E) density of states

H hot

k Boltzmann’s constant

me mass of the electron (in free space)

me* effective mass of the electron in a crystal

MFP mean free path

n concentration of conduction electrons (number of conduction electrons per unit volume)

S Seebeck coefficient; thermoelectric power

SA B SA − SB

T temperature (absolute temperature)

TC thermocouple

u mean speed of electrons

V voltage

VA B EMF from a thermocouple A-B

v mean speed, velocity

x a numerical factor in the Mott-Jones thermoelectric power equation that represents the effect of the energy dependence
of electron scattering in metals

∆ change, difference

δ a very small change

Γ particle flux, number of particles crossing per unit area per unit time

λ mean free path along x

τ mean scattering time of conduction electrons

USEFUL DEFINITIONS
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Fermi energy (EF) or level may be defined in several equivalent ways. Fermi level is the energy level corresponding to the
energy required to remove an electron from the semiconductor; there need not be any actual electrons at this energy
level. The energy needed to remove an electron defines the work function Φ. We can define the Fermi level to be Φ
below the vacuum level. EF can also be defined as that energy value below which all states are full and above which
all states are empty at absolute zero of temperature. EF can also be defined through a difference. A difference in the
Fermi energy, ∆EF, in a system is the external electrical work done per electron either on the system or by the
system just as electrical work done when a charge e moves through a electrostatic potential energy (PE) difference is
e∆V. It can be viewed as a fundamental material property. In more advanced texts it is referred to as the chemical
potential of the semiconductor.

Mean free path is the mean distance traversed by an electron between scattering events. If τ is the mean free time between
scattering events, and v is the mean speed of the electron, then the mean free path, λ = vτ.

Mean free time is the average time it takes to scatter a conduction electron. If ti is the free time between collisions

(between scattering events) for an electron labeled as i, then τ = t
i
 averaged over all the electrons. The drift mobility

is related to the mean free time by µd = eτ / me. The reciprocal of the mean free time is the mean probability per unit
time that a conduction electron will be scattered, or, put differently, the mean frequency of scattering events.

Semiconductor is a nonmetallic element (e.g. Si or Ge) that contains both electrons and holes as charge carriers in contrast
to an enormous number of electrons only as in metals. A hole is essentially a "half-broken" covalent bond which has
a missing electron and therefore behaves effectively as if positively charged. Under the action of an applied field, the
hole can move by accepting an electron from a neighboring bond, thereby passing on the "hole". Electron and hole
concentrations in a semiconductor are generally many orders of magnitude less than those in metals, thus leading to
much smaller conductivities.

Sir Nevill Mott (1905-1996)

“At a personal level, I always found
Sir Nevill to possess the typical
helpful and pleasant personality
that people with his outstanding
intellect so often exhibit.”

Professor Joe Marshall
University of Wales at Swansea,
September 1996
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