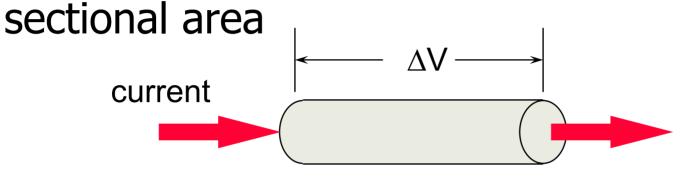
Chapter 8 Strain Gages

Resistance

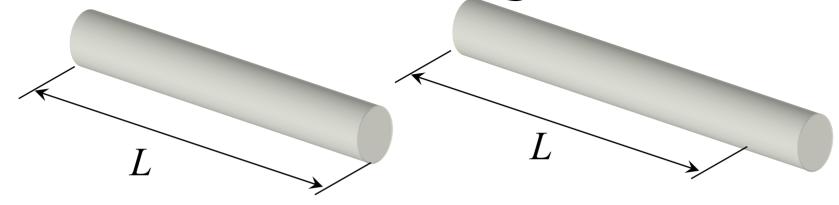
► The electrical resistance of most materials is a function of material properties and cross-



larger cross-section \Rightarrow

$$R =$$

Strain Gages

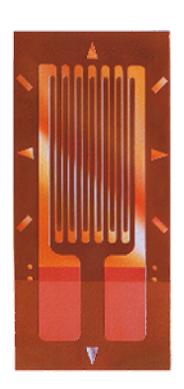


▶ to a change in _____

Foil Element Strain Gage

the ratio between strain and resistance is the

$$F = \frac{\Delta R}{\Delta L/L} = \frac{\Delta R/R}{\varepsilon} \implies \frac{\Delta R}{R} = F\varepsilon$$

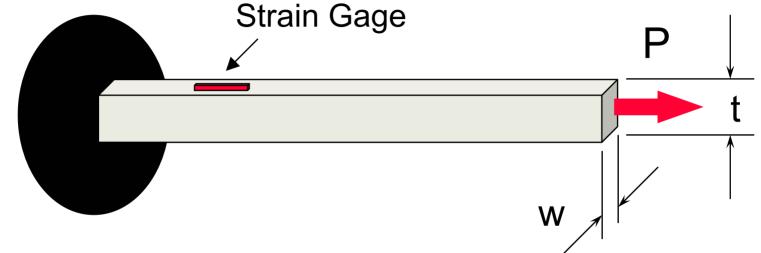


Strain Gage Mounting

Important Note:

- strain gages convert the strain seen by the gage into a resistance change
- the strain gage installer must ensure that the gage experiences the desired strain by careful installation!
 - usually mount gages by gluing ("SuperGlue") or welding to structure

One Gage - Uniform Member in Pure Tension



▶ if we assume uniform loading across the width of the beam,

$$\sigma =$$

One Gage - Pure Tension

▶ we have _____ stress, so

$$\sigma =$$

- where E = modulus of elasticity,
 - E_{steel} ~ ____
 - E_{alum} ~ _____

One Gage - Pure Tension

ightharpoonup solving for strain, $\varepsilon =$

$$\frac{\Delta R}{R} = F\varepsilon \Longrightarrow$$

- Find ∆R if
 - -P = 3200 lb
 - $-F = 2.1, R = 120\Omega$
 - w = 1.0 inch, t = 0.25 inch
 - material is steel

One Gage - Pure Tension

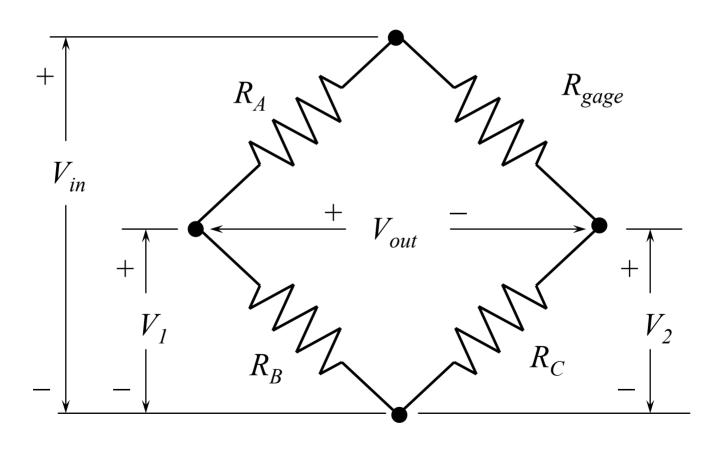
- small change in resistance,
- would require a <u>very</u> accurate DMM to measure
 - this was a 3200 lb load!
- totally impractical to measure resistance change directly for "small" loads on the order of 100 lbs

Wheatstone Bridges

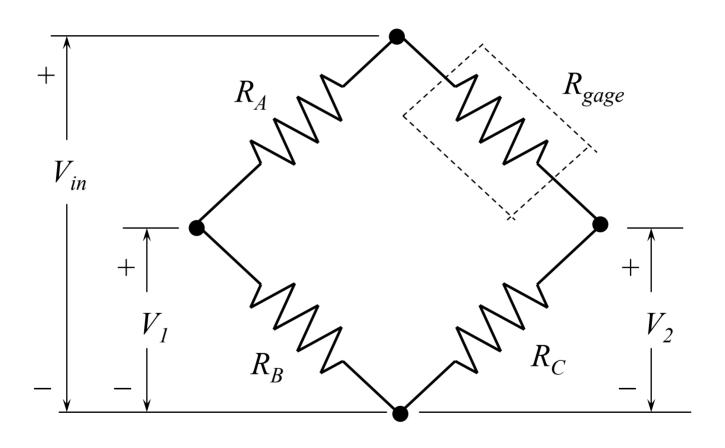
Used to measure the small resistance changes created by strain gages

"Quarter" Bridge Circuit

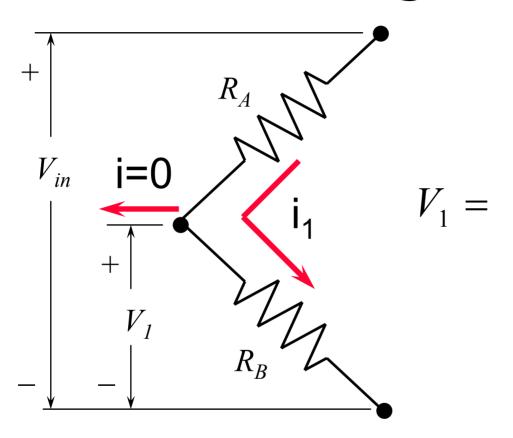
1 of 4 "legs" of the Wheatstone Bridge is a strain gage



"Quarter" Bridge Circuit

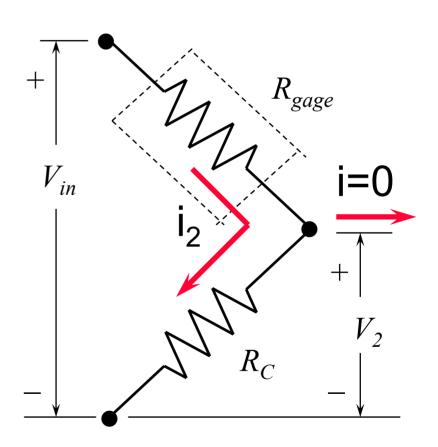


Left Side Voltage Divider



Right Side Voltage Divider

$$V_2 =$$



normally make all fixed resistors equal,

gage output is "nominal" resistance + "delta" (change) resistance,

$$R_{gage} =$$

substituting resistance values,

$$V_1 =$$

$$V_2 =$$

defining the output voltage,

$$V_{out} = V_1 - V_2 =$$

recall that the change in the gage resistance is very small,

$$\frac{2\Delta R}{R} << 4 \implies 4 + \frac{2\Delta R}{R} \approx$$

$$\Rightarrow V_{out} = \frac{\left(\frac{\Delta R}{R}\right)}{\left(4 + \frac{2\Delta R}{R}\right)} V_{in} \approx$$

Quarter Bridge Analysis (cont.)

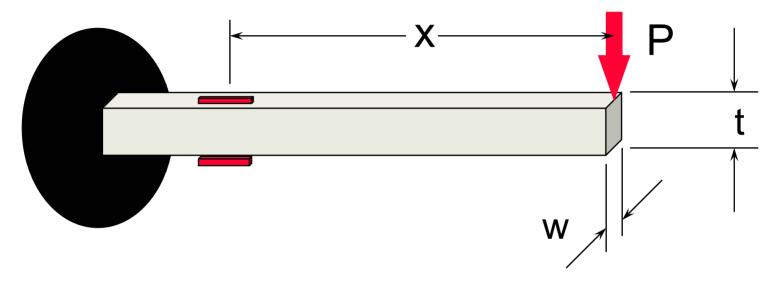
- P = 3200 lb
- F = 2.1, $R = 120\Omega$
- w = 1.0 inch, t = 0.25 inch
- material is steel
- $V_{in} = 5 \text{ volts}$

$$\Rightarrow \frac{\Delta R}{R} =$$

$$V_{out} = \frac{1}{4} \left(\frac{\Delta R}{R} \right) V_{in} \Longrightarrow V_{out} =$$

 $\rightarrow \Delta R \sim 0.11\Omega$

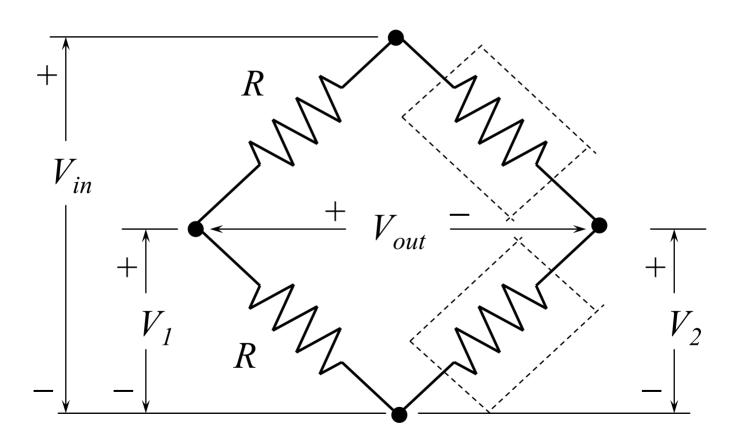
Two Gages - Cantilever Beam



- ► If mounted correctly, the 2 gages "see" the same strain <u>magnitude</u>, where
 - one gage in tension _____ and
 - one gage in compression _____

"Half" Bridge Circuit

2 of 4 "legs" of the Wheatstone Bridge are strain gages



Half Bridge Analysis

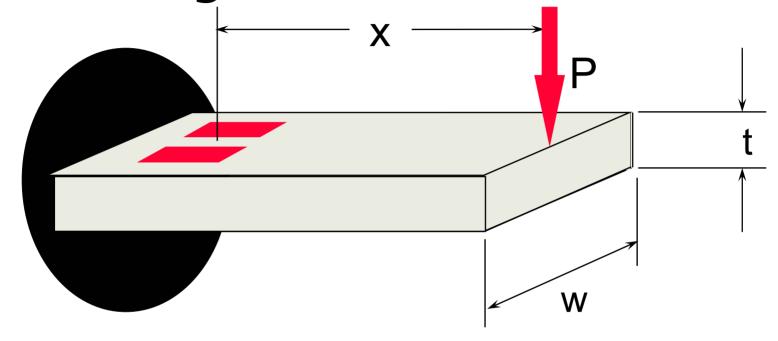
substituting resistance values,

$$V_1 = \frac{R}{R+R} V_{in}, \quad V_2 =$$

$$V_{out} = V_1 - V_2 =$$

$$V_{out} =$$

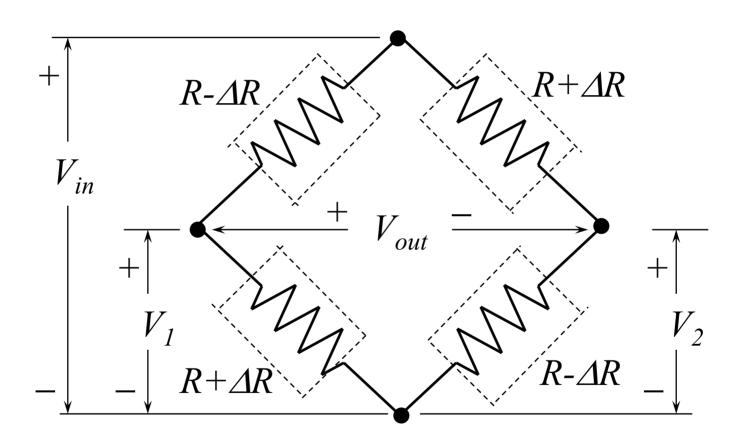
Four Gages - Cantilever Beam



- ▶ two gages on top in tension $(R+\Delta R)$ and
- ▶ two gages on bottom in compression $(R-\Delta R)$

"Full" Bridge Circuit

All 4 "legs" of the Wheatstone Bridge are strain gages



"Full" Bridge - Pure Bending

gages of opposite strain in adjacent legs of bridge,

$$\frac{V_{out}}{V_{in}} =$$

- Find σ , ε, Δ R, and V_{out} if
 - $-P = 50 \text{ lb}, F = 2.0, R = 350\Omega$
 - w = 1.0 inch, t = 0.25 inch, x = 6.0 inch
 - material is aluminum ($E_{AI} \sim 10.5 \times 10^6$ psi)
 - $-V_{in}$ = 12.1 volts

360 Pre-Requisite Knowledge

Formulas from Strength of Materials:

Uniaxial Stress/Strain : $\sigma = E\varepsilon$

"Hoop" Stress in Thin Wall Pressure Vessel

(Uniaxial): $\sigma = \frac{Pd}{2t}$

Area Moment of Inertia – Rectangular Cross-

Section :
$$I = \frac{wt^3}{12}$$

Uniaxial Stress - Pure Tension : $\sigma = \frac{P}{A}$

Uniaxial Stress - Pure Bending : $\sigma = \frac{My}{I}$

Area Moment of Inertia – Round Cross-

Section:
$$I = \frac{\pi d^4}{64} = \frac{\pi r^4}{4}$$