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Abstract. Taking an example from statistics, we show how symbolic summation can be
used to find generalizations of binomial identities which involve infinite series. In such gen-
eralizations the infinite series are replaced by truncated versions.

1. Introduction

Consider the identity
∞∑

k=m+1

m

k(k − 1)

m∑

j=0

(
k

j

)
xk−j(1− x)j = x, m ≥ 1, 0 ≤ x ≤ 1, (1)

which arose in the theory of records [Blo86, Isr88]. In an attempt to generalize this result
Tamás Lengyel [Len06] found the binomial series

am,n(x) =
(

m

n− 1

) ∞∑

k=m+1

(
k

n

)−1 m∑

j=0

(
k

j

)
xk−j(1− x)j

which evaluates for all integers n and m with 0 ≤ n− 1 ≤ m to

am,n(x) =

{
n

n−1

(
1− (1− x)n−1

)
, if n ≥ 2 and 0 ≤ x ≤ 1

− ln(1− x), if n = 1 and 0 ≤ x < 1.
(2)

For n = 2 one obtains the original identity.
In this note we illustrate how algorithms from symbolic summation can be used to obtain

generalizations of (2) where Lengyel’s am,n(x) series is replaced by the truncated version

a(K)
m,n(x) =

(
m

n− 1

) K∑

k=m+1

(
k

n

)−1 m∑

j=0

(
k

j

)
xk−j(1− x)j

in which K ≥ m + 1.
In Section 2 we present an automatic evaluation of am,n(x) using Gosper’s telescoping and

Zeilberger’s creative telescoping algorithms, respectively. In Section 3 we observe that for
specific values of n creative telescoping can be replaced by plain telescoping. This gives rise
to conjecture that identities for the truncated version a

(K)
m,n(x) exist. In Section 4 we derive

such identities which in the limit K → ∞ give (2); see (7) and (8). To obtain the limit for
K →∞, a generating function identity (9) is used. In Section 5 we demonstrate that (9) can
be also derived with symbolic summation. In Section 6 some concluding remarks are given.

All computations are done using the package Sigma [Sch04a]; to derive (7) and (8) special
Sigma features are applied.
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2. Automatic evaluation of am,n(x)

Before applying computer algebra it is convenient to rewrite am,n(x) as a series expanded
in powers of x. To this end, in am,n(x) we replace (1−x)j with

∑
l(−1)l

(
j
l

)
xl. Then collecting

coefficients of xN (N = k − j + l) turns Lengyel’s series into

am,n(x) =
(

m

n− 1

) ∞∑

N=1

(−1)NxN
∞∑

k=m+1

(−1)k

(
k

n

)−1

Am(N)

where

Am(N) =
m∑

j=0

(−1)j

(
k

j

)(
j

N − k + j

)
.

Now the rest can be done with computer algebra. After loading the Sigma package into the
computer algebra system Mathematica
In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider c© RISC-Linz
we insert the hypergeometric sum S = Am(N). Note that various Sigma functions support
the user, like SigmaSum for sums, SigmaProduct for products, SigmaPower for powers, or
SigmaBinomial for binomials.
In[2]:= S = SigmaSum[

SigmaPower[−1, j]SigmaBinomial[k, j]SigmaBinomial[j, N − k + j], {j, 0, m}]

Out[2]=

m∑
j=0

(−1)j
(
k

j

)(
j

N− k + j

)

Then by telescoping Sigma produces the following closed form for Am(x)(= S):
In[3]:= SigmaReduce[S]

Out[3]= − (−1)m(m− k)

N

(
k

m

)(
m

N− k + m

)

This can be also achieved by any implementation of Gosper’s algorithm [Gos78], so we omit
details here. Hence

am,n(x) = (−1)m

(
m

n− 1

) ∞∑

N=1

(−1)NxN

N
Bm,n(N) (3)

where

Bm,n(N) =
∞∑

k=m+1

(−1)k

(
k

n

)−1( k

m

)(
m

N − k −m

)
(k −m).

Since telescoping fails to simplify Bm,n(N), we continue differently. Namely, for definite
sums one can execute the Sigma function

In[4]:= GenerateRecurrence[

∞∑

k=m+1

(−1)k
(

k

n

)−1(
k

m

)(
m

N − k + m

)
(k − m), N]

Out[4]= {(−1 + n− N)SUM[N]− N SUM[1 + N] == 0}

which is based on creative telescoping [Zei91] and which computes the recurrence Out[4]
for SUM[N ] = Bm,n(N). This can be also achieved by any implementation of Zeilberger’s
algorithm, so we omit details here.
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The recurrence Out[4] gives Bm,n(N) = (−1)N+1
(
N−n
N−1

)
Bm,n(1). With the initial value

Bm,n(1) = −n(−1)m
(

m
n−1

)−1 we find

Bm,n(x) = (−1)N+mn

(
m

n− 1

)−1(N − n

N − 1

)
, (4)

i.e.,

am,n(x) = n
∞∑

N=1

xN

N

(
N − n

N − 1

)
.

Finally, for n = 1,

am,1(x) =
∞∑

N=1

xN

N
= − ln(1− x);

for n > 1, because of
(
N−n
N−1

)
= (−1)N−1

(
n−2
N−1

)
,

am,n(x) = − n

n− 1

∞∑

N=1

(−x)N

(
n− 1

N

)
= − n

n− 1
(−1 + (1− x)n−1).

3. A Truncated Variant of the Original Identity (1)

With respect to our starting point, identity (1), the computer algebra approach taken in
Section 2 brings along an additional feature. Namely, if n = 2, one observes that the B

(K)
m,2(N)

sum telescopes for N > 1. Thus one has

B
(K)
m,2(N) =

K∑

k=m+1

(−1)k

k(k − 1)

(
k

m

)(
m

N − k + m

)
(k −m)

= (−1)K (K −m)(K −m−N)
Km(1−N)

(
K

m

)(
m

K −N

)

for N > 1 and arbitrary K ≥ m + 1. Obviously for N = 1,

B
(K)
m,2(1) =

(−1)m+1

m
for K ≥ m + 1.

Consequently, the truncated version a
(K)
m,2(x) of am,2(x) finds the following evaluation for

K ≥ m + 1:

a
(K)
m,2(x) = 2(−1)mm

K∑

N=1

(−1)NxN

N
B

(K)
m,2(N)

= 2x + 2m(−1)K+m

(
K − 1

m

) K∑

N=2

(−1)NxN

N(N − 1)

(
m− 1
K −N

)
. (5)

In the limit K →∞, one retrieves identity (1).
One observes that B

(K)
m,n(x) also telescopes for all other specific values of n ≥ 3. This

suggests that a nice truncated generalization like (5) might exist for generic n. To obtain
such a formula, one could try to guess a pattern from the evaluations at n = 2, 3, etc.
However, we prefer to utilize specific features of Sigma which will lead us to an answer in the
form of identities (7) and (8).
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4. Closed form evaluations of a
(K)
m,n(x)

In contrast to Sections 2 and 3, we will apply Sigma to a
(K)
m,n(x) in its original form. To this

end, it will be convenient to proceed with a slight variation of the truncated generalization of
a

(K)
m,n(x), namely,

α(K)
m,n(x) :=

K∑

k=1

xm+k

(
m+k

n

)Dm,k(x)

with

Dm,k(x) =
m∑

j=0

(1− x)j

xj

(
m + k

j

)
.

Note that for K ≥ m + 1 ≥ n ≥ 1,

a(K)
m,n(x) =

(
m

n− 1

)
α(K−m)

m,n (x). (6)

Also note that we restrict to x 6= 0; the case x = 0 is trivial.

4.1. Preprocessing. A first step to simplify the sum α
(K)
m,n(x) is to represent the inner sum

Dm,k(x) as an indefinite sum in k. This means, we try to express Dm,k(x) in form of a sum∑k
j=0 f(m, j) where the summand f(m, j) is free of k. In order to accomplish this goal, we

insert Dm,k(x) with

In[5]:= D =

m∑

j=0

(1 − x)j

xj

(
m + k

j

)
;

and compute a recurrence1 for SUM[k] = Dm,k(x):
In[6]:= rec = GenerateRecurrence[D, k][[1]]

Out[6]= x
mSUM[k]− x

m+1SUM[k + 1] == (1− x)m+1

(
k + m

m

)

Next, we solve this recurrence with the Sigma function
In[7]:= recSol = SolveRecurrence[rec, SUM[k]]

Out[7]= {{0,
k∏

i=1

1

x
}, {1,−

(
k∏

i=1

1

x

)
(1− x)m+1

xm+1

k∑
i=0

i
(
m+i

m

)
xi

m + i
}}

This means that 1
xk is a solution of the homogeneous version, and − (1−x)m+1

xm+k+1

∑k
i=0

i(m+i
m )xi

m+i is
a particular solution of the recurrence itself. As a consequence we can write

Dm,k(x) =
c

xk
− (1− x)m+1

xm+k+1

k∑

i=0

i
(
m+i
m

)
xi

m + i

for a constant c which is free of k. Looking at the case k = 0 gives
m∑

j=0

(1− x)j

xj

(
m

j

)
= c; i.e., c =

1
xm

.

Summarizing, we can represent α
(K)
m,n(x) =: A in the form

1As in Out[4], this can be achieved by any implementation of Zeilberger’s algorithm.
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In[8]:= A =

K∑

k=1

x − (1 − x)m+1
k∑

i=0

i
(
m+i
m

)
xi

m + i

x
(
k+m

n

) ;

4.2. The case n > 1. Now Sigma is ready to simplify A in one stroke (i.e., no splitting into
two sums is needed):
In[9]:= result = SigmaReduce[A, SimpleSumRepresentation → True]

Out[9]= −K + m− n + 1

(n− 1)
(
K+m

n

) +
1 + m− n

(n− 1)
(
m

n

) +
(K + m− n + 1)(1− x)m+1

(n− 1)x
(
K+m

n

)
K∑

i=0

ixi
(
i+m

m

)

i + m
− (1− x)n+1

x(n− 1)

K∑
i=1

ixi
(
i+m

m

)
(
i+m

n

)

Remark. Sigma automatically found the additional sum
∑K

i=1 ixi
(
i+m
m

)(
i+m

n

)−1
in order to

simplify A = α
(K)
m,n(x) to an expression consisting only of single sums; for details of the

method see [Sch04b].

Summarizing, using relations like
(
i+m−1

m

)
= i

i+m

(
i+m
m

)
or i

(
i+m
m

)(
i+m

n

)−1
=

(
m+1

n

)−1(m+i−n
i−1

)
,

one obtains that, for K ≥ m + 1 ≥ n ≥ 2,

a(K)
m,n(x) =

n

n− 1

[
1−

(
m

n−1

)
(

K
n−1

) +

(
m

n−1

)
(

K
n−1

)(1− x)m+1
K−m−1∑

i=0

(−1)i

(−m− 1
i

)
xi

− (1− x)m+1
K−m−1∑

i=0

(−1)i

(
n−m− 2

i

)
xi

]
.

(7)

In the limit K →∞, owing to the binomial theorem, we retrieve Lengyel’s identity (2).
Concerning the case n = 2 we remark that the equivalence of (5) and (7) is based on

a non-trivial transformation; e.g., for the elementary special case x = 1 it specializes to
(K ≥ m + 1)

K∑

N=2

(−1)N

N(N − 1)

(
m− 1
K −N

)
=

(−1)K+m+1

K

(
K − 1

m

)−1

.

Of course, such identities could be proved easily with computer algebra; however, it is in-
structive to consult background information like the discussion related to [GKP94, (5.41)].

4.3. The case n = 1. After inserting α
(K)
m,1(x) by

In[10]:= A1 = A/.n → 1

Out[10]=

K∑
k=1

x− (1− x)m+1

k∑
i=0

i
(
m+i

m

)
xi

m + i

x(m + k)

we get the simplification
In[11]:= SigmaReduce[A1, SimpleSumRepresentation → True]

Out[11]=

(
1− (1− x)m+1

K∑
i=0

x
i

(
i + m

m

)) K∑
i=1

1

i + m
+ (1− x)m+1

K∑
i=1

x
i

(
i + m

m

)
i∑

j=1

1

j + m

Remark. Similar as in Out[9] Sigma automatically found the sum expressions
∑K

i=1
1

i+m and∑K
i=1 xi

(
i+m
m

) ∑i
j=1

1
j+m in order to simplify A1 = α

(K)
m,1(x) in Out[11]; for details see [Sch05].
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Using
∑K

i=1
1

i+m = HK+m −Hm where Hm = 1 + 1
2 + · · ·+ 1

m are the harmonic numbers,

we can write a
(K)
m,1(x) in the form (K ≥ m + 1 and m ≥ 0)

a
(K)
m,1(x) = HK+m −Hm − (1− x)m+1

[
Hk+m

K∑

i=0

(
i + m

m

)
xi −

K∑

i=0

(
i + m

m

)
Hm+ix

i
]
. (8)

In the limit K → ∞ we retrieve (2), owing to the binomial theorem and the fact [GKP94,
(7.43)] that

∞∑

i=0

(
i + m

m

)
Hm+ix

i = − 1
(1− x)m+1

(
ln(1− x)−Hm

)
. (9)

5. Generating Functions with Sigma

Identity (9) can be also derived with computer algebra. A standard method would be to
utilize holonomic closure properties by using the packages [SZ94] or [Mal96]. However, in the
given context, we find it instructive to show that (9) can be also obtained with Sigma, namely
as follows. We input the sum

In[12]:= E =

∞∑

i=0

(
i + m

m

)
Hm+ix

i;

and compute a recurrence relation satisfied by it:
In[13]:= GenerateRecurrence[E, m]

Out[13]= −(m + 2)(x− 1)2SUM[m + 2]− (2m + 3)(x− 1)SUM[m + 1] + (−m− 1)SUM[m] == 0

Next, we solve the recurrence with the Sigma function
In[14]:= recSol = SolveRecurrence[rec[[1]], SUM[m]]

Out[14]= {{0,
m∏

i=1

1

1− x
}, {1,

m∏
i=1

1

1− x

m∑
i=1

1

i
}}

Denoting the left hand side of (9) by Em(x) this means

Em(x) =
c0

(1− x)m
+ c1

Hm

(1− x)m

for constants c1 and c2 which are free of m. Finally, we determine the constants c1 and c2.
The two initial conditions at m = 0 and m = 1 lead to

c0 =
∞∑

i=0

Hix
i(= E0(x))

and
c0

(1− x)
+

c1

(1− x)
=

∞∑

i=0

(i + 1)Hi+1x
i(= E1(x)).

Finally, we succeed in expressing a truncated version of E1(x) by a truncated version of E0(x);
namely by

In[15]:= SigmaReduce[

K∑

i=0

(i + 1)Hi+1x
i, Tower → {

K∑

i=0

Hix
i}]

Out[15]=
(x− 2)xK+1 + (K + 1)(x− 1)HKx

K+1 + 1 + (1− x)
∑K

i=0 Hix
i

(x− 1)2
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Hence, with K →∞ and the assumption that 0 ≤ x < 1, we get

E1(x) =
1

(1− x)2
+

1
1− x

∞∑

i=0

Hix
i.

Thus c1 = 1
1−x , and therefore

Em(x) =
∑∞

i=0 Hix
i

(1− x)m
+

Hm

(1− x)m+1
.

Invoking the knowledge
∑∞

i=0 Hix
i = − ln(1− x)/(1− x), we arrive at (9).

6. Conclusion

With identity (2) as an illustrative example, we showed how symbolic summation methods
can be used to find generalizations of binomial identities where infinite series are replaced by
truncated versions. In the given context the Sigma package has led us to find the relations (5),
(7) and (8) for terminating variants of Lengyel’s infinite series am,n(x).

From a combinatorial point of view it might be interesting to explore whether such trun-
cated variants do also have statistical interpretations, e.g., within the theory of records like
identity (1).

References

[Blo86] G. Blom. Poblem 6522. Amer. Math. Monthly, 93:485, 1986.
[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: a foundation for computer

science. Addison-Wesley Publishing Company, Amsterdam, 2nd edition, 1994.
[Gos78] R. W. Gosper. Decision procedures for indefinite hypergeometric summation. Proc. Nat. Acad. Sci.

U.S.A., 75:40–42, 1978.
[Isr88] R.B. Israel. Persistence of a distribution. Amer. Math. Monthly, 95:360–362, 1988.
[Len06] T. Lengyel. An invariant sum related to record statistics. Preprint, 2006.
[Mal96] C. Mallinger. Algorithmic manipulations and transformations of univariate holonomic functions and

sequences. Master’s thesis, RISC, J. Kepler University, Linz, August 1996.
[Sch04a] C. Schneider. The summation package Sigma: Underlying principles and a rhombus tiling application.

Discrete Math. Theor. Comput. Sci., 6(2):365–386, 2004.
[Sch04b] C. Schneider. Symbolic summation with single-nested sum extensions. In J. Gutierrez, editor, Proc.

ISSAC’04, pages 282–289. ACM Press, 2004.
[Sch05] C. Schneider. Finding telescopers with minimal depth for indefinite nested sum and product expres-

sions. In M. Kauers, editor, Proc. ISSAC’05, pages 285–292. ACM, 2005.
[SZ94] B. Salvy and P. Zimmermann. Gfun: A package for the manipulation of generating and holonomic

functions in one variable. ACM Trans. Math. Software, 20:163–177, 1994.
[Zei91] Doron Zeilberger. The method of creative telescoping. Journal of Symbolic Computation, 11:195–204,

1991.

Research Institute for Symbolic Computation, J. Kepler University Linz, A-4040 Linz, Austria
E-mail address: Peter.Paule@risc.uni-linz.ac.at

Research Institute for Symbolic Computation, J. Kepler University Linz, A-4040 Linz, Austria
E-mail address: Carsten.Schneider@risc.uni-linz.ac.at


