On Quine-McCluskey Method

- > Goal: find a minimum SOP form
- > Why We Need to Find all PIs?

f(w,x,y,z) = x'y' + wxy + x'yz' + wy'z

- = x'y' + x'z' + wxy + wy'z
- = x'y' + x'z' + wxy + wxz
- = x'y' + x'z' + wxz + wyz'

- 1. Are all terms Pls?
- 2. Is the form optimal?
- 3. Is the form unique?
- > How We Find Them?
 - = Quine's tabular: start with minterm, the smallest I
 - = Iterated consensus: complete sum theorem 4.5.1
 - = Recursive: complete sum theorem 4.6.1

Quine-McCluskey Method

Problem: Given a Boolean function *f* (may be incomplete), find a minimum cost SOP formula.

of literals

Q-M Procedure:

- 1. Generate all the PIs of f, $\{P_i\}$
- 2. Generate all the minterms of f, $\{m_i\}$
- 3. Build the Boolean constraint matrix B, where B_{ij} is 1 if $m_i \in P_i$ and is 0 otherwise
- 4. Solve the minimum column covering problem for B

Example: Quine-McCluskey Method

$$f(w,x,y,z) = x'y' + wxy + x'yz' + wy'z$$

	wxy	WXZ	wyz'	wy'z	<i>x'y'</i>	x'z'
wx 'y 'z '					1	1
w'x'y'z					1	
w'x'y'z'					1	1
wxyz	1	1				
wxyz'	1		1			
wx 'yz '			1			1
w 'x 'yz '						1
wxy'z		1		1		
wx 'y 'z				1	1	

minimum cover(s):
{x 'y ', x 'z ',wxy, wxz},
{x 'y ', x 'z ',wxy, wy 'z},
{x 'y ', x 'z ',wxz, wyz '}.

Two-Level Logic Synthesis -- Unate Covering Problem

Unate and Binate

> A function $f(x_1, \dots, x_i, \dots, x_n)$ is positive unate in x_i if its cofactor f_{x_i} includes f_{x_i} .

Negative unate is defined in a similar way. If a function is neither positive unate nor negative unate in a variable, it is called binate in this variable.

A function is **positive/negative unate** if it is so for all variables, otherwise it is called **binate**.

- > Example: f(x,y,z) = xy + xz' + yz'
 - = f is positive unate in x: $f_x = y + z' + yz'$, $f_{x'} = yz'$
 - = *f* is positive unate in y: $f_y = x + xz' + z'$, $f_{y'} = xz'$
 - = f is negative unate in z: $f_z = xy$, $f_{z'} = xy + x + y$

Unate Covering Problem (UCP)

> Let M_{mxn} be a Boolean matrix (like the constraint matrix in Q-M), the UCP is to find a minimum number of columns to cover M in the sense that any row with a 1-entry has at least one of its 1-

entries c	GM	'G_IG zk	Ͻ¥⁄γӺһ	ese (colur	nns.
wx 'y 'z '	-				1	1
w 'x 'y 'z					1	
w'x'y'z'					1	1
wxyz	1	1				
wxyz'	1		1			
wx 'yz '			1			1
w 'x 'yz '						1
wxy'z		1		1		
wx 'y 'z				1	1	

Solutions to UCP: {x'y', x'z',wxy, wxz}, {x'y', x'z',wxy, wy'z}, {x'y', x'z',wxz, wyz'}.

Reduction Techniques

- 1. Check for essential columns and remove them;
- 2. Check for row dominance and remove all dominating rows;
- 3. Check for column dominance and remove all dominated columns;
- 4. Repeat 1, 2, 3 if there is any removal occurs.

What is left?

- = If no rows/columns left, we find an optimal solution;
- = Otherwise, this UCP instance is called cyclic.

Essential Columns

> A column is essential if it covers one 1-entry that cannot be covered by any other columns.

	wxy	WXZ	wyz'	wy'z	x'y'	x 'z '	
wx 'y 'z '					1	1	Colum
w <i>`x`y`z</i>					1		becaus
w`x`y`z`					1	1	
wxyz	1	1					
wxyz'	1		1				Essei
wx 'yz '			1			1	can b
w 'x 'yz '						1	becar
wxy'z		1		1			must
wx 'y 'z				1	1		

Column x'y' is essential because of row w'x'y'z.

Essential columns can be removed because any cover must include them.

Row Dominance

> Row r_i dominates row r_j if r_i has all the 1-entries in r_i . r_i is dominating and r_j is dominated.

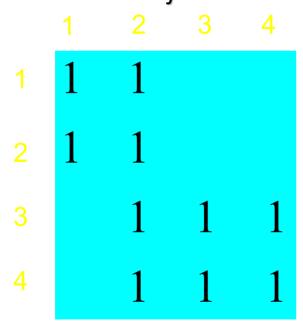
	wxy	WXZ	wyz'	wy'z	x'y'	x 'z '
wx 'y 'z '					1	1
w <i>`x`y`z</i>					1	
w <i>`x`y`z`</i>					1	1
wxyz	1	1				
wxyz'	1		1			
wx 'yz '			1			1
w 'x 'yz '						1
wxy'z		1		1		
wx 'y 'z				1	1	

Row *wx 'y 'z* ' dominates rows *w 'x 'y 'z* and *w 'x 'yz* '

Dominating rows can be removed because that whenever one of their dominated rows is covered, they are covered as well.

Column Dominance

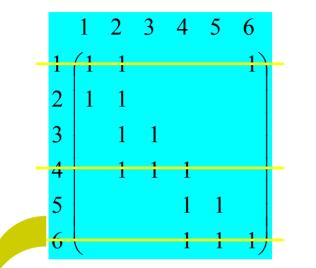
> Column p_i dominates p_j if p_i has all the 1-entries in p_j and p_i costs (e.g., number of literals) no more than p_j.



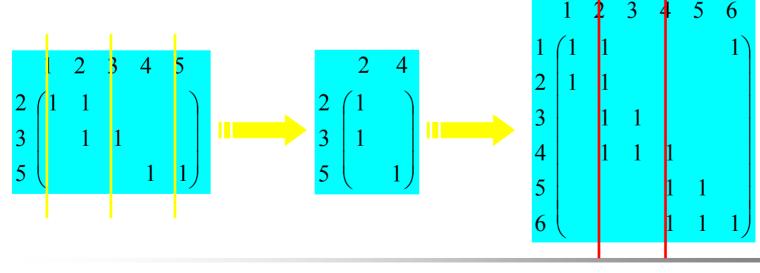
Suppose all columns have the same cost, then column 2 dominates 1, 3, and 4. Columns 3 and 4 dominate each other.

Dominated columns can be removed because that their dominating columns cover all their 1-entries with no more cost. (optimal solutions may be lost, but at least one is guaranteed.)

Example: Reduction Techniques



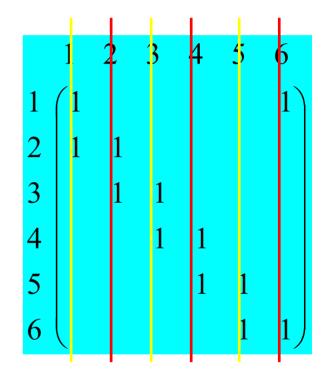
- 1. No essential columns;
- 2. Row 1,4, and 6 dominates 2, 3, and 5 respectively;
- 3. Column 2 dominates 1 and 3, columns 4 and 5 dominate each other;
- 4. Now both columns become essential.



Example: Cyclic UCP

No essential columns; No row dominance; No column dominance;

- > Reduction technique stops.
- > Normally multiple solutions exist in such case.
- > How to find one optimal?
 - Implicit enumeration (exhaustive search)
 - = Branch and bound

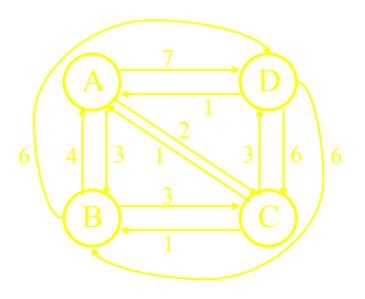


Branch and Bound

Exhaustive search directed by easily computable bounds.

- Approach:
 - 1. Generate simpler instances of the same problem;
 - 2. Compute bound for each simpler instances;
 - 3. if there is direct solution better than all the bounds, stop;
 - 4. else go to step 1 for the instance with best bound;

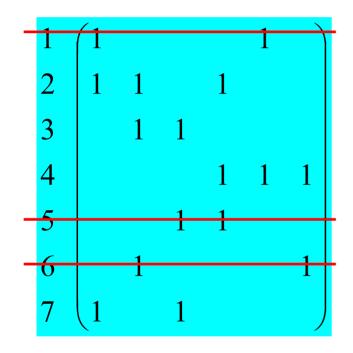
Example: traveling salesman



Branch and Bound Algorithm

- > How to split?
 - = One particular column is selected or not.
- > What is a lower bound?
 - = Graph version and MIS
- > Why do we need an upper bound?
 - = Early truncation of branches in the decision tree
- > What can be an upper bound?
 - = All columns
 - = The current best solution

MIS: Lower Bound for UCP



- Convert the constraint matrix to graph:
 - Rows \rightarrow nodes
 - If two rows have one common 1-entry
 → an edge

UCP and MIS:

- A pair of unconnected nodes
- An independent set
- A maximal independent set
- The number of columns in a solution to UCP cannot be less than the size of a MIS.

MIS_QUICK: a heuristic to find a MIS

Pseudo-Code: Branch and Bound

- 1. Apply reduction techniques until they stop;
- 2. Calculate the lower/upper bounds;
- 3. Pick one column and split into two branches;
- 4. Check one branch
 - If the lower bound of this branch is larger than the current upper bound of the UCP, cut this branch;
 - > Branch and Bound on this branch;
- 5. Check the other branch;
- 6. Report the current solution.

> The End

Review: Computing All Pls

- > Goal: simplification
- > Why only PIs? (Quine's Theorem)
- > How to find all PIs?
 - = Quine's tabular method
 - = Iterated consensus method
 - (if xY and x'Z are PIs, so is their consensus YZ)
 - = Recursive method
 - (if X is a PI of $F = F_1 \cdot F_2$, then we can rewrite X as Y $\cdot Z$ such that Y and Z are PIs for F_1 and F_2 respectively)

Pseudo-Code: Branch and Bound

- 1. Apply reduction techniques until they stop;
- 2. If we find a direct solution with cost less than the upper bound, update upper bound and goto step 9;
- 3. Calculate the lower/upper bounds;
- If lower bound is larger than upper bound, goto step 9 and return "no solution";
- 5. Pick one column and split into two branches;
- 6. Branch and Bound on one branch; (recursive call)
- 7. If the returned solution has cost equal to lower bound, goto step 9;
- 8. Branch and Bound on the other branch;
- 9. Report the current solution.

Example of reduction techniques

	wxy	WXZ	wyz'	wy'z	<i>x'y'</i>	<i>x'z</i> '	
wx 'y 'z '					1	1	
w <i>`x`y`z</i>					1		1 2 2 4
w <i>`x`y`z`</i>					1	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
wxyz	1	1					$\begin{array}{cccc} 4 & 1 & 1 \\ 5 & 1 & 1 \end{array}$
wxyz'	1		1				$\begin{vmatrix} 3 & 1 & 1 \\ 8 & 1 & 1 \end{vmatrix}$
wx 'yz '			1			1	0 1 1
w 'x 'yz '						1	
wxy'z		1		1			
wx 'y 'z				1	1		