ME 417 Design of Alternative Energy Systems

Wind Energy Calculations

Effect of Elevation on Wind Speed

To calculate the wind speed at one height, if it is known at another height, we can use

$$\vec{\mathbf{v}}_2 = \vec{\mathbf{v}}_1 \left(\frac{\mathbf{h}_2}{\mathbf{h}_1}\right)^n$$

where n is the ground surface friction coefficient and takes on different values according to the nature of the terrain. Some example values are

water or smooth flat ground: n = 0.1tall crops: n = 0.2city downtown: n = 0.4

Wind Power

The power of the wind can be calculated from

$$\dot{W} = \frac{1}{2}\rho A \vec{v}^3$$

where

 ρ : density of the air A: capture area of the wind \vec{v} : wind speed

Wind Turbine Efficiency

The efficiency of a wind turbine is defined as

$$\eta_{wt} = \frac{\text{wind turbine power produced}}{\text{wind power}} = \frac{\dot{W}_{wt}}{(0.5)\rho A \vec{v}^3}$$

Then the power of a wind turbine is given by

$$\dot{W}_{wt} = \eta_{wt} \frac{1}{2} \rho A \vec{v}^3$$

The efficiency for several different types of wind turbines is given in the figure below.

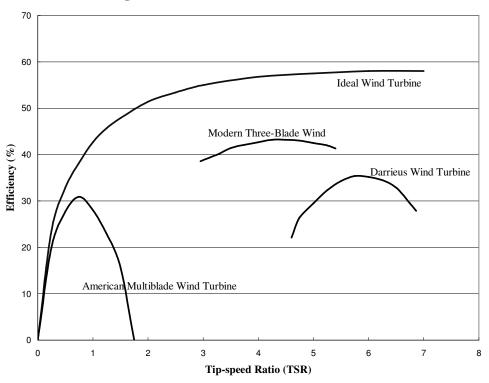


Figure: Wind Turbine Efficiencies

The tips speed ration (TSR) is the ratio of the speed at the tip of the wind turbine blade to the wind speed and is given by

$$TSR = \frac{\omega R_{rotor}}{\vec{v}}$$

where

 ω : rotational speed of the turbine rotor R_{rotor} : radius of the rotor \vec{v} : wind speed

Curve fit equations for this graph have been developed and are given below. *American Multiblade Wind Turbine*

for TSR ≤ 1.75 : $\eta_{wt} = -0.39105(TSR)^2 + 0.66586(TSR) + 0.026583$ for TSR >1.75: $\eta_{wt} = 0$

Darrieus Wind Turbine

for TSR < 4.6: $\eta_{wt} = 0$ for 4.6 \leq TSR \leq 6.86: $\eta_{wt} = -0.078369(TSR)^2 + 0.92146(TSR) - 2.3532$ for TSR > 6.86: $\eta_{wt} = 0$

Modern Three-blade Wind Turbine

for TSR < 2.95: $\eta_{wt} = 0$

for $2.95 \le TSR \le 5.4$: $\eta_{wt} = -0.020554(TSR)^2 + 0.18327(TSR) + 0.023286$ for TSR > 5.4: $\eta_{wt} = 0$

Ideal Wind Turbine

 $\begin{array}{l} \mbox{for } TSR < 0.5 \colon \eta_{wt} = 0.658(TSR) + 0.023833 \\ \mbox{for } 0.5 \leq TSR < 1.0 \colon \eta_{wt} = 0.196(TSR) + 0.23233 \\ \mbox{for } 1.0 \leq TSR < 1.5 \colon \eta_{wt} = 0.104(TSR) + 0.32433 \\ \mbox{for } 1.5 \leq TSR < 2.5 \colon \eta_{wt} = 0.055(TSR) + 0.399 \\ \mbox{for } 2.5 \leq TSR < 4.0 \colon \eta_{wt} = 0.022(TSR) + 0.481 \\ \mbox{for } TSR \geq 4.0 \colon \eta_{wt} = 0.0041(TSR) + 0.5532 \end{array}$

To calculate the rotation speed, ω , we equate the mechanical power of the turbine due to rotation with the wind power that is captured by the turbine or

$$\eta_{\rm wt} \frac{1}{2} \rho A \vec{v}^3 = \frac{1}{2} I_{\rm shaft} \omega^3$$

where I_{shaft} is the moment of inertia of the rotor about the rotating shaft. If we assume that blades are a parallelepiped (solid rectangle) then for our HAWT we have

$$I_{\text{shaft}} = \frac{N_{\text{B}}\rho_{\text{B}}(L_{\text{B}}W_{\text{B}}t_{\text{B}})L_{\text{B}}^2}{3}$$

where

 N_B : number of blades ρ_B : density of blade material L_B : length of blade W_B : width of blade t_B : thickness of blade

For the Darrieus wind turbine, we will have a slightly different expression

$$I_{\text{shaft}} = N_{\text{B}}\rho_{\text{B}}(L_{\text{B}}W_{\text{B}}t_{\text{B}})R_{\text{rotor}}^{2} + \frac{N_{\text{B}}\rho_{\text{B}}(L_{\text{B}}W_{\text{B}}t_{\text{B}})(W_{\text{B}}^{2} + t_{\text{B}}^{2})}{12}$$

Recognizing that

$$\eta_{\rm wt} = {\rm fn}({\rm TSR}) = {\rm fn}\left(\frac{\omega L_{\rm B}}{\vec{\rm v}}\right)$$

we see that we have two equations and two unknowns that must be solved iteratively for the rotational speed and wind turbine efficiency.

A possible iterative loop is

