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Wherever possible the overall technique used for this series will be "definition by example" with 
generic formulae included for use in other applications. To make stability analysis easy we will use 
more than one tool from our toolbox with data sheet information, tricks, rules-of-thumb, SPICE 
Simulation, and real-world testing all accelerating our design of stable operational amplifier (op amp) 
circuits. These tools are specifically targeted at voltage feedback op amps with unity-gain bandwidths 
<20 MHz, although many of the techniques are applicable to any voltage feedback op amp. 20 MHz is 
chosen because as we increase to higher bandwidth circuits there are other major factors in closing the 
loop: such as parasitic capacitances on PCBs, parasitic inductances in capacitors, parasitic inductances 
and capacitances in resistors, etc. Most of the rules-of-thumb and techniques were developed not just 
from theory but from the actual building of real-world circuits with op amps <20 MHz. 
 
This first part reviews some fundamentals essential to ease of stability analysis and defines some 
nomenclature which will be used consistently throughout the entire series. 

�Data Sheet Info

�Tricks

�Rules-Of-Thumb

�Tina SPICE Simulation

�Testing

Goal: To learn how to EASILY analyze and design Op Amp 
circuits for guaranteed Loop Stability using Data Sheet Info, 
Tricks, Rules-Of-Thumb, Tina SPICE Simulation, and Testing.

Note: Tricks & Rules-Of-Thumb apply for Voltage Feedback   
Op Amps, Unity Gain Bandwidth <20MHz  

Fig. 1.0: Stability Analysis Toolbox 
 
Bode Plot Basics 
 
The frequency response for the magnitude plot is the change in voltage gain as frequency changes, 
specified on a Bode plot as voltage gain in dB vs frequency in Hz. Bode and plotted semi-log with 
frequency (Hz) on the x-axis, log scale, and voltage gain (dB) on the y-axis, linear scale. Preferred y-
axis scaling is a convenient 20 dB per major division. The other half of the Bode plot is the phase plot 
(phase shift vs frequency) and is plotted as degrees phase shift vs frequency. Bode phase plots are 
semi-log with frequency (Hz) on the x-axis, log scale, and phase shift (degrees) on the y-axis, linear 
scale. Preferred y-axis scaling is a convenient 45° degrees per major division. 



Magnitude Plot

Phase Plot

 
Fig. 1.1: Magnitude And Phase Bode Plots 

 
Magnitude Bode Plots require voltage gain to be converted to dB, defined as 20Log1010A, where A is 
the voltage gain in volts/volts (V/V). 

dB ���� A(dB) = 20Log10A where A = Voltage Gain in V/V
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Fig. 1.2: dB Definition For Magnitude Bode Plots 



Fig. 1.3 defines some commonly-used Bode plot terms. 
• Roll-Off Rate � Decrease in gain with 

frequency
• Decade � x10 increase or x1/10 decrease 

in frequency.  From 10Hz to 100Hz is 
one decade.

• Octave � X2 increase or x1/2 decrease in
frequency.  From 10Hz to 20Hz is one 
octave.  

Fig. 1.3: More Bode Plot Definitions 
 
The slope of voltage gain with frequency is defined in +20 dB/decade or -20 dB/decade increments on 
a magnitude Bode plot. They can also be described as +6 dB/octave or -6 dB/octave (see Fig. 1.4) 
which can be proved by: 
 

∆A (dB) = A (dB) at fb - A (dB) at fa 
∆A (dB) = [Aol (dB) - 20log10(fb/f1)] - [Aol (dB) - 20log10(fa/f1)] 
∆A (dB) = Aol (dB) - 20log10(fb/f1) - Aol (dB) + 20log10(fa/f1) 
∆A (dB) = 20log10(fa/f1) - 20Log10(fb/f1) = 20log10(fa/fb) = 20log10(1 k/10 k) 

so, ∆A (dB) = -20 dB/decade 
Also, ∆A (dB) = 20log10(fb/fc) = 20log10(10 k/20 k) 
so, ∆A (dB) = -6 dB/octave 
  That is, -20 dB/decade = -6 dB/octave 
 
And also: +20 dB/decade = +6 dB/octave; -20dB/decade = -6dB/octave 
And:  +40 dB/decade = +12 dB/octave; -40 dB/decade = -12 dB/octave 
And:  +60 dB/decade = +18 dB/octave; -60 dB/decade = -18 dB/octave 
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Fig. 1.4: Magnitude Bode Plot: 20 dB/Decade = 6 dB/Octave 



Pole 
 
A single pole response has a -20 dB/decade, -6 dB/octave rolloff in the Bode magnitude plot. At its 
location (fP) the gain is reduced by 3dB from the dc value. In the phase plot the pole has a -45° phase 
shift at fP. The phase extends on either side of fP to 0° and -90° at a -45°/decade slope. A single pole 
may be represented by a simple RC low pass network as shown in Fig. 1.5. Note how the phase of a 
pole affects frequencies up to one decade above and one decade below the pole frequency. 
 

 
 

Fig. 1.5: Poles: Bode Plot Magnitude and Phase 
 
 
Zero 
 
A single zero response has a +20 dB/decade, +6 dB/octave "roll-up" in the Bode magnitude plot. At 
the zero location (fZ) the gain is increased by 3 dB from the dc value. In the phase plot the zero has a 
+45° phase shift at fZ. The phase extends on either side of fZ to 0° and +90° at a +45°/decade slope. A 
single zero may be represented by a simple RC high pass network (Fig. 1.6). Note how the phase of a 
zero affects frequencies up to one decade above and one decade below the zero frequency. 

� Pole Location = fP
� Magnitude = -20dB/Decade Slope

� Slope begins at fP and continues down 
as frequency increases

� Actual Function = -3dB down @ fP
� Phase = -45°/Decade Slope through fP
� Decade Above fP Phase = -90°

� Decade Below fP Phase = 0°



 
Fig. 1.6: Zeros: Bode Plot Magnitude and Phase 

 
On a Bode magnitude plot it is easy to find the frequency location of a given pole or zero. Since the x-
axis is a log scale of frequency this technique allows a ratio of distances to accurately and quickly 
determine the frequency of the pole or zero of interest. Fig. 1.7 illustrates this "Log Scale Trick." 
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Fig. 1.7: Log Scale Trick 

� Zero Location = fZ
� Magnitude = +20dB/Decade Slope

� Slope begins at fZ and continues up as 
frequency increases

� Actual Function = +3dB up @ fZ
� Phase = +45°/Decade Slope through fZ
� Decade Above fZ Phase = +90°

� Decade Below fZ Phase = 0°

Log Scale Trick (fP = ?):

1)   Given: L = 1cm; D = 2cm

2)   L/D = Log10(fP)

3)  fP = Log10
-1(L/D) = 10(L/D)

fP = 10(L/D) = 10(1cm/2cm) = 3.16

4)   Adjust for the decade range
working within –
10Hz-100Hz decade �
fP = 31.6Hz

5) L = Log10(fp’) x D
L = Log10 (3.16) x 2cm = 1cm
where fp’ = fp normalized to the 
1-10 decade range –
fP = 31.6 � fP’ = 3.16



Intuitive Component Models 
 
Most op amp applications use combinations of four key components-- op amp, resistor, capacitor, and 
inductor -- and to facilitate stability analysis it is convenient to have "intuitive models" for them. 
 
Our intuitive op amp model for ac stability analysis is defined in Fig. 1.8. The differential voltage 
between the IN+ and IN- terminals will be amplified by x1 and converted to a single-ended ac voltage 
source, VDIFF, which is then amplified by K(f) (representing the data sheet Aol Curve: open-loop gain 
vs frequency). The resultant voltage, VO, is then followed by the open-loop, ac small-signal, output 
resistance, RO, with the output voltage appearing as VOUT. 

 
Fig. 1.8: Intuitive Op Amp Model 

 
Our intuitive resistor model for ac stability analysis is defined in Fig. 1.9. The resistor has a constant 
resistance value regardless of the operating frequency. 
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Fig. 1.9: Intuitive Resistor Model 

 



Our intuitive capacitor model for ac stability analysis is defined in Fig. 1.10 and contains three distinct 
operating areas. At dc the capacitor is open-circuit. At "high" frequencies it is short-circuit. In between 
the capacitor is a frequency-controlled resistor with a 1/XC decrease in impedance as frequency 
increases. The SPICE simulation in Fig. 1.11 depicts our intuitive capacitor model over frequency. 

 
 

Fig. 1.10: Intuitive Capacitor Model 
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Fig. 1.11: Intuitive Capacitor Model SPICE Simulation 
 

 



Our intuitive inductor model for ac stability analysis is defined in Fig. 1.12 with three distinct 
operating areas. At dc the inductor is short-circuit. At "high" frequencies it is open-circuit. In between 
the inductor is a frequency-controlled resistor with an XL increase in impedance as frequency 
increases. The SPICE simulation in Fig. 1.13 depicts our intuitive inductive model over frequency. 

 
 

Fig. 1.12: Intuitive Inductor Model 
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Fig. 1.13: Intuitive Inductor Model SPICE Simulation 
 

 



Stability Criteria  
 
The lower part of Fig. 1.14 illustrates the traditional control-loop model which represents a gain circuit 
with feedback. The top part of Fig. 1.14 depicts the sections of a typical op amp circuit with feedback 
which correspond to the control-loop model. This model can be called the op amp loop-gain model. 
Note that the Aol is the op amp data sheet parameter Aol, and is the open-loop gain. β is the amount of 
output voltage, VOUT, that gets fed back, created in this example by a resistor network. Deriving 
VOUT/VIN we see that the closed-loop gain function is directly defined by Aol and β. 
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Fig. 1.14: Op amp Loop-Gain Model 
 
From this model we can derive the criteria for stability in a closed-loop op amp circuit: 

VOUT/VIN = Aol / (1+ Aolβ)
If: Aolβ = -1 
Then: VOUT/VIN = Aol / 0 ���� ∞

If VOUT/VIN = ∞���� Unbounded Gain 
Any small changes in VIN will result in large changes in VOUT which will feed 

back to VIN and result in even larger changes in VOUT ���� OSCILLATIONS ����

INSTABILITY !!

Aolβ: Loop Gain
Aolβ = -1 ���� Phase shift of +180°, Magnitude of 1 (0dB)
fcl: frequency where Aolβ = 1 (0dB)

Stability Criteria:
At fcl, where Aolβ = 1 (0dB), Phase Shift < +180°
Desired Phase Margin (distance from +180° Phase Shift) > 45°

 
Fig. 1.15: Derivation Of Stability Criteria 

VOUT/VIN = Acl = Aol/(1+Aolβ)
If Aol >> 1 then Acl ≈ 1/β
Aol: Open Loop Gain
β: Feedback Factor
Acl: Closed Loop Gain



Loop Stability Tests 
 
Since loop stability is defined by the magnitude and phase plot of loop gain (Aolβ) we analyze its 
magnitude and phase by breaking into the closed-loop op amp circuit, injecting a small-signal ac 
source into the loop, and then measuring amplitude and phase to plot the complete loop-gain picture. 
Fig. 1.16 shows the equivalent control-loop block diagrams for the op amp loop-gain model and the 
technique we will use for the loop-gain test. 
 

Op Amp Loop Gain Model
Op Amp is “Closed Loop”

Loop Gain Test:
Break the Closed Loop at VOUT

Ground VIN

Inject AC Source, VX, into VOUT

Aolβ = VY/VX

 
 

Fig. 1.16: Traditional Loop Gain Test 
 
When analyzing a circuit built in SPICE for simulation, the traditional loop-gain test breaks the closed-
loop op amp circuit using an inductor and capacitor. A very large value of inductance ensures the loop 
is closed at dc (a requirement for SPICE simulation is to be able to calculate a dc operating point 
before performing an ac Analysis) but open at the ac frequencies of interest. A very large value of 
capacitance ensures that our ac small signal source is not connected at dc but is directly connected at 
the frequencies of interest. 
 
Fig. 1.17 illustrates the SPICE setup schematic for the traditional loop-gain test. 
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Fig. 1.17: Traditional Loop-Gain Test: SPICE Setup 
 
Before simulating a circuit in SPICE we want to know the approximate outcome. Remember GIGO 
(garbage-in-garbage-out)! β and 1/β, along with the data sheet Aol curve, provide a powerful method 
for first-order approximation of loop-gain analysis. In future sections tricks and rules-of-thumb will be 
presented for computing β and 1/β. Fig. 1.18 defines the β network for op amp circuits. 
 

 
 

Fig. 1.18: Op Amp β Network 
 
 



The 1/β plot imposed on the Aol curve will provide a clear picture of exactly what the loop-gain (Aolβ) 
plot is. From the derivation in Fig. 1.19 we clearly see that the Aolβ magnitude plot is simply the 
difference between Aol and 1/β when we plot 1/β in dB. Note that as frequency increases Aolβ 
decreases. Aolβ is the gain left to correct for errors in the VOUT/VIN or closed-loop response, so as Aolβ 
decreases the VOUT/VIN response will become less accurate until Aolβ goes to 0 dB when the VOUT/VIN 
response simply follows the Aol curve. 

Plot (in dB) 1/β on Op Amp Aol (in dB)

Aolβ = Aol(dB) – 1/β(dB)
Note how Aolβ changes with frequency

Proof (using log functions):

20Log10[Aolβ] = 20Log10(Aol) - 20Log10(1/β)

= 20Log10[Aol/(1/β)]

= 20Log10[Aolβ]
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Fig. 1.19: Loop Gain Information From Aol Plot And 1/β Plot 
 
Plotting the 1/β on the Aol curve there is an easy first-order check for stability called rate-of-closure, 
defined as the "rate-of-closure" of the 1/β curve with the Aol curve at fcl, where the loop gain goes to  
0 dB. A 40 dB/decade rate-of-closure implies an UNSTABLE circuit, because it implies two poles in 
the Aolβ plot before fcl which can mean a 180° phase shift; a 20 dB/decade rate-of-closure implies a 
STABLE circuit. Four examples are shown in Fig. 1.20 with their respective rate-of-closure computed 
below. 
 



fcl1: Aol - 1/β1 = -20 dB/decade - +20 dB/decade = -40 dB/decade rate-of-closure: Unstable 
fcl2: Aol - 1/β2 = -20 dB/decade - 0 dB/decade = -20 dB/decade rate-of-closure: Stable 
fcl3: Aol - 1/β3 = -40 dB/decade - 0 dB/decade = -40 dB/decade rate-of-closure: Unstable 
fcl4: Aol - 1/β4 = -40 dB/decade - -20 dB/decade = -20dB/decade rate-of-closure: Stable 
 

At fcl: Loop Gain (Aolββββ) = 1

Rate-of-Closure @ fcl =
(Aol slope – 1/β slope)

*20dB/decade Rate-of-Closure @ fcl = 
STABLE

**40dB/decade Rate-of-Closure@ fcl = 
UNSTABLE

 
 

Fig. 1.20: Rate-Of-Closure Test for Loop Gain Stability 
 
Loop Gain Stability Example 
 
A loop gain analysis example (see Fig. 1.21) serves to relate how we can analyze the stability of an op 
amp circuit from the 1/β plot plotted on the Aol curve. As frequency increases the capacitor, CF, goes 
towards zero in impedance lowering the magnitude of the β plot with frequency (less voltage feedback) 
and raising the 1/β curve. From our rate-of-closure criteria we predict an Unstable circuit. 

Rate-of-Closure @ fcl = 40dB/decade
� UNSTABLE!

 
 

Fig. 1.21: Loop Gain Stability Example 



From our 1/β plot on the Aol curve we can plot the Aolβ (loop-gain) magnitude plot (see Fig. 1.22) and 
we can then plot the loop gain phase plot. The rules to create an Aolβ plot from the 1/β plot on the Aol 
curve are simple: Poles and zeros from the Aol curve are poles and zeros in the Aolβ plot. Poles and 
zeros from the 1/β plot are opposite in the Aolβ plot. One easy way to remember this is β is used in the 
Aolβ plot and 1/β is the reciprocal of β and so we would expect the Aolβ curve to use the reciprocal of 
poles and zeros from the 1/β plot. Reciprocal of a pole is a zero and reciprocal of a zero is a pole. 
 

To Plot Aolβ from Aol & 1/β Plot:
Poles in Aol curve are poles in Aolβ (Loop Gain)Plot
Zeros in Aol curve are zeros in  Aolβ (Loop Gain) Plot

Poles in 1/β curve are zeros in Aolβ (Loop Gain) Plot
Zeros in 1/β curve are poles in Aolβ ( Loop Gain) Plot
[Remember: β is the reciprocal of 1/β]
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Fig. 1.22: Loop Gain Plot From Aol Curve & 1/β Plot 
 
 
1/β and Closed-Loop Response 
 
The VOUT/VIN closed-loop response is not always the same as 1/β. In the example in Fig. 1.23 we see 
that the ac small-signal feedback is modified by the Rn-Cn network in parallel with RI. 
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Fig. 1.23: VOUT/VIN Vs 1/β 



As frequency increases we see the results of this network reflected in the 1/β plot on the Aol curve. 
Think of this example as an inverting summing op amp circuit. We are summing in VIN through RI and 
ground through the Rn-Cn network. VOUT/VIN will not be affected by this Rn-Cn network at low 
frequencies and the desired gain is seen as 20 dB. As loop gain (Aolβ) is forced to 1 (0 dB) by the Rn-
Cn network there is no loop gain left to correct for errors and VOUT/VIN will follow the Aol curve at 
frequencies above fcl. 
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