Operational Amplifier Stability Part 7 of 15: When Does R_O **Become Z_O?**

By Tim Green Linear Applications Engineering Manager, Burr-Brown Products from Texas Instruments

A funny thing happened on the way to writing about "There must be six ways to leave your capacitive load stable." <u>http://www.analogzone.com/acqt0704.pdf</u> We chose a CMOS operational amplifier with a "rail-to-rail" output and measured the R_{OUT} , where there was no loop gain, at high frequency, to determine R_0 . From this measurement we predicted a second pole location in the amplifier's "modified Aol plot" due to a 1 μ F capacitive load. To our surprise our Tina SPICE simulation for this modified Aol plot was off by a factor of x5! This error was way outside of the acceptable bounds of any of our past first-order analysis and thereby launched a detailed investigation of op amp output impedance.

Here in Part 7 we focus on op amp open-loop output impedance, Z_O , for the two most common output topologies for small signal op amps. For traditional bipolar emitter-follower op amp output stages Z_O is well behaved and predominantly resistive (R_O) throughout the unity-gain bandwidth. However, for many CMOS rail-to-rail output op amps Z_O is both capacitive and resistive, within the unity-gain bandwidth of the amplifier.

We will not, in this Part, analyze the bipolar topology known as *all npn output*, which is most commonly used in power op amps (capable of operating in a linear region with high output currents from 50 mA to greater than 10 A).

Our expanded knowledge of output impedance will be critical to our correct prediction of modified Aol plots and an essential tool in our network synthesis techniques for stable op amp circuits.

Zo for Bipolar Emitter-Follower Output Op Amps

A classical bipolar output stage of emitter-follower topology is shown in Fig. 7.1. With this type of output stage, R_O (small-signal, open-loop output resistance) is usually the dominant portion of Z_O (small-signal, open-loop output impedance). As well, R_O is usually constant for a given dc current load. We will examine some rules-of-thumb for emitter-follower R_O and then use these rules of thumb to predict R_O for various values of dc output current. We will then check our predictions using Tina SPICE simulations.

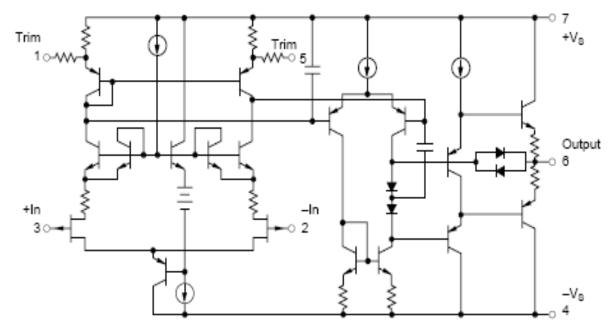
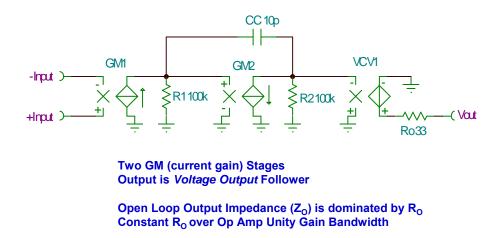


Fig. 7.1: Typical Emitter-Follower, Bipolar Output Op Amp

A typical emitter-follower, bipolar output op amp's specifications are shown in Fig. 7.2. This topology often yields low noise, low drift input specifications with the input bias currents in the nA-region (eg 10 nA). Some bipolar op amps use JFETs in the input stages to reduce input bias currents down to the low pA-range. The common-mode input range will usually be about 2 V from either supply. The output voltage swing is typically restricted to within 2 V or more of either supply rail and these op amps commonly get the best performance from using dual supplies (eg ± 5 V to ± 15 V).


OPA227

High Precision, Low Noise Bipolar Operational Amplifier

Input Specs Offset Voltage Offset Drift Input Voltage Range Common-Mode Rejection Ratio Input Bias Current	75uV max 0.6uV/C (V-)+2V to (V+)-2V 138dB typ 10nA max	AC Specs Open Loop Gain, RL = 10k Open Loop Gain, RL = 600 Gain Bandwidth Product Slew Rate Overload Recovery Time Total Harmonic Distortion + Noise Setling Time, 0.01%	160dB typ 160dB typ 8 MHz 2.3V/us 1.3us 0.00005%, f=1kHz
Noise		Supply Specs	
Input Voltage Noise	90nVpp, f=0.1Hz to 10Hz	Specified Voltage Range	+/-5V to +/-15V
Input Voltage Noise Density	3nV/rt-Hz @1kHz	Quiescent Current	+/-3.8A max
Input Current Noise Density	0.4pA/rt-Hz	Over Temperature	+/-4.2A max
Output Specs		Temperature & Package	
Vsat @ lout = 1.2mA	2V max	Operating Range	-40C to +85C
Vsat @ lout = 19mA lout Short Circuit	3.5V max +/-45mA	Package options	SO-8, DIP-8, DIP-14, SO-14

Fig. 7.2: Example Specifications: Emitter-Follower, Bipolar Output Op Amp

A simplified model for the classic emitter-follower, bipolar op amp uses two GM (current gain) stages followed by a transistor voltage-follower output (see Fig. 7.3). Z_0 , the open-loop output impedance, is dominated by R_0 , open-loop output resistance, and is constant over the unity-gain bandwidth.

For most amplifiers the Class-AB bias current in the output stage (with no load) is about half of the quiescent current for the entire amplifier. For bipolar transistors R_0 is proportional to 1/gm, where gm is the current transfer ratio or current gain. Since gm is proportional to collector current I_C then we see that R_0 is inversely proportional to I_C . As I_C increases from no-load to full-load output current R_0 will decrease. This might imply that if we pull extremely high currents that R_0 would go to zero. However, due to the physics of the transistor and the internal drive and bias arrangement this is not the case. We will measure R_0 at the highest useable load current and define it as R_X . We will then measure R_0 at no load current and derive a constant, K_Z , for the given op amp circuitry that will enable us to predict what R_0 does with any load current. From Fig. 7.4 we clearly see how the term emitter-follower output describes the path to the output pin of the op amp from the front end gm stages.

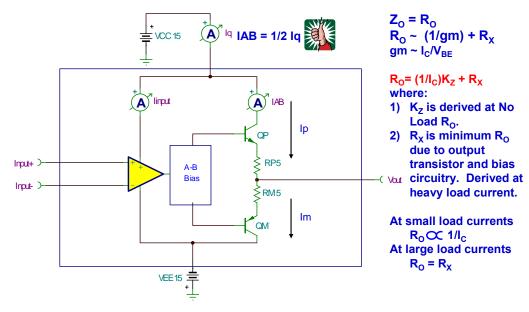


Fig. 7.4: Z_O Definition: Emitter-Follower, Bipolar Output Op Amp

Fig. 7.5 details our emitter-follower Z_O model with a constant value R_X , measured at full load current, and a series current-dependent resistor, with the transfer function of $K_Z \div I_C$. Since we have a push (pnp transistor) output stage and a pull (npn transistor) output stage our Z_O model includes equivalent R_O models for each stage. The effective small-signal ac output impedance looking back into the output

pin will be the parallel combination of the push and pull output stages. Remember that for our small-signal ac model of Z_0 both power supplies, VCC and VEE, will appear as an ac short.

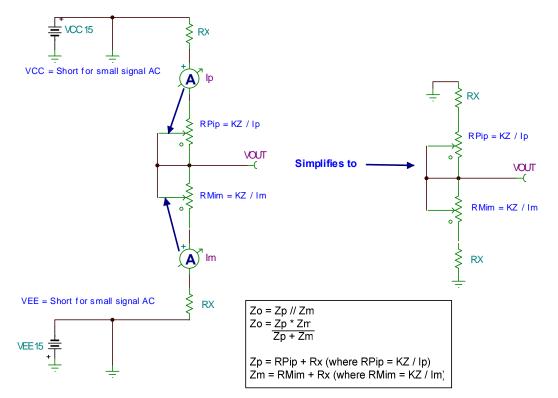


Fig. 7.5: Z₀ Model: Emitter-Follower, Bipolar Output Op Amp

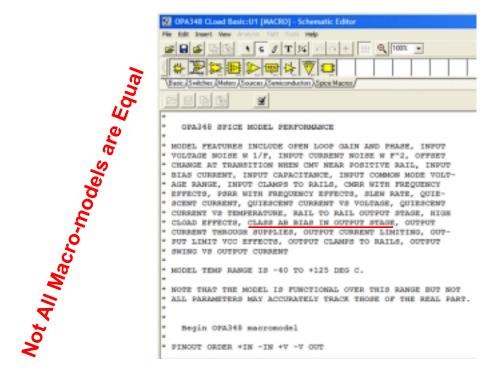
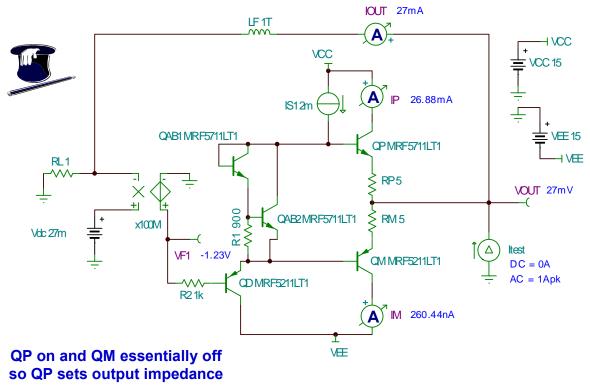



Fig. 7.6: Not All SPICE Op Amp Models Are Equal!

Not all SPICE macro-models for op amps are equal (Fig. 7.6). As such, any simulations we do to investigate output impedance, Z₀, must be done on macro-models which correctly model the output with real devices and proper Class-AB bias circuitry which accurately models the actual device. It is not often clear from a given manufacturer if this is adequately modeled. Most SPICE models for precision op amps developed by the Burr-Brown division of Texas Instruments, over the last 4 years, were built by W K Sands of Analog & RF Models (http://www.home.earthlink.net/%7Ewksands/). These SPICE models of the op amp are extremely good representations of the actual silicon op amp and as shown above will include a detailed list of features including proper modeling of the output stage as well as the Class-AB bias circuitry.

Since we were not able to find a bipolar emitter-follower op amp macro-model with accurate Class-AB biasing and real transistor outputs for an accurate analysis of real world behavior we built our own for evaluation purposes.

In Fig. 7.7 we see an ideal front end implemented with a voltage-controlled-voltage source with open loop gain of 160dB (x100E6). The output transistors, QP and QM, are biased on with a simplified Class-AB bias circuit. For our op amp we set the maximum output current at 27 mA and therefore to find our R_0 parameter R_X we will test with a load current of +27mA. A simple Z_0 test circuit in Tina SPICE is easy to build through the use of an *input resistor* RL and a feedback inductor LF. At dc the inductor is a short and RL, combined with the applied voltage, Vdc, sets the dc load current as shown. With our ideal 1 TH (1E12 henry) inductor we have a dc closed-loop path so SPICE can find an operating point, but for any ac frequency of interest we have an open circuit. Now if we excite our circuit with a 1 A, ac source, Itest, then V_{OUT} becomes Z_0 after a math conversion from dB. Notice for this heavy load (I_{OUT} =+27 mA) that QM is essentially off and QP is on and dominates the output impedance.

We see (Fig. 7.8) our measured results for Z_0 with $I_{OUT} = +27$ mA out of our bipolar emitter-follower output op amp. The initial SPICE results will be plotted in *linear-dB*. If we choose logarithmic on the y-axis this will result directly in ohms for Z_0 . The logarithmic scale on the y axis will become handy when we look at other Z_0 plots that are not constant over the frequency bandwidth (ie CMOS RRO).

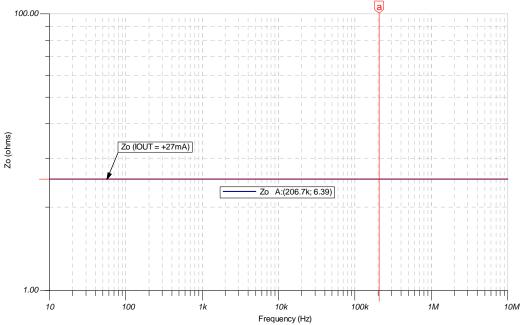


Fig. 7.8: Z_O AC Plot, Heavy Load, $I_{OUT} = +27$ mA

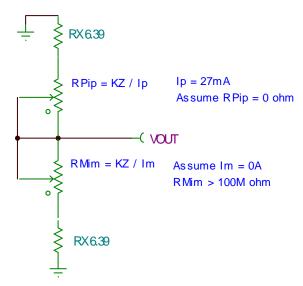
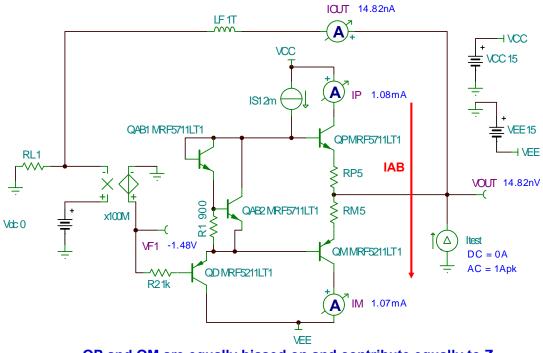



Fig. 7.9: Heavy-Load Zo Model

In our equivalent heavy-load Z_O model for $I_{OUT} = +27$ mA (Fig. 7.9) R_X was measured to be 6.39 Ω . We will assume that the output transistors (QP and QM) used are close in characteristics and therefore assign R_X the same value for each. If we wanted we could re-run our analysis and measure R_X for $I_{OUT} = -27$ mA. The results would be close enough for us to ignore the difference. From this model we assume RMim will be high impedance and therefore have no measurable effect on R_O . Also we assume RPip will be much smaller than R_X .

QP and QM are equally biased on and contribute equally to $\rm Z_{\rm O}$

Fig. 7.10: Z₀, No Load, I_{OUT} = 0mA

The no-load condition for our Class-AB bias emitter-follower (Fig. 7.10) has the bias current, I_{AB} , set to 1.08 mA. We see that both output transistors, QP and QM, are on and both contribute equally to Z_0 . The no-load Z_0 is measured as 14.8 Ω (Fig. 7.11) which, with the heavy-load value for Z_0 (with a result for R_X) allows us to complete our small-signal Z_0 model by computing the constant K_Z .

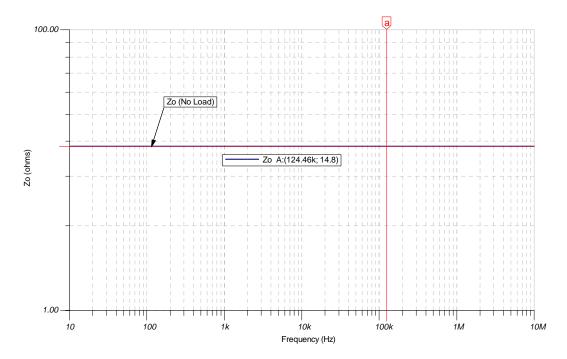


Fig. 7.11: Z_O Ac Plot, No Load, $I_{OUT} = 0$ mA

In Fig. 7.12 we use our emitter-follower Z_0 model for the no-load condition. With results from the heavy-load condition fill in values for R_X . Derive K_Z based on Z_0 at no load assuming that the characteristics of both QP and QM are similar. The derivation (in Fig. 7.12) finds K_Z to be 0.0250668.

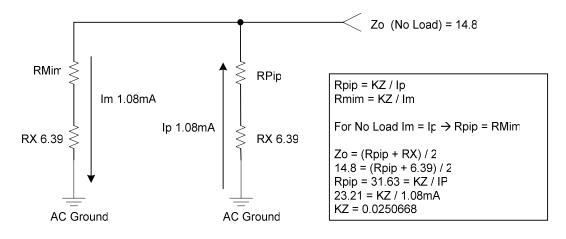


Fig. 7.12: No-Load Zo Model

So now let's test our emitter-follower Z_O model. We will use a dc current out of QP of 2.54 mA (about 2 x I_{AB} -- twice the Class-AB bias current.) This should turn off QM and force Z_O to be dominated by the R_O due to QP and (Fig. 7.13) we see this is approximately true. This is a good illustration as how real world Class-AB bias schemes work. As load current increases positively the entire Class-AB bias current begins to shift into QP. As the load current goes negative, QM begins to receive the entire Class-AB bias current until QP is completely turned off at heavy negative load currents.

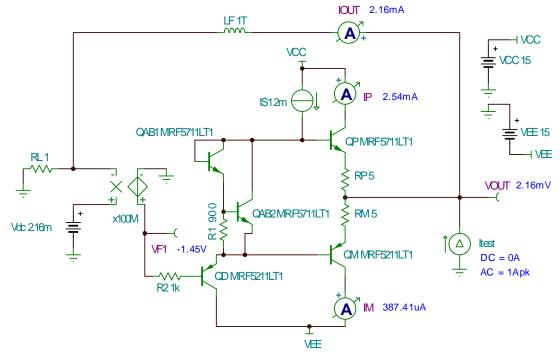


Fig. 7.13: Z₀, Light Load, $I_{OUT} = +2xI_{AB}$ (2.16 mA)

In our emitter-follower light-load Z_0 model (Fig. 7.14) we use our known values of R_X and K_Z to compute the equivalent Z_0 we expect and then run our Tina SPICE simulation (results in Fig. 7.15). We expected Z_0 at light load to be 13.2326 Ω with Tina SPICE measuring 12.85 Ω . This is close enough to use for any analysis we are interested in. If we took the time to investigate we would find that QP and QM do not have exactly the same characteristics.

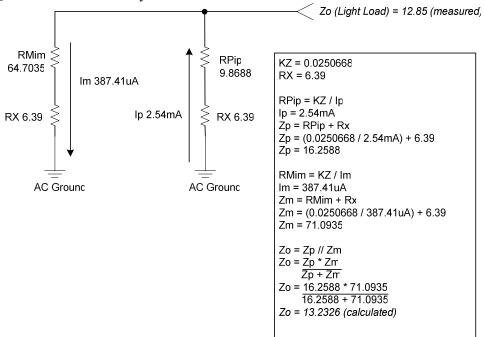


Fig. 7.14: Light-Load Zo Model

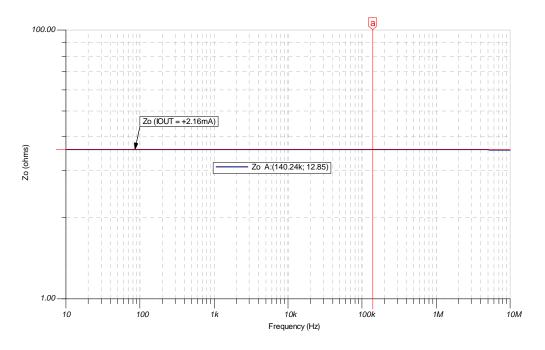


Fig. 7.15: Z_O Ac Plot, Light Load, I_{OUT} = +2.16 mA

Now our complete set of curves for emitter-follower Z_0 can be constructed (see Fig. 7.16) where Z_0 is dominated by R_0 , constant over the unity-gain bandwidth of the op amp, and R_0 goes down with increasing load currents. Notice that Z_0 was plotted for both source and sink currents at light load and heavy load with no significant difference in source or sink Z_0 . These key curves for Z_0 should be included in every bipolar emitter follower op amp data sheet.

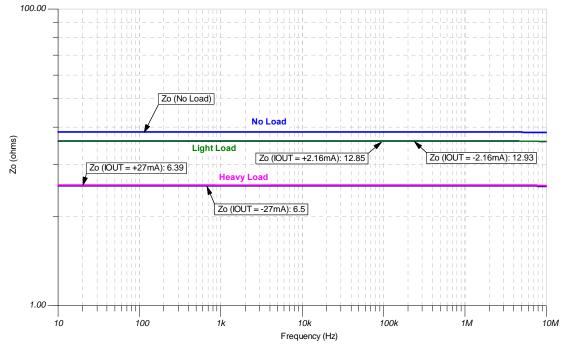
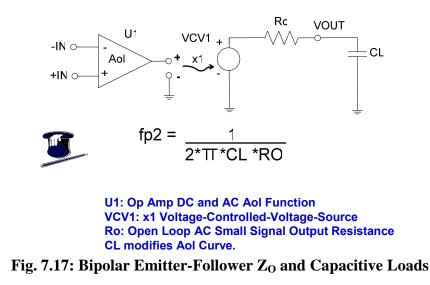



Fig. 7.16: Complete Z₀ Curves: Bipolar Emitter-Follower

Zo And Capacitive Loads For Bipolar, Emitter-Follower Output Op Amps

For capacitance loads on the output of emitter-follower stages we will use the model in Fig. 7.17. We are either given in a data sheet, or can measure, the op amp's Aol curve with no capacitive load. R_O will react with CL and form a second pole, fp2, in the op amp's unloaded Aol curve.

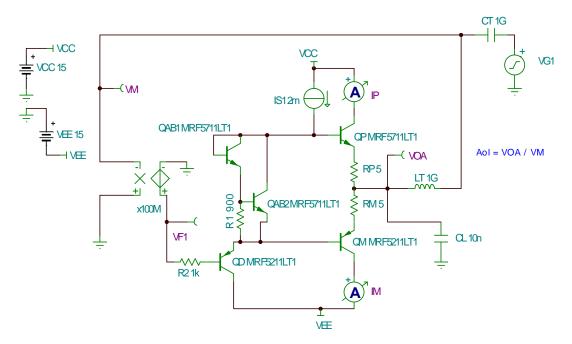


Fig. 7.18: Tina SPICE Circuit for Modified Aol Measurement

We will load our emitter-follower bipolar op amp with many different capacitive loads and test it for the location of the additional pole, fp2, due to R_0 and CL. Fig. 7.18 uses LT (as a short-circuit) to establish a dc operating point. At any ac frequency of interest LT is open-circuit so we can look at a modified Aol curve. CT is open for dc and a short for any ac frequency of interest and connects the ac test source, VG1, into circuit. By inspection we see that Aol = VOA \div VM.

The resultant modified Aol curves due to several different capacitive loads are shown in Fig. 7.19.

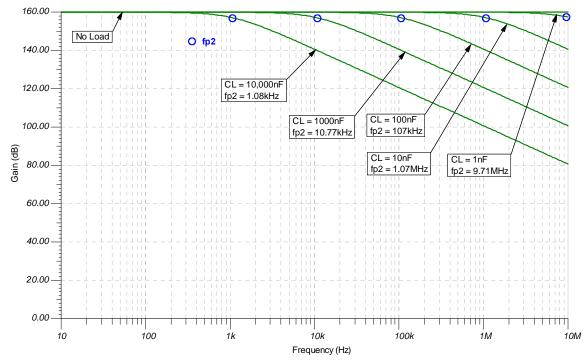


Fig. 7.19: Modified Aol Curves for Different Values of CL

Our predicted locations of the pole, fp2, due to R_0 and CL, in the modified Aol curve are detailed in Fig. 7.20. Also shown are the actual Tina SPICE measured locations for each respective fp2. For use in stability synthesis techniques there is no significant error between actual and predicted values for fp2.

RL	No Load			
Ro	14.8			
		Predicted	Actual	
CL	CL	fp2	fp2	
	(farads)	(Hz)	(Hz)	
1nF	1.00E-09	10753712	9710000	
10nF	1.00E-08	1075371	1070000	
100nF	1.00E-07	107537	107000	
1000nF	1.00E-06	10754	10770	
10,000nF	1.00E-05	1075	1080	

Fig. 7.20: fp2 Locations For Different CL: Predicted And Actual

Zo Summary For Bipolar Emitter-Follower Output Op Amps

A summary of the key characteristics of Z_O for a bipolar emitter-follower op amp (Fig. 7.21) show that within the unity-gain bandwidth it is dominated by R_O and is constant with frequency. As dc output load current increases, R_O decreases, making R_O inversely proportional to I_{OUT} . Capacitive loads, CL, interact with R_O to form a second pole in the original op amp Aol curve which we can use to help synthesize the proper closed-loop compensation for good stability. R_O does change with process and temperature, but a good rule-of-thumb including those changes is $0.65^* R_O typ$ at -55° C to $1.5^* R_O typ$ at 125° C, where $R_O typ$ is at 25°C. There are always exceptions to the rules-of-thumb we have developed for open-loop output impedance of bipolar emitter-follower op amps. The most complete and accurate data for Z_O should be obtained from the op amp manufacturer or measured.

≻Z_o is Dominated by R_o

≻Z_o is Constant over Op Amp Unity Gain Bandwidth

- ≻Z_o is Inversely Proportional to I_{out}
- >R_o and CL form a Second Pole to create a Modified Aol

≻R_o Change with Process and Temperature:

- ✓ R_o @ -55C = 0.65 * R_otyp (i.e. 65 ohms)
- \checkmark R₀ @ 25C = R₀typ (i.e. 100 ohms)
- \checkmark R₀ @ +125C = 1.5 * R₀typ (i.e. 150 ohms)

➤Use R_otyp for Stability Synthesis

✓ Decade Rules-of-Thumb will provide Design Margin

Fig. 7.21: Z₀ Summary For Bipolar Emitter-Follower

Z₀ For CMOS RRO (Rail-to-Rail Output) Op Amps

A typical CMOS RRO op amp topology is shown in Fig. 7.22. With this type of output stage R_0 (small-signal, open-loop output resistance) is usually the dominant portion of Z₀ (small-signal, openloop output impedance) at high frequencies. R₀ is inversely proportional to dc load current at most currents. However, at light load currents Ro is proportional to dc load currents. At mid and low frequencies Z₀ is usually capacitive. The op amp's Aol curve will be affected at low frequencies due to RL (resistive load on output) interacting with the capacitive portion of Z_0 .

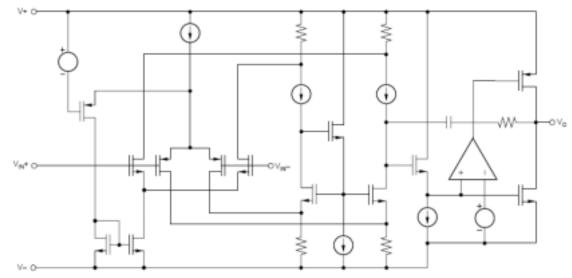


Fig. 7.22: Typical CMOS RRO Op Amp

Specifications of an example OPA348 CMOS RRO op amp (also RRI --rail-to-rail input) are listed in Fig. 7.23. The CMOS RRIO (rail-to-rail input/output) topology is ideal for single-supply applications with close swing to the rail on both the input and output, low quiescent current, and low input bias currents. Noise, however, will usually be considerably higher than bipolar emitter-follower op amps.

OPA348

1MHz, 45uA, CMOS, RRIO Operational Amplifier

Input Specs

Offset Voltage Offset Drift Input Voltage Range Common-Mode Rejection Ratio Input Bias Current

5mV max 4uV/C (V-)-0.2V to (V+)+0.2V 82dB typ 10pA max

Noise

Input Voltage Noise Input Voltage Noise Density Input Current Noise Density

Output Specs

Vsat @ lout = 27uA Vsat @ lout = 540uA Vsat @ lout = 5mA **Iout Short Circuit**

10uVpp, f=0.1Hz to 10Hz 35nV/rt-Hz @1kHz

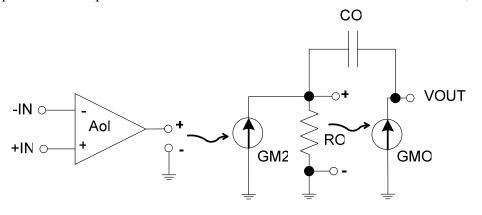
25mV max 125mV max 1V max 10mA

4fA/rt-Hz

AC Specs Open Loop Gain, RL = 100k 108dB typ Open Loop Gain, RL = 5k Gain Bandwidth Product Slew Rate **Overload Recovery Time** Total Harmonic Distortion + Noise Setling Time, 0.01%

Supply Specs Specified Voltage Range **Quiescent Current** Over Temperature

Temperature & Package Operating Range Package options


98dB typ 1 MHz 0.5V/us 1.6us 0.0023%, f=1kHz

2.5V to 5.5V 65uA max 75uA max

-40C to +125C SOT23-5, SO-8, SC70-5

Fig. 7.23: Example Specifications: CMOS RRIO Op Amp

Fig. 7.24 is a simplified model for a CMOS RRO op amp using a voltage output differential front end which controls a current source, GM2. GM2 drives RO, developing a voltage which controls GMO, the output current source. Capacitor CO feeds back into the RO/GM2 node. From this simplified model we observe that at high frequencies $Z_0 = R_0$. As we go from high frequency towards medium and low frequencies we expect to see the effects of CO and will therefore look for Z_0 to be capacitive.

Output is two GM (current gain) Stages Output is *Current Source* GMO (ideal current source has infinite impedance)

Output Impedance (Z_0) is dominated by R_0 at High Frequencies Z_0 will look capacitive at Low and Medium Frequencies

Fig. 7.24: Simplified Model: CMOS RRO Op Amp

In most CMOS RRO amplifiers (Fig. 7.25) the Class-AB bias current in the output stage (with no load) is about half of the quiescent current for the entire amplifier. At high frequencies $Z_0 = R_0$ and proportional to gm (current transfer ration for MOSFET). But, for MOSFETs, gm is inversely proportional to the square-root of I_D (drain current).



Fig. 7.25: Z₀ Definition: CMOS RRO Op Amp

Fig. 7.26 details our CMOS RRO R_0 model consisting of current-controlled resistors for each half of the push (QP) and pull (QM) output MOSFETs. Each of these resistors, RPip and RMim, are proportional to the square root of the I_D flowing through each respective MOSFET. When looking back into the output terminal of the op amp these two current-controlled resistors appear in parallel for a net value of R_0 . The equation for the parallel combination of these resistances creates a mathematical equation which yields an unexpected transfer function. For small increases in I_{OUT} , R_0 will increase until one of the output MOSFETS gets completely turned off and out of Class-AB bias mode.

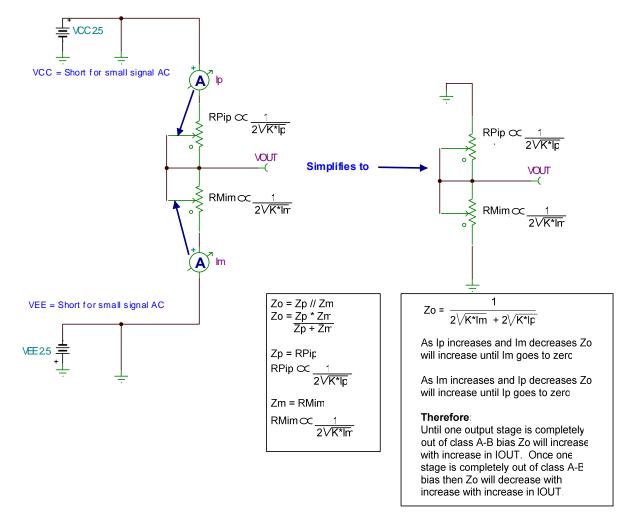


Fig. 7.26: Ro Model: CMOS RRO Op Amp

CMOS RRO	Ro Calculator				
K=	0.071				
		-	_	_	
lp	Rp	Im	Rm	Ro	
2.2000E-05	4.0006E+02	2.2000E-05	4.0006E+02	2.0003E+02	
1.1000E-05	5.6578E+02	3.3000E-05	3.2665E+02	2.0709E+02	
5.5000E-07	2.5302E+03	4.3450E-05	2.8467E+02	2.5588E+02	
5.5000E-08	8.0013E+03	4.3950E-05	2.8305E+02	2.7338E+02	
5.5000E-09	2.5302E+04	4.3990E-05	2.8292E+02	2.7979E+02	
1.0000E-12	1.8765E+06	4.4000E-05	2.8289E+02	2.8285E+02	Ro Max
1.0000E-12	1.8765E+06	8.8000E-05	2.0003E+02	2.0001E+02	
1.0000E-12	1.8765E+06	1.7600E-04	1.4144E+02	1.4143E+02	
1.0000E-12	1.8765E+06	3.5200E-04	1.0002E+02	1.0001E+02	

Fig. 7.27: Example Of Ro Increasing/Decreasing Characteristic

The example calculation (Fig. 7.27) shows the unique relationship of R_O for small changes in I_{OUT} . We see a 200 Ω R_O when both devices have equal current flowing through QP and QM (22 μ A) in the Class-AB bias mode. As Im increases, indicating I_{OUT} is increasing in output current sunk, QP receives less and less current until it is essentially turned off at Im = 44 μ A. It is at this point that we see R_O at a maximum (R_O Max = 282.25 Ω). For higher I_{OUT} currents R_O will decrease.

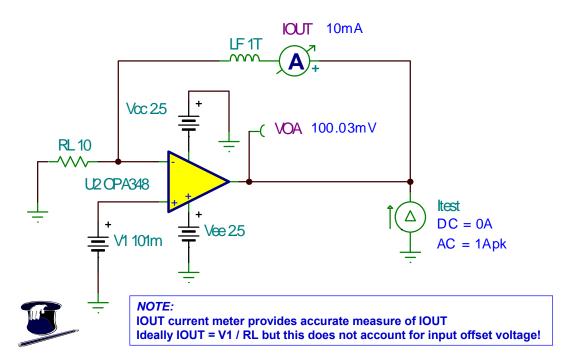


Fig. 7.28: Z_O, Heavy Load, I_{OUT} = +10 mA

The OPA348 chosen to investigate CMOS RRO Z_0 has an extremely accurate SPICE macro-model and the Z_0 characteristics were confirmed through lab bench testing. Tina SPICE allows us a convenient way to look at the characteristics of Z_0 with our first Z_0 measurement at the maximum load current of 10 mA. The current meter, IOUT, in our test circuit (Fig. 7.28) ensures that we control the dc value of I_{OUT} to be exactly 10mA. Simply dividing V1 by RL does not exactly account for the input offset voltage characteristics of the op amp, which may add an unacceptable error. The ac plot of Z_0 for I_{OUT} of 10 mA (Fig. 7.29) has a high-frequency R_0 component of 34.79 Ω and Z_0 is clearly capacitive for frequencies lower than about 10 kHz. We expect at this output current for R_0 to be the lowest we will see since QM is entirely off, and QP is conducting all the output stage current.

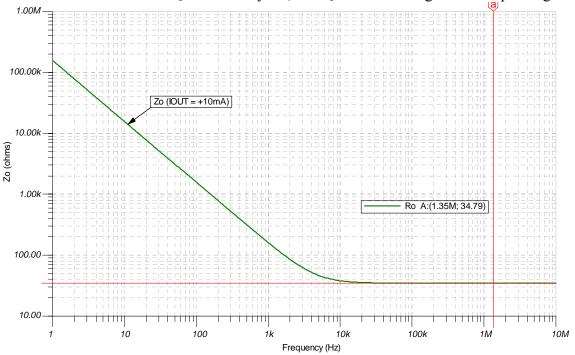
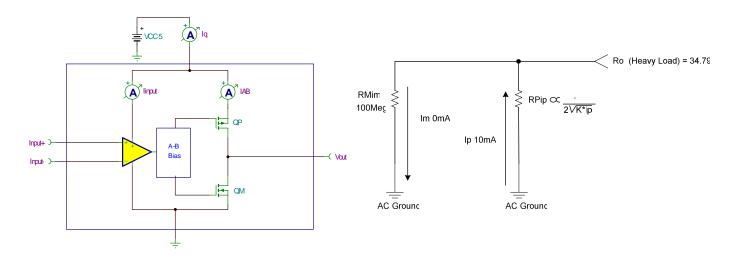



Fig. 7.29: Z_O Ac Plot, Heavy Load, $I_{OUT} = +10$ mA

Our heavy-load R_0 model (Fig. 7.30) confirms that at this output current R_0 should be the lowest since QM is entirely off and QP has all output stage current flowing through it.

QP on and QM essentially off so QP sets output impedance

Fig. 7.30: Heavy-Load Ro Model

Our no-load Z_O curve will be computed using the circuit in Fig. 7.31. From our rule-of-thumb for I_Q Vs I_{AB} we would guess that since $I_Q = 45 \ \mu$ A, then $I_{AB} = 22.5 \ \mu$ A for the OPA348. Our error current of 483.65 fA should not contribute any significant error for our no load Z_O curve.

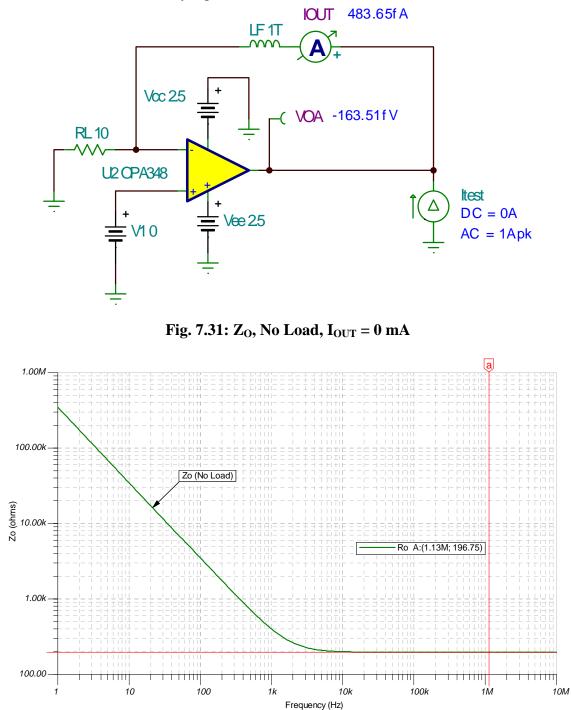
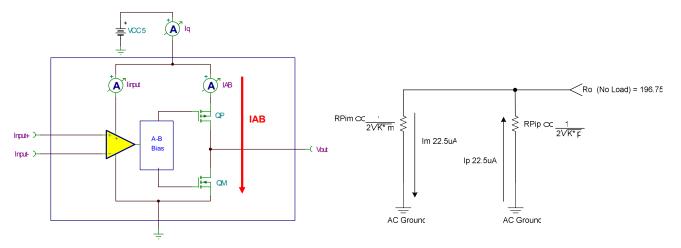



Fig. 7.32: Z_0 Ac Plot, No Load, $I_{OUT} = 0$ mA

For I_{OUT} of 0 mA (Fig. 7.32) Z_O has a high-frequency R_O component of 196.75 Ω . Z_O is clearly capacitive for frequencies lower than about 3 kHz.

QP and QM are equally biased on and contribute equally to R_o

Fig. 7.33: No-Load Ro Model

Our no-load R_0 model (Fig. 7.33) shows that inside the OPA348 both output devices, QP and QM, are contributing equally to R_0 . It also shows an assumed Class-AB bias current of 22.5 μ A.

We now know what Z_0 is for heavy load and no load. The other key curve we are interested in is light load where R_0 becomes biggest but we do not know exactly where this operating point is, not being able to see inside the bias stage, so we need to find this point before we compute an ac transfer curve (Fig. 7.34). Running the analysis/calculate ac nodal voltages analysis continuously, as shown, we vary the value of V1 and get an instant update on VOA -- an rms reading. Setting IG1 to 1 A, ac generator, and f = 1 MHz (well inside the frequency area where R_0 dominates Z_0). Finding a value for V1 that yields maximum VOA we can use it to run our ac transfer curves. With VOA an rms reading it includes any dc component which, for our current levels, would be down in the 7.35 µVrms region -insignificant when compared to VOA in the 254.56 Vrms region. We expect for this light load that the ac magnitude value for R_0 will be 254.56 Vrms $\div 0.707$ Arms = 360 Ω (for sine waves).

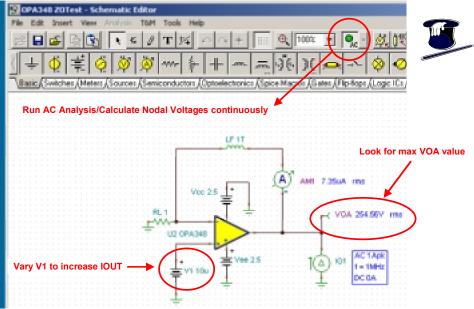


Fig. 7.34: Light-Load Search For Max Ro

Our Z₀ light-load test circuit is shown Fig. 7.35.



Fig. 7.35: Z_O, Light Load, $I_{OUT} = +7.35 \mu A$

Results of our Z_0 light-load ac transfer function analysis are in Fig. 7.36. We see an R_0 value of 360 Ω which is what we had predicted and, below about 3 kHz, Z_0 is capacitive.

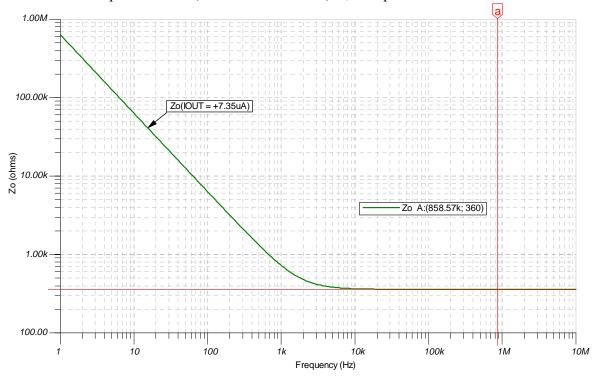
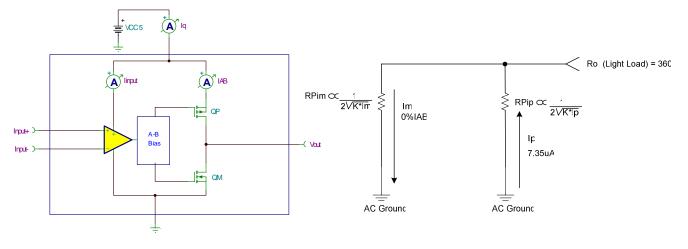



Fig. 7.36: Z₀ Ac Plot, Light Load, I_{OUT} = +7.35 μ A

For our light load model (see Fig. 7.37) we see that QP is on and QM is just off and so QP will set the value of R_0 since it will be the lowest impedance. We also see that our original assumption of Class-AB bias being 22.5 μ A is probably not correct since it only took 7.35 μ A of load current to turn off QM. IAB is probably not much greater than 7.35 μ A.

QP on and QM just off so QP dominates due to lowest impedance Fig. 7.37: Light-Load Z₀ Model

Our complete set of key Z_O curves for OPA348 (Fig. 7.38) show our interest in:

- $I_{OUT} = +7.35 \ \mu A \ (R_O = 360 \ \Omega \rightarrow R_O \ max)$
- $I_{OUT} = no load (R_0 = 196.75 \Omega \rightarrow R_0 no load)$
- $I_{OUT} = +87.4 \ \mu A \ (R_O = 198.85 \ \Omega) \ I_{OUT}$ at which R_O about equals R_O no load
- $I_{OUT} > 87.4 \ \mu A$ result in $R_O < R_O$ no load
- $I_{OUT} = +10 \text{ mA} (R_0 = 34.79 \Omega)$

The remaining curves verify that operating conditions in between will also give results which fall in between. In addition, Z_0 curves were taken for negative values of I_{OUT} and were so close to laying on the positive values that they were omitted for clarity. These curves should be in all data sheets.

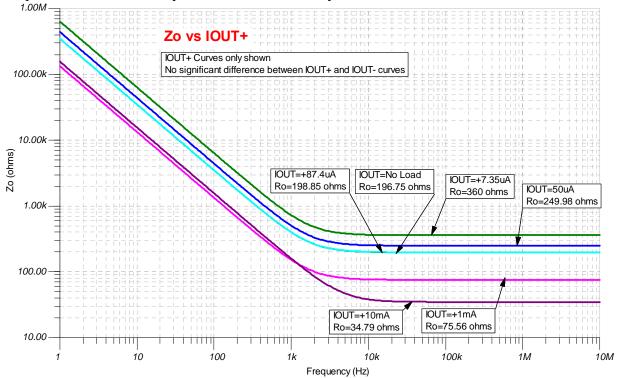


Fig. 7.38: Complete Z_O Curves: CMOS RRO

For an equivalent Z_0 model for CMOS RRO op amps we analyze the breakpoint, fz, on our Z_0 curves (see Fig. 7.39 for heavy and no loads). This, with R_0 , allows us to determine a value for CO.

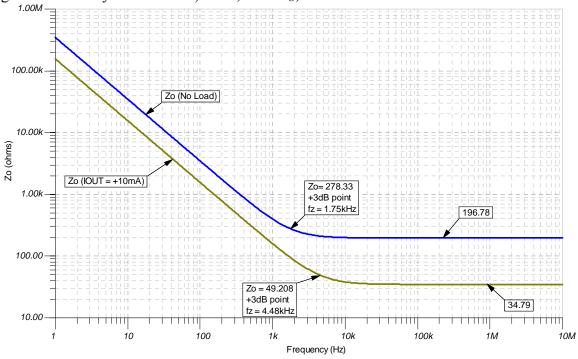


Fig. 7.39: fz Breakpoints On Z_O Curves

From our Z₀ plots we now complete our model at I_{0UT} no load and heavy load (10 mA) -- Fig. 7.40.

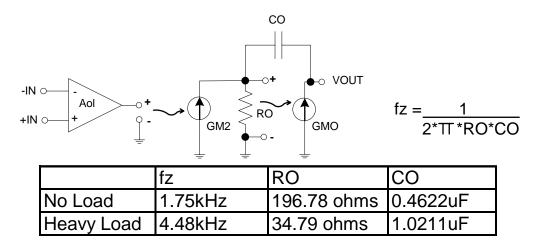
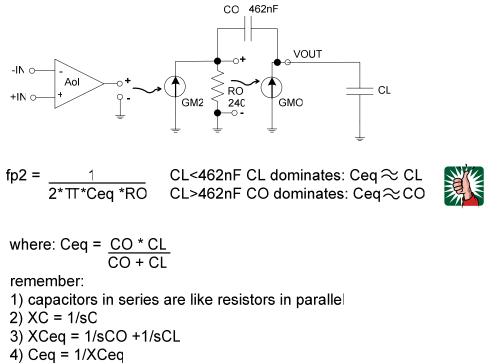



Fig. 7.40: Z_O Complete Model Calculations

Zo And Capacitive Loads For CMOS RRO Op Amps

For creating modified Aol curves from the original op amp Aol, when we are driving capacitive loads, the load capacitor, CL, will be in series with our Z_0 model capacitor, CO. Remember that capacitors in series are like resistors in parallel. And so, if CL < CO, CL will dominated and then if CL > CO, CO will dominate. The modified Aol curve second pole, fp2, will depend directly on R₀ and Ceq, the equivalent capacitance due to CO and CL. Fig. 7.41 illustrates these key points.

Fig. 7.41: Modified Aol fp2 Calculations

In our test circuit to plot modified Aol curves due to capacitive loading on the CMOS RRO op amp, OPA348 (Fig. 7.42) the ac loop is opened by LT, but a short for the dc operating point calculation. CT is open for dc but short for any ac frequency of interest. The modified Aol curve will be VOA \div VM.

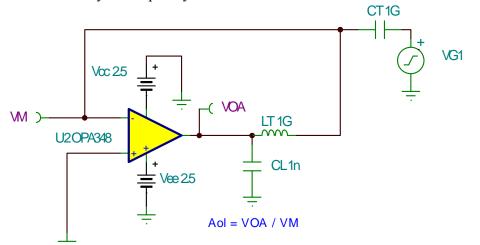
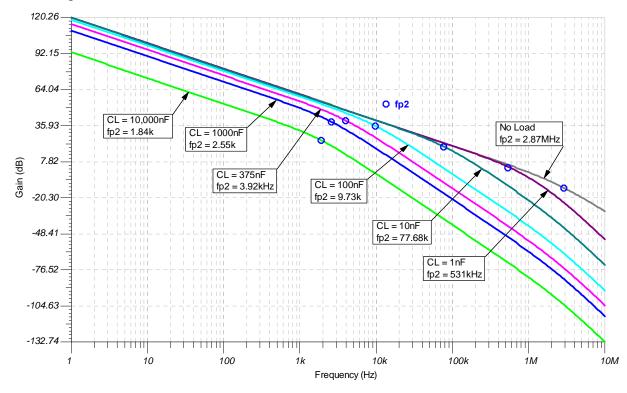



Fig. 7.42: Modified Aol Test Circuit

Our actual modified Aol curves for CL from no load to 10,000 nF are seen in Fig. 7.43. The respective locations of fp2 were measured as noted.

Now the measured values of fp2 were compared to the predicted values form our Z_0 model (Fig. 7.44). Results are very good, giving us the confidence to use our Z_0 model to predict actual modified Aol plots. Note the 1 nF load predicted was off quite a bit due to the fact that we did not include the effect of the OPA348 Aol's second high-frequency pole at 2.87 MHz. The other fp2 locations due to CL were at least a decade away and so the OPA348 Aol second pole has no effect on our predictions.

RO	196.78				
CO	4.62E-07				
RL	No Load				
				Predicted	Actual
CL	CL	CO	Ceq	fp2	fp2
	(farads)	(farads)	(farads)	(Hz)	(Hz)
No load	No Load	4.62E-07			2870000
1nF	1.00E-09	4.62E-07	9.98E-10	810546	*531000
10nF	1.00E-08	4.62E-07	9.79E-09	82630	77680
100nF	1.00E-07	4.62E-07	8.22E-08	9838	9730
375nF	3.75E-07	4.62E-07	2.07E-07	3907	3920
1000nF	1.00E-06	4.62E-07	3.16E-07	2559	2550
10,000nF	1.00E-05	4.62E-07	4.42E-07	1831	1840

*Actual reflects effect of Op Amp Aol second pole

Fig. 7.44: Modified Aol fp2 Comparison: Predicted Vs Actual

Low Frequency Effects of RL on CMOS RRO Op AMP Aol

Just when we thought we were done with CMOS RRO op amps... CMOS RRO op amps also exhibit another Aol phenomena at low frequencies. The interaction of CO with RL creates a high-pass filter which tends to flatten the low-frequency portion of the Aol curve as shown in Fig. 7.45.

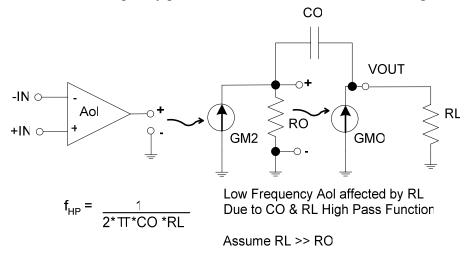


Fig. 7.45: Aol Low-Frequency Effects of RL

In our test circuit (Fig. 7.46) the effects of changing RL on the Aol curve can be analyzed.

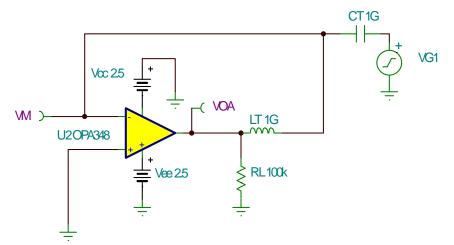


Fig. 7.46: Aol Low-Frequency Effects Of RL Test Circuit

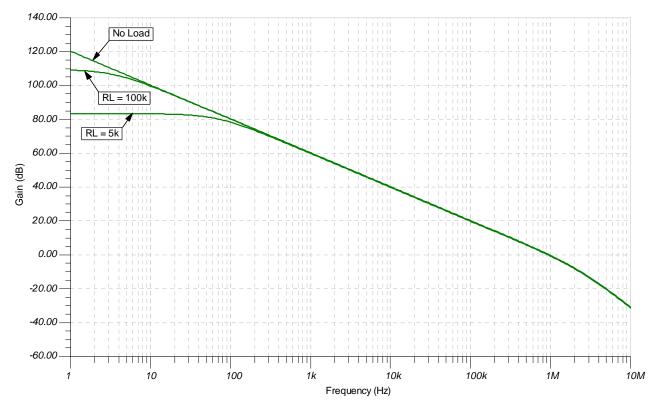


Fig. 7.47 shows the low-frequency Aol effects due to resistive loading of no load, 100 k Ω and 5 k Ω .

Fig. 7.47: Ac Plot Of RL Effects On Low-Frequency Portion Of Aol

A clever test circuit (Fig. 7.48) will allow us to see clearly the effects of CO and RL on the lowfrequency portion of the CMOS RRO Aol curve. Vaol represents the unloaded, unmodified Aol curve. VHP is the high-pass filter function created by CO and RL and VOA is the modified Aol curve caused by passing the unmodified Aol curve thought the filter.

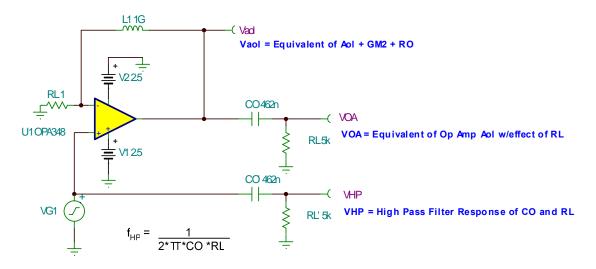


Fig. 7.48: Equivalent Circuit To Evaluate RL Effects On Aol

For $RL = 5 k\Omega$ our resultant ac curves (Fig. 7.49) show the unmodified Aol curve, Vaol, the high-pass filter effect due to CO and RL, and the net transfer function, modified Aol curve VOA due to passing Vaol through VHP. Since addition on a Bode plot is equivalent to linear multiplication we can easily add Vaol to VHP to see the resultant VOA curve.

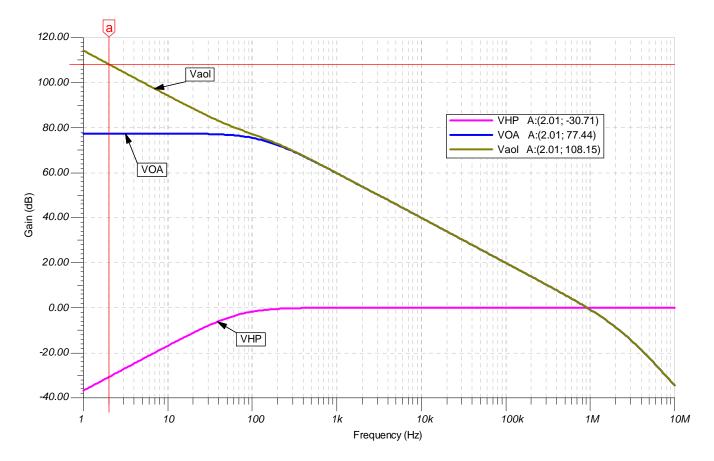


Fig. 7.49: Equivalent Circuit Plots To Evaluate RL Effects On Aol

Z₀ Summary for CMOS RRO Op Amps

Fig. 7.50 summarizes the key characteristics of Z_0 for CMOS RRO op amps. At high frequencies Z_0 is dominated by R_0 . For most loads, as dc output load current increases R_0 decreases making R_0 inversely proportional to I_{OUT} . However, for low values of I_{OUT} , R_0 is proportional to I_{OUT} . Z_0 is capacitive, CO, at mid to low frequencies. If capacitive loads, CL, are connected to a CMOS RRO output then R_0 and CO will interact with CL to create a modified Aol curve which contains an additional pole, fp2, from the original Aol curve. The low-frequency portion of the Aol curve is affected by resistive loads, RL, interacting with CO, forming a high-pass filter and flattening the Aol curve in the mid- to low-frequency region. R_0 does change with process and temperature and a good rule-of-thumb including these changes is 0. 5*R₀typ at -55°C to 2*R₀typ at 125°C, where R₀typ is at 25°C. There are always exceptions to the rules-of-thumb we have developed for open-loop output impedance of CMOS RRO op amps. The most complete and accurate data for Z_0 should be obtained from the op amp manufacturer, or measured.

Z_o is Dominated by R_o at High Frequencies

≻R_o is Inversely Proportional to I_{out} for Most Values of I_{out}

> R_o is Proportional to I_{OUT} for Very Small Values of I_{OUT}

>Z_o is Capacitive (CO) at Mid to Low Frequencies

▷R_o, C_o, and CL form a Second Pole to create a Modified Aol

 $\succ RL$ and C_o change the Low Frequency Portion of Aol

≻R_o Change with Process and Temperature:

✓ R_o @ -55C = 0.5 * R_otyp (i.e. 50 ohms)

 \checkmark R_o @ 25C = R_otyp (i.e. 100 ohms)

X

✓ R_o @ +125C = 2 * R_otyp (i.e. 200 ohms)
> Use R_otyp for Stability Synthesis

✓ Decade Rules-of-Thumb will provide Design Margin

Fig. 7.50: Z₀ Summary For CMOS RRO

Acknowledgements

A special thanks for all of the technical insights on Z₀ to the following individuals: *Burr-Brown Products from Texas Instruments* Sergey Alenin, Senior Analog IC Design Engineer Tony Larson, Senior Analog IC Design Engineer Rod Burt, Senior Analog IC Design Manager

Analog & RF Models Bill Sands, Consultant. <u>http://www.home.earthlink.net/%7Ewksands/</u>

References

Gray, Paul R and Meyer, Robert G. *Analysis and Design of Analog Integrated Circuits*. John Wiley & Sons. New York. 1977 Holt, Charles A *Electronic Circuits*. John Wiley & Sons. New York. 1978

About The Author

After earning a BSEE from the University of Arizona, Tim Green has worked as an analog and mixedsignal board/system level design engineer for over 23 years, including brushless motor control, aircraft jet engine control, missile systems, power op amps, data acquisition systems, and CCD cameras. Tim's recent experience includes analog & mixed-signal semiconductor strategic marketing. He is currently the Linear Applications Engineering Manager at Burr-Brown, a division of Texas Instruments, in Tucson, AZ and focuses on instrumentation amplifiers and digitally-programmable analog conditioning ICs. He can be contacted at green_tim@ti.com

