Section 1.1 : The Binomial Coefficients

Definition 1.1.1: Let n be a positive integer (i.e. a positive whole number). Then the *factorial* of n, denoted n! and called "n factorial" is defined by

$$n! = n \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1$$

e.g.

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120, \quad 3! = 3 \times 2 \times 1 = 6, \ (etc.)$$

<u>Note</u>: 0! is defined to be 1.

Definition 1.1.2: Let *n* and *k* be non-negative integers with $k \leq n$. Then the *binomial coefficient* $\binom{n}{k}$ is defined by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

<u>Note</u>: $\binom{n}{k}$ is called "*n* choose *k*": it is the number of ways of choosing *k* objects from a set of *n* objects.

Example 1.1.3*:
$$\binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1) \times (3 \times 2 \times 1)} = 10.$$

So there are ten ways of choosing two objects from a set of 5. If $S = \{a, b, c, d, e\}$, then the two-element subsets of S are listed below :

 $\{a,b\}, \{a,c\}, \{a,d\}, \{a,e\}, \{b,c\}, \{b,d\}, \{b,e\}, \{c,d\}, \{c,e\}, \{d,e\}.$

Example 1.1.4^{*}: The number of ways of selecting a 5-member basketball team from a panel of 12 players is

$$\binom{12}{5} = \frac{12!}{5!(12-5)!} = \frac{12!}{5!(7)!} = \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1} = 792.$$

Properties of Binomial Coefficients

- 1. $\binom{n}{0} = \binom{n}{n} = 1$ for all non-negative integers *n*. (A "non-negative" integer may be zero, or positive).
- 2. $\binom{n}{k} = \binom{n}{n-k}$ for all non-negative integers n, k with $k \leq n$.
- 3. $\binom{n}{1} = n$ for all non-negative integers n.

A triangular array of numbers can be constructed as follows :-

- 1. The first row, labelled Row 0, has a single entry: 1
- 2. Subsequently, Row n has n + 1 entries, of which the first and last are both 1. Each other entry is the sum of the two above it, to the left and to the right.

Row 0						1					
Row 1					1		1				
Row 2				1		2		1			
Row 3			1		3		3		1		
Row 4		1		4		6		4		1	
Row 5	1		5		10		10		5		

This array is called *Pascal's Triangle*. The n + 1 entries in Row n of the triangle are :

1

			$\binom{n}{0}$,	$\binom{n}{1}$,	$\binom{n}{2}$),	$\binom{n}{n}$).			
Row 0						$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$					
Row 1					$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	(0)	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$				
Row 2				$\binom{2}{0}$	(0)	$\binom{2}{1}$	(1)	$\binom{2}{2}$			
Row 3			$\binom{3}{0}$	(0)	$\binom{3}{1}$	(1)	$\binom{3}{2}$	(2)	$\binom{3}{3}$		
Row 4		$\binom{4}{0}$	(0)	$\binom{4}{1}$	(1)	$\binom{4}{2}$	(2)	$\binom{4}{3}$	(0)	$\binom{4}{4}$	
Row 5	$\binom{5}{0}$	(0)	$\binom{5}{1}$	(1)	$\binom{5}{2}$	(2)	$\binom{5}{3}$	(0)	$\binom{5}{4}$	(1)	$\binom{5}{5}$

So, for example, the six numbers in Row 5 of Pascal's triangle are $\binom{5}{0}$, $\binom{5}{1}$, ..., $\binom{5}{5}$.

Exercises :

- 1. Determine $\binom{7}{4}$ using either Pascal's triangle or Definition 1.1.2 (or both). (Answer is 35).
- 2. In how many ways can a 4-member committee be selected from a group of 10 candidates? (Answer is 210).