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Antennas

Antennas are transducers  that transfer electromagnetic energy
between a transmission line and free space.

Transmitting
Antenna

I

I

Transmitter

Transmission Line
Electromagnetic

Wave

Receiving
Antenna

I

IReceiver

Transmission Line
Electromagnetic

Wave



Antennas

© Amanogawa, 2001 – Digital Maestro Series 2

Here are a few examples of common antennas:

Linear dipole fed
by a two-wire line

Ground plane

Linear monopole
fed by a single wire
over a ground plane

Coaxial ground
plane antenna

Parabolic (dish) antenna

Linear elements connected
to outer conductor of the
coaxial cable simulate the
ground plane

Uda-Yagi dipole array

Passive elements

Loop dipole

Log−periodic array

Loop antenna
Multiple loop antenna wound

around a ferrite core
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From a circuit point of view, a transmitting antenna  behaves like an
equivalent impedance  that dissipates the power transmitted

The transmitter  is equivalent to a generator .
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A receiving antenna  behaves like a generator  with an internal
impedance corresponding to the antenna equivalent impedance.

The receiver  represents the load impedance  that dissipates the time
average power generated by the receiving antenna.

I

I

Transmission Line

Receiving
Antenna

I

I

Receiver

Transmission Line

P t R Iin( ) = 1

2

2

Veq

Zeq

Electromagnetic
Wave

ZinZR



Antennas

© Amanogawa, 2001 – Digital Maestro Series 5

Antennas are in general reciprocal devices, which can be used both
as transmitting  and as receiving  elements.  This is how the
antennas on cellular phones and walkie −talkies operate.

The basic principle of operation of an antenna is easily understood
starting from a two −wire transmission line , terminated by an open
circuit .
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Note: This is the return
current on the second wire,
not the reflected current
already included in the
standing wave pattern .

ZR → ∝
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Imagine to bend the end of the transmission line, forming a dipole
antenna .  Because of the change in geometry, there is now an
abrupt change  in the characteristic impedance at the transition
point, where the current is still continuous.  The dipole leaks
electromagnetic energy into the surrounding space, therefore it
reflects less power than the original open circuit ⇒ the standing
wave pattern on the transmission line is modified
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In the space surrounding the dipole we have an electric field. At
zero frequency (d.c. bias) , fixed electrostatic field lines connect the
metal elements of the antenna, with circular symmetry .
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At higher frequency , the current oscillates in the wires and the field
emanating from the dipole changes periodically.  The field lines
propagate away from the dipole and form closed loops.
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The electromagnetic field  emitted by an antenna obeys Maxwell’s
equations

Under the assumption of uniform isotropic medium we have the
wave equation:

Note that in the regions with electrical charges ρ
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In general, these wave equations are difficult to solve, because of
the presence of the terms with current and charge.  It is easier to
use the magnetic vector potential  and the electric scalar potential .

The definition of the magnetic vector potential is

Note that since the divergence of the curl of a vector is equal to
zero we always satisfy the zero divergence condition

We have also
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We define the scalar potential φ first noticing that

and then choosing (with sign convention as in electrostatics)

Note that the magnetic vector potential  is not uniquely defined,

since for any arbitrary scalar field ψ

In order to uniquely define the magnetic vector potential, the
standard approach is to use the Lorenz gauge
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From Maxwell’s equations

From vector calculus
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Finally, the wave equation for the magnetic vector potential  is

For the electric field we have

The wave equation for the electric scalar potential is
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The wave equations are inhomogenoeous Helmholtz equations ,
which apply to regions where currents  and charges  are not zero.

We use the following system of coordinates for an antenna body
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The generals solutions for the wave equations are

The integrals are extended to all points over the antenna body
where the sources ( current density , charge ) are not zero.  The effect
of each volume element of the antenna is to radiate a radial wave
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Infinitesimal Antenna
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The current  flowing in the infinitesimal antenna  is assumed to be
constant and oriented along the z−axis

The solution of the wave equation for the magnetic vector potential
simply becomes the evaluation of the integrand at the origin
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There is still a major mathematical step left.  The curl operations
must be expressed in terms of polar coordinates
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In polar coordinates
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We had

For the fields we have
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The general field expressions can be simplified for observation
point at large distance from the infinitesimal antenna
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At large distance we have the expressions for the Far Field

• At sufficient distance from the antenna, the radiated fields  are
perpendicular  to each other and to the direction of propagation .

• The magnetic field  and electric field  are in phase and

These are also properties of uniform plane waves.
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However, there are significant differences  with respect to a uniform
plane wave:

• The surfaces of constant phase are spherical instead of planar,
and the wave travels in the radial direction

• The intensities of the fields are inversely proportional to the
distance, therefore the field intensities decay while they are
constant for a uniform plane wave

• The field intensities are not constant on a given surface of
constant phase.  The intensity depends on the sine of the
elevation angle

The radiated power density  is
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The spherical wave resembles a plane wave locally  in a small
neighborhood of the point ( r, θ, ϕ ).
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Radiation Patterns

Electric Field and Magnetic Field
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Time−average Power Flow (Poynting Vector)
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Total Radiated Power

The time −average power flow  is not uniform  on the spherical wave
front.  In order to obtain the total power  radiated by the infinitesimal
antenna, it is necessary to integrate over the sphere

Note: the total radiated power  is independent of distance.  Although
the power decreases with distance, the integral  of the power over
concentric spherical wave fronts remains constant .
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The total radiated power  is also the power delivered by the
transmission line to the real  part of the equivalent impedance  seen
at the input of the antenna

The equivalent resistance of the antenna is usually called radiation
resistance .  In free space
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The total radiated power  is also used to define the average power
density emitted by the antenna.  The average power density
corresponds to the radiation of a hypothetical omnidirectional
(isotropic) antenna , which is used as a reference to understand the
directive properties of any antenna.
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The time −average power density is given by

The directive gain  of the infinitesimal antenna  is defined as

� �

Surface of wave front

2
2

2

Total Radiated Powe

2

r

I1
I

12 3 44 4

ave

tot

P

zP
z

rr r

�� �
�

� �� �

� �

	� �
� � 	 � � �� �

�
�

12 2
2

2

( , , ) I I
si( , )

3
sin

2

n
2 4 3 4ave

P t r z z

P r r
D


 � �� �







�
�

�

�� �	 	� � � �
� � � �� � � �� �� � � �� �

�

� � �



Antennas

© Amanogawa, 2001 – Digital Maestro Series 32

The maximum value of the directive gain is called directivity of the
antenna.  For the infinitesimal antenna , the maximum of the
directive gain occurs when the elevation angle is 90 °

The directivity  gives a measure of how the actual antenna  performs
in the direction of maximum radiation, with respect to the ideal
isotropic antenna which emits the average power in all directions.
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The infinitesimal antenna  is a suitable model to study the behavior
of the elementary radiating element called Hertzian dipole .

Consider two small charge reservoirs, separated by a distance ∆z,
which exchange mobile charge in the form of an oscillatory curent
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The Hertzian dipole  can be used as an elementary model for many
natural charge oscillation phenomena.  The radiated fields  can be
described by using the results of the infinitesimal antenna .

Assuming a sinusoidally varying charge flow between the
reservoirs, the oscillating current  is
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A short wire  antenna has a triangular current distribution, since the
current itself has to reach a null at the end the wires.  The current
can be made approximately uniform  by adding capacitor plates .

The small capacitor plate antenna  is equivalent to a Hertzian dipole
and the radiated fields can also be described by using the results of
the infinitesimal antenna .  The short wire antenna  can be described
by the same results, if one uses an average current value giving the
same integral of the current
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Example − A Hertzian dipole is 1.0 meters long and it operates at
the frequency of 1.0 MHz, with feeding current I o = 1.0 Ampéres.
Find the total radiated power.

For a short dipole with triangular current distribution and maximum
current Imax = 1.0 Ampére
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Time−dependent fields - Consider the far −field approximation
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Linear Antennas

Consider a dipole with wires of length comparable  to the
wavelength.
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Because of its length, the current  flowing in the antenna wire is a
function of  the coordinate z.  To evaluate the far−field  at an
observation point, we divide the antenna into segments which can
be considered as elementary infinitesimal antennas .

The electric field  radiated by each element , in the far−field
approximation, is

In far−field  conditions we can use these additional approximations
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The lines r and r’  are nearly parallel under these assumptions.
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The electric field  contributions due to each infinitesimal segment
becomes

The total fields  are obtained by integration of all the contributions
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Short Dipole

Consider a short symmetric dipole  comprising two wires, each of
length L << λ .  Assume a triangular distribution of the phasor
current  on the wires

The integral  in the field  expressions becomes

� �

� �
max

max

1 0
I( )

1 0

I z L z
z

I z L z

� #�
� 
 � 
�

cos
max

since short 

1 

dipolefor a 

 

cos

2
max 1  

1

2
I( ) I( )

2

  

z

L Lj

L L

j

z L
z e dz z dz

z L L

I

e
�

� 





�
� �

	

�
�

�

� � �

�

� �

�

� ������

�



Antennas

© Amanogawa, 2001 – Digital Maestro Series 43

The final expression for far−fields  of the short dipole  are similar to
the expressions for the Hertzian dipole  where the average of the
triangular current distribution is used
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Half−wavelength dipole

Consider a symmetric linear antenna  with total length λ/2 and
assume a current  phasor distribution on the wires which is
approximately sinusoidal

The integral  in the field  expressions is
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We obtain the far−field  expressions

and the time −average Poynting vector
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The total radiated power  is obtained after integration of the
time −average Poynting vector

The integral above cannot be solved analytically, but the value is
found numerically  or from published tables.  The equivalent
resistance  of the half −wave dipole antenna in air is then
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The direction of maximum radiation strength is obtained again for
elevation angle θ =90° ande we obtain the directivity

The directivity  of the half −wavelength dipole is marginally better
than the directivity for a Hertzian dipole  (D = 1.5).

The real improvement is in the much larger radiation resistance ,
which is now comparable to the characteristic impedance of typical
transmission line.
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From the linear antenna applet

Radiation Pattern for E and H Power Radiation Pattern
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For short dipoles  of length 0.0005 λ to 0.05 λ
Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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For general symmetric linear antennas  with two  wires of length L, it
is convenient to express the current  distribution on the wires as

The integral  in the field  expressions is now
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The field  expressions become
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Examples of long wire antennas
Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern
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Radiation Pattern for E and H Power Radiation Pattern


