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Chapter 1

Electricity and the Atom

Where the telescope ends, the microscope begins. Which of the two
has the grander view? Victor Hugo

His father died during his mother’s pregnancy. Rejected by her
as a boy, he was packed off to boarding school when she remarried.
He himself never married, but in middle age he formed an intense
relationship with a much younger man, a relationship that he ter-
minated when he underwent a psychotic break. Following his early
scientific successes, he spent the rest of his professional life mostly
in frustration over his inability to unlock the secrets of alchemy.

The man being described is Isaac Newton, but not the triumphant
Newton of the standard textbook hagiography. Why dwell on the
sad side of his life? To the modern science educator, Newton’s life-
long obsession with alchemy may seem an embarrassment, a distrac-
tion from his main achievement, the creation the modern science of
mechanics. To Newton, however, his alchemical researches were nat-
urally related to his investigations of force and motion. What was
radical about Newton’s analysis of motion was its universality: it
succeeded in describing both the heavens and the earth with the
same equations, whereas previously it had been assumed that the
sun, moon, stars, and planets were fundamentally different from
earthly objects. But Newton realized that if science was to describe
all of nature in a unified way, it was not enough to unite the human
scale with the scale of the universe: he would not be satisfied until
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he fit the microscopic universe into the picture as well.

It should not surprise us that Newton failed. Although he was a
firm believer in the existence of atoms, there was no more experimen-
tal evidence for their existence than there had been when the ancient
Greeks first posited them on purely philosophical grounds. Alchemy
labored under a tradition of secrecy and mysticism. Newton had
already almost single-handedly transformed the fuzzyheaded field
of “natural philosophy” into something we would recognize as the
modern science of physics, and it would be unjust to criticize him
for failing to change alchemy into modern chemistry as well. The
time was not ripe. The microscope was a new invention, and it was
cutting-edge science when Newton’s contemporary Hooke discovered
that living things were made out of cells.

1.1 The Quest for the Atomic Force
Newton was not the first of the age of reason. He was the last of
the magicians. John Maynard Keynes

Nevertheless it will be instructive to pick up Newton’s train of
thought and see where it leads us with the benefit of modern hind-
sight. In uniting the human and cosmic scales of existence, he had
reimagined both as stages on which the actors were objects (trees
and houses, planets and stars) that interacted through attractions
and repulsions. He was already convinced that the objects inhab-
iting the microworld were atoms, so it remained only to determine
what kinds of forces they exerted on each other.

His next insight was no less brilliant for his inability to bring it to
fruition. He realized that the many human-scale forces — friction,
sticky forces, the normal forces that keep objects from occupying
the same space, and so on — must all simply be expressions of a
more fundamental force acting between atoms. Tape sticks to paper
because the atoms in the tape attract the atoms in the paper. My
house doesn’t fall to the center of the earth because its atoms repel
the atoms of the dirt under it.

Here he got stuck. It was tempting to think that the atomic force
was a form of gravity, which he knew to be universal, fundamental,
and mathematically simple. Gravity, however, is always attractive,
so how could he use it to explain the existence of both attractive
and repulsive atomic forces? The gravitational force between ob-
jects of ordinary size is also extremely small, which is why we never
notice cars and houses attracting us gravitationally. It would be
hard to understand how gravity could be responsible for anything
as vigorous as the beating of a heart or the explosion of gunpowder.
Newton went on to write a million words of alchemical notes filled
with speculation about some other force, perhaps a “divine force” or
“vegetative force” that would for example be carried by the sperm
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a / Four pieces of tape are
prepared, 1, as described in the
text. Depending on which com-
bination is tested, the interaction
can be either repulsive, 2, or
attractive, 3.

to the egg.

Luckily, we now know enough to investigate a different suspect
as a candidate for the atomic force: electricity. Electric forces are
often observed between objects that have been prepared by rubbing
(or other surface interactions), for instance when clothes rub against
each other in the dryer. A useful example is shown in figure a/1:
stick two pieces of tape on a tabletop, and then put two more pieces
on top of them. Lift each pair from the table, and then separate
them. The two top pieces will then repel each other, a/2, as will
the two bottom pieces. A bottom piece will attract a top piece,
however, a/3. Electrical forces like these are similar in certain ways
to gravity, the other force that we already know to be fundamental:

• Electrical forces are universal. Although some substances,
such as fur, rubber, and plastic, respond more strongly to
electrical preparation than others, all matter participates in
electrical forces to some degree. There is no such thing as a
“nonelectric” substance. Matter is both inherently gravita-
tional and inherently electrical.

• Experiments show that the electrical force, like the gravita-
tional force, is an inverse square force. That is, the electrical
force between two spheres is proportional to 1/r2, where r is
the center-to-center distance between them.

Furthermore, electrical forces make more sense than gravity as
candidates for the fundamental force between atoms, because we
have observed that they can be either attractive or repulsive.

1.2 Charge, Electricity and Magnetism
Charge

“Charge” is the technical term used to indicate that an object
has been prepared so as to participate in electrical forces. This is
to be distinguished from the common usage, in which the term is
used indiscriminately for anything electrical. For example, although
we speak colloquially of “charging” a battery, you may easily verify
that a battery has no charge in the technical sense, e.g., it does not
exert any electrical force on a piece of tape that has been prepared
as described in the previous section.

Two types of charge

We can easily collect reams of data on electrical forces between
different substances that have been charged in different ways. We
find for example that cat fur prepared by rubbing against rabbit
fur will attract glass that has been rubbed on silk. How can we
make any sense of all this information? A vast simplification is
achieved by noting that there are really only two types of charge.

Section 1.2 Charge, Electricity and Magnetism 15



Suppose we pick cat fur rubbed on rabbit fur as a representative of
type A, and glass rubbed on silk for type B. We will now find that
there is no “type C.” Any object electrified by any method is either
A-like, attracting things A attracts and repelling those it repels, or
B-like, displaying the same attractions and repulsions as B. The two
types, A and B, always display opposite interactions. If A displays
an attraction with some charged object, then B is guaranteed to
undergo repulsion with it, and vice-versa.

The coulomb

Although there are only two types of charge, each type can come
in different amounts. The metric unit of charge is the coulomb
(rhymes with “drool on”), defined as follows:

One Coulomb (C) is the amount of charge such that a force of
9.0×109 N occurs between two pointlike objects with charges
of 1 C separated by a distance of 1 m.

The notation for an amount of charge is q. The numerical factor
in the definition is historical in origin, and is not worth memoriz-
ing. The definition is stated for pointlike, i.e., very small, objects,
because otherwise different parts of them would be at different dis-
tances from each other.

A model of two types of charged particles

Experiments show that all the methods of rubbing or otherwise
charging objects involve two objects, and both of them end up get-
ting charged. If one object acquires a certain amount of one type of
charge, then the other ends up with an equal amount of the other
type. Various interpretations of this are possible, but the simplest
is that the basic building blocks of matter come in two flavors, one
with each type of charge. Rubbing objects together results in the
transfer of some of these particles from one object to the other. In
this model, an object that has not been electrically prepared may ac-
tually possesses a great deal of both types of charge, but the amounts
are equal and they are distributed in the same way throughout it.
Since type A repels anything that type B attracts, and vice versa,
the object will make a total force of zero on any other object. The
rest of this chapter fleshes out this model and discusses how these
mysterious particles can be understood as being internal parts of
atoms.

Use of positive and negative signs for charge

Because the two types of charge tend to cancel out each other’s
forces, it makes sense to label them using positive and negative signs,
and to discuss the total charge of an object. It is entirely arbitrary
which type of charge to call negative and which to call positive.
Benjamin Franklin decided to describe the one we’ve been calling
“A” as negative, but it really doesn’t matter as long as everyone is
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consistent with everyone else. An object with a total charge of zero
(equal amounts of both types) is referred to as electrically neutral.

self-check A
Criticize the following statement: “There are two types of charge, attrac-
tive and repulsive.” . Answer, p.
205

Coulomb’s law

A large body of experimental observations can be summarized
as follows:

Coulomb’s law: The magnitude of the force acting between
pointlike charged objects at a center-to-center distance r is given
by the equation

|F| = k
|q1||q2|
r2

,

where the constant k equals 9.0× 109 N·m2/C2. The force is attrac-
tive if the charges are of different signs, and repulsive if they have
the same sign.

Clever modern techniques have allowed the 1/r2 form of Coulomb’s
law to be tested to incredible accuracy, showing that the exponent
is in the range from 1.9999999999999998 to 2.0000000000000002.

Note that Coulomb’s law is closely analogous to Newton’s law
of gravity, where the magnitude of the force is Gm1m2/r

2, except
that there is only one type of mass, not two, and gravitational forces
are never repulsive. Because of this close analogy between the two
types of forces, we can recycle a great deal of our knowledge of
gravitational forces. For instance, there is an electrical equivalent
of the shell theorem: the electrical forces exerted externally by a
uniformly charged spherical shell are the same as if all the charge
was concentrated at its center, and the forces exerted internally are
zero.

Conservation of charge

An even more fundamental reason for using positive and nega-
tive signs for electrical charge is that experiments show that charge
is conserved according to this definition: in any closed system, the
total amount of charge is a constant. This is why we observe that
rubbing initially uncharged substances together always has the re-
sult that one gains a certain amount of one type of charge, while
the other acquires an equal amount of the other type. Conservation
of charge seems natural in our model in which matter is made of
positive and negative particles. If the charge on each particle is a
fixed property of that type of particle, and if the particles themselves
can be neither created nor destroyed, then conservation of charge is

Section 1.2 Charge, Electricity and Magnetism 17



b / A charged piece of tape
attracts uncharged pieces of
paper from a distance, and they
leap up to it.

c / The paper has zero total
charge, but it does have charged
particles in it that can move.

inevitable.

Electrical forces involving neutral objects

As shown in figure b, an electrically charged object can attract
objects that are uncharged. How is this possible? The key is that
even though each piece of paper has a total charge of zero, it has at
least some charged particles in it that have some freedom to move.
Suppose that the tape is positively charged, c. Mobile particles
in the paper will respond to the tape’s forces, causing one end of
the paper to become negatively charged and the other to become
positive. The attraction is between the paper and the tape is now
stronger than the repulsion, because the negatively charged end is
closer to the tape.

self-check B
What would have happened if the tape was negatively charged? .

Answer, p. 205

The path ahead

We have begun to encounter complex electrical behavior that we
would never have realized was occurring just from the evidence of our
eyes. Unlike the pulleys, blocks, and inclined planes of mechanics,
the actors on the stage of electricity and magnetism are invisible
phenomena alien to our everyday experience. For this reason, the
flavor of the second half of your physics education is dramatically
different, focusing much more on experiments and techniques. Even
though you will never actually see charge moving through a wire,
you can learn to use an ammeter to measure the flow.

Students also tend to get the impression from their first semester
of physics that it is a dead science. Not so! We are about to pick
up the historical trail that leads directly to the cutting-edge physics
research you read about in the newspaper. The atom-smashing ex-
periments that began around 1900, which we will be studying in this
chapter, were not that different from the ones of the year 2000 —
just smaller, simpler, and much cheaper.

Magnetic forces

A detailed mathematical treatment of magnetism won’t come
until much later in this book, but we need to develop a few simple
ideas about magnetism now because magnetic forces are used in the
experiments and techniques we come to next. Everyday magnets
come in two general types. Permanent magnets, such as the ones
on your refrigerator, are made of iron or substances like steel that
contain iron atoms. (Certain other substances also work, but iron
is the cheapest and most common.) The other type of magnet,
an example of which is the ones that make your stereo speakers
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vibrate, consist of coils of wire through which electric charge flows.
Both types of magnets are able to attract iron that has not been
magnetically prepared, for instance the door of the refrigerator.

A single insight makes these apparently complex phenomena
much simpler to understand: magnetic forces are interactions be-
tween moving charges, occurring in addition to the electric forces.
Suppose a permanent magnet is brought near a magnet of the coiled-
wire type. The coiled wire has moving charges in it because we force
charge to flow. The permanent magnet also has moving charges in
it, but in this case the charges that naturally swirl around inside the
iron. (What makes a magnetized piece of iron different from a block
of wood is that the motion of the charge in the wood is random
rather than organized.) The moving charges in the coiled-wire mag-
net exert a force on the moving charges in the permanent magnet,
and vice-versa.

The mathematics of magnetism is significantly more complex
than the Coulomb force law for electricity, which is why we will
wait until chapter 6 before delving deeply into it. Two simple facts
will suffice for now:

(1) If a charged particle is moving in a region of space near where
other charged particles are also moving, their magnetic force on it
is directly proportional to its velocity.

(2) The magnetic force on a moving charged particle is always
perpendicular to the direction the particle is moving.

A magnetic compass example 1
The Earth is molten inside, and like a pot of boiling water, it roils
and churns. To make a drastic oversimplification, electric charge
can get carried along with the churning motion, so the Earth con-
tains moving charge. The needle of a magnetic compass is itself
a small permanent magnet. The moving charge inside the earth
interacts magnetically with the moving charge inside the compass
needle, causing the compass needle to twist around and point
north.

A television tube example 2
A TV picture is painted by a stream of electrons coming from
the back of the tube to the front. The beam scans across the
whole surface of the tube like a reader scanning a page of a book.
Magnetic forces are used to steer the beam. As the beam comes
from the back of the tube to the front, up-down and left-right forces
are needed for steering. But magnetic forces cannot be used
to get the beam up to speed in the first place, since they can
only push perpendicular to the electrons’ direction of motion, not
forward along it.

Discussion Questions

A If the electrical attraction between two pointlike objects at a distance
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of 1 m is 9×109 N, why can’t we infer that their charges are +1 and −1 C?
What further observations would we need to do in order to prove this?

B An electrically charged piece of tape will be attracted to your hand.
Does that allow us to tell whether the mobile charged particles in your
hand are positive or negative, or both?

1.3 Atoms
I was brought up to look at the atom as a nice, hard fellow, red or
grey in color according to taste. Rutherford

Atomism

The Greeks have been kicked around a lot in the last couple of
millennia: dominated by the Romans, bullied during the crusades
by warlords going to and from the Holy Land, and occupied by
Turkey until recently. It’s no wonder they prefer to remember their
salad days, when their best thinkers came up with concepts like
democracy and atoms. Greece is democratic again after a period
of military dictatorship, and an atom is proudly pictured on one of
their coins. That’s why it hurts me to have to say that the ancient
Greek hypothesis that matter is made of atoms was pure guess-
work. There was no real experimental evidence for atoms, and the
18th-century revival of the atom concept by Dalton owed little to
the Greeks other than the name, which means “unsplittable.” Sub-
tracting even more cruelly from Greek glory, the name was shown
to be inappropriate in 1897 when physicist J.J. Thomson proved ex-
perimentally that atoms had even smaller things inside them, which
could be extracted. (Thomson called them “electrons.”) The “un-
splittable” was splittable after all.

But that’s getting ahead of our story. What happened to the
atom concept in the intervening two thousand years? Educated peo-
ple continued to discuss the idea, and those who were in favor of it
could often use it to give plausible explanations for various facts and
phenomena. One fact that was readily explained was conservation
of mass. For example, if you mix 1 kg of water with 1 kg of dirt,
you get exactly 2 kg of mud, no more and no less. The same is true
for the a variety of processes such as freezing of water, fermenting
beer, or pulverizing sandstone. If you believed in atoms, conserva-
tion of mass made perfect sense, because all these processes could
be interpreted as mixing and rearranging atoms, without changing
the total number of atoms. Still, this is nothing like a proof that
atoms exist.

If atoms did exist, what types of atoms were there, and what dis-
tinguished the different types from each other? Was it their sizes,
their shapes, their weights, or some other quality? The chasm be-
tween the ancient and modern atomisms becomes evident when we
consider the wild speculations that existed on these issues until the
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present century. The ancients decided that there were four types of
atoms, earth, water, air and fire; the most popular view was that
they were distinguished by their shapes. Water atoms were spher-
ical, hence water’s ability to flow smoothly. Fire atoms had sharp
points, which was why fire hurt when it touched one’s skin. (There
was no concept of temperature until thousands of years later.) The
drastically different modern understanding of the structure of atoms
was achieved in the course of the revolutionary decade stretching
1895 to 1905. The main purpose of this chapter is to describe those
momentous experiments.

Are you now or have you ever been an atomist?
“You are what you eat.” The glib modern phrase more or less assumes
the atomic explanation of digestion. After all, digestion was pretty mys-
terious in ancient times, and premodern cultures would typically believe
that eating allowed you to extract some kind of “life force” from the food.
Myths abound to the effect that abstract qualities such as bravery or
ritual impurity can enter your body via the food you eat. In contrast to
these supernatural points of view, the ancient atomists had an entirely
naturalistic interpretation of digestion. The food was made of atoms,
and when you digested it you were simply extracting some atoms from
it and rearranging them into the combina- tions required for your own
body tissues. The more progressive medieval and renaissance scien-
tists loved this kind of explanation. They were anxious to drive a stake
through the heart of Aristotelian physics (and its embellished, Church-
friendly version, scholasticism), which in their view ascribed too many
occult properties and “purposes” to objects. For instance, the Aris-
totelian explanation for why a rock would fall to earth was that it was
its “nature” or “purpose” to come to rest on the ground.

The seemingly innocent attempt to explain digestion naturalistically,
however, ended up getting the atomists in big trouble with the Church.
The problem was that the Church’s most important sacrament involves
eating bread and wine and thereby receiving the supernatural effect of
forgiveness of sin. In connection with this ritual, the doctrine of transub-
stantiation asserts that the blessing of the eucharistic bread and wine
literally transforms it into the blood and flesh of Christ. Atomism was
perceived as contradicting transubstantiation, since atomism seemed
to deny that the blessing could change the nature of the atoms. Al-
though the historical information given in most science textbooks about
Galileo represents his run-in with the Inquisition as turning on the issue
of whether the earth moves, some historians believe his punishment
had more to do with the perception that his advocacy of atomism sub-
verted transubstantiation. (Other issues in the complex situation were
Galileo’s confrontational style, Pope Urban’s military problems, and ru-
mors that the stupid character in Galileo’s dialogues was meant to be
the Pope.) For a long time, belief in atomism served as a badge of
nonconformity for scientists, a way of asserting a preference for natural
rather than supernatural interpreta- tions of phenomena. Galileo and
Newton’s espousal of atomism was an act of rebellion, like later gener-
ations’ adoption of Darwinism or Marxism.

Another conflict between scholasticism and atomism came from the
question of what was between the atoms. If you ask modern people this
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question, they will probably reply “nothing” or “empty space.” But Aris-
totle and his scholastic successors believed that there could be no such
thing as empty space, i.e., a vacuum. That was not an unreasonable
point of view, because air tends to rush in to any space you open up,
and it wasn’t until the renaissance that people figured out how to make
a vacuum.

Atoms, light, and everything else

Although I tend to ridicule ancient Greek philosophers like Aris-
totle, let’s take a moment to praise him for something. If you read
Aristotle’s writings on physics (or just skim them, which is all I’ve
done), the most striking thing is how careful he is about classifying
phenomena and analyzing relationships among phenomena. The hu-
man brain seems to naturally make a distinction between two types
of physical phenomena: objects and motion of objects. When a
phenomenon occurs that does not immediately present itself as one
of these, there is a strong tendency to conceptualize it as one or
the other, or even to ignore its existence completely. For instance,
physics teachers shudder at students’ statements that “the dynamite
exploded, and force came out of it in all directions.” In these exam-
ples, the nonmaterial concept of force is being mentally categorized
as if it was a physical substance. The statement that “winding the
clock stores motion in the spring” is a miscategorization of electrical
energy as a form of motion. An example of ignoring the existence
of a phenomenon altogether can be elicited by asking people why
we need lamps. The typical response that “the lamp illuminates
the room so we can see things,” ignores the necessary role of light
coming into our eyes from the things being illuminated.

If you ask someone to tell you briefly about atoms, the likely
response is that “everything is made of atoms,” but we’ve now seen
that it’s far from obvious which “everything” this statement would
properly refer to. For the scientists of the early 1900s who were
trying to investigate atoms, this was not a trivial issue of defini-
tions. There was a new gizmo called the vacuum tube, of which the
only familiar example today is the picture tube of a TV. In short
order, electrical tinkerers had discovered a whole flock of new phe-
nomena that occurred in and around vacuum tubes, and given them
picturesque names like “x-rays,” “cathode rays,” “Hertzian waves,”
and “N-rays.” These were the types of observations that ended up
telling us that we know about matter, but fierce controversies ensued
over whether these were themselves forms of matter.

Let’s bring ourselves up to the level of classification of phenom-
ena employed by physicists in the year 1900. They recognized three
categories:

• Matter has mass, can have kinetic energy, and can travel
through a vacuum, transporting its mass and kinetic energy
with it. Matter is conserved, both in the sense of conservation
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mH
= 44.60

d / Examples of masses of
atoms compared to that of hydro-
gen. Note how some, but not all,
are close to integers.

of mass and conservation of the number of atoms of each ele-
ment. Atoms can’t occupy the same space as other atoms, so
a convenient way to prove something is not a form of matter
is to show that it can pass through a solid material, in which
the atoms are packed together closely.

• Light has no mass, always has energy, and can travel through a
vacuum, transporting its energy with it. Two light beams can
penetrate through each other and emerge from the collision
without being weakened, deflected, or affected in any other
way. Light can penetrate certain kinds of matter, e.g., glass.

• The third category is everything that doesn’t fit the defini-
tion of light or matter. This catch-all category includes, for
example, time, velocity, heat, and force.

The chemical elements

How would one find out what types of atoms there were? To-
day, it doesn’t seem like it should have been very difficult to work
out an experimental program to classify the types of atoms. For
each type of atom, there should be a corresponding element, i.e., a
pure substance made out of nothing but that type of atom. Atoms
are supposed to be unsplittable, so a substance like milk could not
possibly be elemental, since churning it vigorously causes it to split
up into two separate substances: butter and whey. Similarly, rust
could not be an element, because it can be made by combining two
substances: iron and oxygen. Despite its apparent reasonableness,
no such program was carried out until the eighteenth century. The
ancients presumably did not do it because observation was not uni-
versally agreed on as the right way to answer questions about nature,
and also because they lacked the necessary techniques or the tech-
niques were the province of laborers with low social status, such as
smiths and miners. Alchemists were hindered by atomism’s repu-
tation for subversiveness, and by a tendency toward mysticism and
secrecy. (The most celebrated challenge facing the alchemists, that
of converting lead into gold, is one we now know to be impossible,
since lead and gold are both elements.)

By 1900, however, chemists had done a reasonably good job of
finding out what the elements were. They also had determined the
ratios of the different atoms’ masses fairly accurately. A typical
technique would be to measure how many grams of sodium (Na)
would combine with one gram of chlorine (Cl) to make salt (NaCl).
(This assumes you’ve already decided based on other evidence that
salt consisted of equal numbers of Na and Cl atoms.) The masses of
individual atoms, as opposed to the mass ratios, were known only
to within a few orders of magnitude based on indirect evidence, and
plenty of physicists and chemists denied that individual atoms were
anything more than convenient symbols.
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The following table gives the atomic masses of all the elements,
on a standard scale in which the mass of hydrogen is very close to 1.0.
The absolute calibration of the whole scale was only very roughly
known for a long time, but was eventually tied down, with the mass
of a hydrogen atom being determined to be about 1.7× 10−27 kg.

Ag 107.9 Eu 152.0 Mo 95.9 Sc 45.0
Al 27.0 F 19.0 N 14.0 Se 79.0
Ar 39.9 Fe 55.8 Na 23.0 Si 28.1
As 74.9 Ga 69.7 Nb 92.9 Sn 118.7
Au 197.0 Gd 157.2 Nd 144.2 Sr 87.6
B 10.8 Ge 72.6 Ne 20.2 Ta 180.9
Ba 137.3 H 1.0 Ni 58.7 Tb 158.9
Be 9.0 He 4.0 O 16.0 Te 127.6
Bi 209.0 Hf 178.5 Os 190.2 Ti 47.9
Br 79.9 Hg 200.6 P 31.0 Tl 204.4
C 12.0 Ho 164.9 Pb 207.2 Tm 168.9
Ca 40.1 In 114.8 Pd 106.4 U 238
Ce 140.1 Ir 192.2 Pt 195.1 V 50.9
Cl 35.5 K 39.1 Pr 140.9 W 183.8
Co 58.9 Kr 83.8 Rb 85.5 Xe 131.3
Cr 52.0 La 138.9 Re 186.2 Y 88.9
Cs 132.9 Li 6.9 Rh 102.9 Yb 173.0
Cu 63.5 Lu 175.0 Ru 101.1 Zn 65.4
Dy 162.5 Mg 24.3 S 32.1 Zr 91.2
Er 167.3 Mn 54.9 Sb 121.8

Making sense of the elements

As the information accumulated, the challenge was to find a
way of systematizing it; the modern scientist’s aesthetic sense rebels
against complication. This hodgepodge of elements was an embar-
rassment. One contemporary observer, William Crookes, described
the elements as extending “before us as stretched the wide Atlantic
before the gaze of Columbus, mocking, taunting and murmuring
strange riddles, which no man has yet been able to solve.” It wasn’t
long before people started recognizing that many atoms’ masses were
nearly integer multiples of the mass of hydrogen, the lightest ele-
ment. A few excitable types began speculating that hydrogen was
the basic building block, and that the heavier elements were made
of clusters of hydrogen. It wasn’t long, however, before their parade
was rained on by more accurate measurements, which showed that
not all of the elements had atomic masses that were near integer
multiples of hydrogen, and even the ones that were close to being
integer multiples were off by one percent or so.

Chemistry professor Dmitri Mendeleev, preparing his lectures in
1869, wanted to find some way to organize his knowledge for his stu-
dents to make it more understandable. He wrote the names of all
the elements on cards and began arranging them in different ways
on his desk, trying to find an arrangement that would make sense of
the muddle. The row-and-column scheme he came up with is essen-
tially our modern periodic table. The columns of the modern version
represent groups of elements with similar chemical properties, and
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e / A modern periodic table. Ele-
ments in the same column have
similar chemical properties. The
modern atomic numbers, dis-
cussed in section 2.3, were not
known in Mendeleev’s time, since
the table could be flipped in vari-
ous ways.

each row is more massive than the one above it. Going across each
row, this almost always resulted in placing the atoms in sequence
by weight as well. What made the system significant was its predic-
tive value. There were three places where Mendeleev had to leave
gaps in his checkerboard to keep chemically similar elements in the
same column. He predicted that elements would exist to fill these
gaps, and extrapolated or interpolated from other elements in the
same column to predict their numerical properties, such as masses,
boiling points, and densities. Mendeleev’s professional stock sky-
rocketed when his three elements (later named gallium, scandium
and germanium) were discovered and found to have very nearly the
properties he had predicted.

One thing that Mendeleev’s table made clear was that mass was
not the basic property that distinguished atoms of different ele-
ments. To make his table work, he had to deviate from ordering
the elements strictly by mass. For instance, iodine atoms are lighter
than tellurium, but Mendeleev had to put iodine after tellurium so
that it would lie in a column with chemically similar elements.

Direct proof that atoms existed

The success of the kinetic theory of heat was taken as strong evi-
dence that, in addition to the motion of any object as a whole, there
is an invisible type of motion all around us: the random motion of
atoms within each object. But many conservatives were not con-
vinced that atoms really existed. Nobody had ever seen one, after
all. It wasn’t until generations after the kinetic theory of heat was
developed that it was demonstrated conclusively that atoms really
existed and that they participated in continuous motion that never
died out.

The smoking gun to prove atoms were more than mathematical
abstractions came when some old, obscure observations were reex-
amined by an unknown Swiss patent clerk named Albert Einstein.
A botanist named Brown, using a microscope that was state of the
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f / A young Robert Millikan.

g / A simplified diagram of
Millikan’s apparatus.

art in 1827, observed tiny grains of pollen in a drop of water on a
microscope slide, and found that they jumped around randomly for
no apparent reason. Wondering at first if the pollen he’d assumed to
be dead was actually alive, he tried looking at particles of soot, and
found that the soot particles also moved around. The same results
would occur with any small grain or particle suspended in a liquid.
The phenomenon came to be referred to as Brownian motion, and
its existence was filed away as a quaint and thoroughly unimportant
fact, really just a nuisance for the microscopist.

It wasn’t until 1906 that Einstein found the correct interpreta-
tion for Brown’s observation: the water molecules were in continuous
random motion, and were colliding with the particle all the time,
kicking it in random directions. After all the millennia of speculation
about atoms, at last there was solid proof. Einstein’s calculations
dispelled all doubt, since he was able to make accurate predictions
of things like the average distance traveled by the particle in a cer-
tain amount of time. (Einstein received the Nobel Prize not for his
theory of relativity but for his papers on Brownian motion and the
photoelectric effect.)

Discussion Questions

A How could knowledge of the size of an individual aluminum atom be
used to infer an estimate of its mass, or vice versa?

B How could one test Einstein’s interpretation of Brownian motion by
observing it at different temperatures?

1.4 Quantization of Charge
Proving that atoms actually existed was a big accomplishment, but
demonstrating their existence was different from understanding their
properties. Note that the Brown-Einstein observations had nothing
at all to do with electricity, and yet we know that matter is inher-
ently electrical, and we have been successful in interpreting certain
electrical phenomena in terms of mobile positively and negatively
charged particles. Are these particles atoms? Parts of atoms? Par-
ticles that are entirely separate from atoms? It is perhaps prema-
ture to attempt to answer these questions without any conclusive
evidence in favor of the charged-particle model of electricity.

Strong support for the charged-particle model came from a 1911
experiment by physicist Robert Millikan at the University of Chicago.
Consider a jet of droplets of perfume or some other liquid made by
blowing it through a tiny pinhole. The droplets emerging from the
pinhole must be smaller than the pinhole, and in fact most of them
are even more microscopic than that, since the turbulent flow of air
tends to break them up. Millikan reasoned that the droplets would
acquire a little bit of electric charge as they rubbed against the chan-
nel through which they emerged, and if the charged-particle model
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of electricity was right, the charge might be split up among so many
minuscule liquid drops that a single drop might have a total charge
amounting to an excess of only a few charged particles — perhaps
an excess of one positive particle on a certain drop, or an excess of
two negative ones on another.

Millikan’s ingenious apparatus, g, consisted of two metal plates,
which could be electrically charged as needed. He sprayed a cloud of
oil droplets into the space between the plates, and selected one drop
through a microscope for study. First, with no charge on the plates,
he would determine the drop’s mass by letting it fall through the
air and measuring its terminal velocity, i.e., the velocity at which
the force of air friction canceled out the force of gravity. The force
of air drag on a slowly moving sphere had already been found by
experiment to be bvr2, where b was a constant. Setting the total
force equal to zero when the drop is at terminal velocity gives

bvr2 −mg = 0 ,

and setting the known density of oil equal to the drop’s mass divided
by its volume gives a second equation,

ρ =
m

4
3πr

3
.

Everything in these equations can be measured directly except for
m and r, so these are two equations in two unknowns, which can be
solved in order to determine how big the drop is.

Next Millikan charged the metal plates, adjusting the amount
of charge so as to exactly counteract gravity and levitate the drop.
If, for instance, the drop being examined happened to have a total
charge that was negative, then positive charge put on the top plate
would attract it, pulling it up, and negative charge on the bottom
plate would repel it, pushing it up. (Theoretically only one plate
would be necessary, but in practice a two-plate arrangement like this
gave electrical forces that were more uniform in strength throughout
the space where the oil drops were.) The amount of charge on the
plates required to levitate the charged drop gave Millikan a handle
on the amount of charge the drop carried. The more charge the
drop had, the stronger the electrical forces on it would be, and the
less charge would have to be put on the plates to do the trick. Un-
fortunately, expressing this relationship using Coulomb’s law would
have been impractical, because it would require a perfect knowledge
of how the charge was distributed on each plate, plus the ability
to perform vector addition of all the forces being exerted on the
drop by all the charges on the plate. Instead, Millikan made use of
the fact that the electrical force experienced by a pointlike charged
object at a certain point in space is proportional to its charge,

F

q
= constant .
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q
/(1.64

q (C) ×10−19 C)

−1.970× 10−18 −12.02
−0.987× 10−18 −6.02
−2.773× 10−18 −16.93

h / A few samples of Millikan’s
data.

With a given amount of charge on the plates, this constant could be
determined for instance by discarding the oil drop, inserting between
the plates a larger and more easily handled object with a known
charge on it, and measuring the force with conventional methods.
(Millikan actually used a slightly different set of techniques for de-
termining the constant, but the concept is the same.) The amount
of force on the actual oil drop had to equal mg, since it was just
enough to levitate it, and once the calibration constant had been
determined, the charge of the drop could then be found based on its
previously determined mass.

Table h shows a few of the results from Millikan’s 1911 paper.
(Millikan took data on both negatively and positively charged drops,
but in his paper he gave only a sample of his data on negatively
charged drops, so these numbers are all negative.) Even a quick
look at the data leads to the suspicion that the charges are not
simply a series of random numbers. For instance, the second charge
is almost exactly equal to half the first one. Millikan explained the
observed charges as all being integer multiples of a single number,
1.64×10−19 C. In the second column, dividing by this constant gives
numbers that are essentially integers, allowing for the random errors
present in the experiment. Millikan states in his paper that these
results were a

. . . direct and tangible demonstration . . . of the correct-
ness of the view advanced many years ago and supported
by evidence from many sources that all electrical charges,
however produced, are exact multiples of one definite,
elementary electrical charge, or in other words, that an
electrical charge instead of being spread uniformly over
the charged surface has a definite granular structure,
consisting, in fact, of . . . specks, or atoms of electric-
ity, all precisely alike, peppered over the surface of the
charged body.

In other words, he had provided direct evidence for the charged-
particle model of electricity and against models in which electricity
was described as some sort of fluid. The basic charge is notated e,
and the modern value is e = 1.60× 10−19 C. The word “quantized”
is used in physics to describe a quantity that can only have certain
numerical values, and cannot have any of the values between those.
In this language, we would say that Millikan discovered that charge
is quantized. The charge e is referred to as the quantum of charge.

self-check C
Is money quantized? What is the quantum of money? . Answer, p.
205
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A historical note on Millikan’s fraud
Very few undergraduate physics textbooks mention the well-documented
fact that although Millikan’s conclusions were correct, he was guilty of
scientific fraud. His technique was difficult and painstaking to perform,
and his original notebooks, which have been preserved, show that the
data were far less perfect than he claimed in his published scientific
papers. In his publications, he stated categorically that every single
oil drop observed had had a charge that was a multiple of e, with no
Exceptions or omissions. But his notebooks are replete with notations
such as “beautiful data, keep,” and “bad run, throw out.” Millikan, then,
appears to have earned his Nobel Prize by advocating a correct position
with dishonest descriptions of his data.

Why do textbook authors fail to mention Millikan’s fraud? It may be
that they think students are too unsophisticated to correctly evaluate the
implications of the fact that scientific fraud has sometimes existed and
even been rewarded by the scientific establishment. Maybe they are
afraid students will reason that fudging data is OK, since Millikan got
the Nobel Prize for it. But falsifying history in the name of encourag-
ing truthfulness is more than a little ironic. English teachers don’t edit
Shakespeare’s tragedies so that the bad characters are always pun-
ished and the good ones never suffer!

Another possible explanation is simply a lack of originality; it’s possi-
ble that some venerated textbook was uncritical of Millikan’s fraud, and
later authors simply followed suit. Biologist Stephen Jay Gould has writ-
ten an essay tracing an example of how authors of biology textbooks
tend to follow a certain traditional treatment of a topic, using the gi-
raffe’s neck to discuss the nonheritability of acquired traits. Yet another
interpretation is that scientists derive status from their popular images
as impartial searchers after the truth, and they don’t want the public to
realize how human and imperfect they can be. (Millikan himself was an
educational reformer, and wrote a series of textbooks that were of much
higher quality than others of his era.)

Note added September 2002
Several years after I wrote this historical digression, I came across an
interesting defense of Millikan by David Goodstein (American Scientist,
Jan-Feb 2001, pp. 54-60). Goodstein argues that although Millikan
wrote a sentence in his paper that was a lie, Millikan is nevertheless not
guilty of fraud when we take that sentence in context: Millikan stated
that he never threw out any data, and he did throw out data, but he had
good, objective reasons for throwing out the data. The Millikan affair will
probably remain controversial among historians, but the lesson I would
take away is that although the episode may reduce our confidence in
Millikan, it should deepen our faith in science. The correct result was
eventually recognized; it might not have been in a pseudo-scientific field
like political science.
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i / Cathode rays observed in
a vacuum tube.

1.5 The Electron
Cathode rays

Nineteenth-century physicists spent a lot of time trying to come
up with wild, random ways to play with electricity. The best ex-
periments of this kind were the ones that made big sparks or pretty
colors of light.

One such parlor trick was the cathode ray. To produce it, you
first had to hire a good glassblower and find a good vacuum pump.
The glassblower would create a hollow tube and embed two pieces of
metal in it, called the electrodes, which were connected to the out-
side via metal wires passing through the glass. Before letting him
seal up the whole tube, you would hook it up to a vacuum pump,
and spend several hours huffing and puffing away at the pump’s
hand crank to get a good vacuum inside. Then, while you were still
pumping on the tube, the glassblower would melt the glass and seal
the whole thing shut. Finally, you would put a large amount of pos-
itive charge on one wire and a large amount of negative charge on
the other. Metals have the property of letting charge move through
them easily, so the charge deposited on one of the wires would
quickly spread out because of the repulsion of each part of it for
every other part. This spreading-out process would result in nearly
all the charge ending up in the electrodes, where there is more room
to spread out than there is in the wire. For obscure historical rea-
sons a negative electrode is called a cathode and a positive one is
an anode.

Figure i shows the light-emitting stream that was observed. If,
as shown in this figure, a hole was made in the anode, the beam
would extend on through the hole until it hit the glass. Drilling a
hole in the cathode, however would not result in any beam coming
out on the left side, and this indicated that the stuff, whatever it
was, was coming from the cathode. The rays were therefore chris-
tened “cathode rays.” (The terminology is still used today in the
term “cathode ray tube” or “CRT” for the picture tube of a TV or
computer monitor.)

Were cathode rays a form of light, or of matter?
Were cathode rays a form of light, or matter? At first no one re-

ally cared what they were, but as their scientific importance became
more apparent, the light-versus-matter issue turned into a contro-
versy along nationalistic lines, with the Germans advocating light
and the English holding out for matter. The supporters of the ma-
terial interpretation imagined the rays as consisting of a stream of
atoms ripped from the substance of the cathode.

One of our defining characteristics of matter is that material
objects cannot pass through each other. Experiments showed that
cathode rays could penetrate at least some small thickness of matter,
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j / J.J. Thomson in the lab.

such as a metal foil a tenth of a millimeter thick, implying that they
were a form of light.

Other experiments, however, pointed to the contrary conclusion.
Light is a wave phenomenon, and one distinguishing property of
waves is demonstrated by speaking into one end of a paper towel
roll. The sound waves do not emerge from the other end of the
tube as a focused beam. Instead, they begin spreading out in all
directions as soon as they emerge. This shows that waves do not
necessarily travel in straight lines. If a piece of metal foil in the shape
of a star or a cross was placed in the way of the cathode ray, then
a “shadow” of the same shape would appear on the glass, showing
that the rays traveled in straight lines. This straight-line motion
suggested that they were a stream of small particles of matter.

These observations were inconclusive, so what was really needed
was a determination of whether the rays had mass and weight. The
trouble was that cathode rays could not simply be collected in a cup
and put on a scale. When the cathode ray tube is in operation, one
does not observe any loss of material from the cathode, or any crust
being deposited on the anode.

Nobody could think of a good way to weigh cathode rays, so the
next most obvious way of settling the light/matter debate was to
check whether the cathode rays possessed electrical charge. Light
was known to be uncharged. If the cathode rays carried charge,
they were definitely matter and not light, and they were presum-
ably being made to jump the gap by the simultaneous repulsion of
the negative charge in the cathode and attraction of the positive
charge in the anode. The rays would overshoot the anode because
of their momentum. (Although electrically charged particles do not
normally leap across a gap of vacuum, very large amounts of charge
were being used, so the forces were unusually intense.)

Thomson’s experiments
Physicist J.J. Thomson at Cambridge carried out a series of

definitive experiments on cathode rays around the year 1897. By
turning them slightly off course with electrical forces, k, he showed
that they were indeed electrically charged, which was strong evi-
dence that they were material. Not only that, but he proved that
they had mass, and measured the ratio of their mass to their charge,
m/q. Since their mass was not zero, he concluded that they were
a form of matter, and presumably made up of a stream of micro-
scopic, negatively charged particles. When Millikan published his
results fourteen years later, it was reasonable to assume that the
charge of one such particle equaled minus one fundamental charge,
q = −e, and from the combination of Thomson’s and Millikan’s re-
sults one could therefore determine the mass of a single cathode ray
particle.
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k / Thomson’s experiment proving
cathode rays had electric charge
(redrawn from his original paper).
The cathode, c, and anode, A, are
as in any cathode ray tube. The
rays pass through a slit in the an-
ode, and a second slit, B, is inter-
posed in order to make the beam
thinner and eliminate rays that
were not going straight. Charging
plates D and E shows that cath-
ode rays have charge: they are
attracted toward the positive plate
D and repelled by the negative
plate E.

The basic technique for determining m/q was simply to measure
the angle through which the charged plates bent the beam. The
electric force acting on a cathode ray particle while it was between
the plates would be proportional to its charge,

Felec = (known constant) · q .

Application of Newton’s second law, a = F/m, would allow m/q
to be determined:

m

q
=

known constant

a

There was just one catch. Thomson needed to know the cathode
ray particles’ velocity in order to figure out their acceleration. At
that point, however, nobody had even an educated guess as to the
speed of the cathode rays produced in a given vacuum tube. The
beam appeared to leap across the vacuum tube practically instan-
taneously, so it was no simple matter of timing it with a stopwatch!

Thomson’s clever solution was to observe the effect of both elec-
tric and magnetic forces on the beam. The magnetic force exerted
by a particular magnet would depend on both the cathode ray’s
charge and its speed:

Fmag = (known constant #2) · qv

Thomson played with the electric and magnetic forces until ei-
ther one would produce an equal effect on the beam, allowing him
to solve for the speed,

v =
(known constant)

(known constant #2)
.

Knowing the speed (which was on the order of 10% of the speed
of light for his setup), he was able to find the acceleration and thus
the mass-to-charge ratio m/q. Thomson’s techniques were relatively
crude (or perhaps more charitably we could say that they stretched
the state of the art of the time), so with various methods he came

32 Chapter 1 Electricity and the Atom



up with m/q values that ranged over about a factor of two, even
for cathode rays extracted from a cathode made of a single mate-
rial. The best modern value is m/q = 5.69 × 10−12 kg/C, which is
consistent with the low end of Thomson’s range.

The cathode ray as a subatomic particle: the electron

What was significant about Thomson’s experiment was not the
actual numerical value of m/q, however, so much as the fact that,
combined with Millikan’s value of the fundamental charge, it gave
a mass for the cathode ray particles that was thousands of times
smaller than the mass of even the lightest atoms. Even without
Millikan’s results, which were 14 years in the future, Thomson rec-
ognized that the cathode rays’ m/q was thousands of times smaller
than the m/q ratios that had been measured for electrically charged
atoms in chemical solutions. He correctly interpreted this as evi-
dence that the cathode rays were smaller building blocks — he called
them electrons — out of which atoms themselves were formed. This
was an extremely radical claim, coming at a time when atoms had
not yet been proven to exist! Even those who used the word “atom”
often considered them no more than mathematical abstractions, not
literal objects. The idea of searching for structure inside of “un-
splittable” atoms was seen by some as lunacy, but within ten years
Thomson’s ideas had been amply verified by many more detailed
experiments.

Discussion Questions

A Thomson started to become convinced during his experiments that
the “cathode rays” observed coming from the cathodes of vacuum tubes
were building blocks of atoms — what we now call electrons. He then
carried out observations with cathodes made of a variety of metals, and
found that m/q was roughly the same in every case, considering his lim-
ited accuracy. Given his suspicion, why did it make sense to try different
metals? How would the consistent values of m/q test his hypothesis?

B My students have frequently asked whether the m/q that Thomson
measured was the value for a single electron, or for the whole beam. Can
you answer this question?

C Thomson found that the m/q of an electron was thousands of times
smaller than that of charged atoms in chemical solutions. Would this imply
that the electrons had more charge? Less mass? Would there be no way
to tell? Explain. Remember that Millikan’s results were still many years in
the future, so q was unknown.

D Can you guess any practical reason why Thomson couldn’t just
let one electron fly across the gap before disconnecting the battery and
turning off the beam, and then measure the amount of charge deposited
on the anode, thus allowing him to measure the charge of a single electron
directly?

E Why is it not possible to determine m and q themselves, rather than
just their ratio, by observing electrons’ motion in electric and magnetic
fields?
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l / The raisin cookie model of
the atom with four units of
charge, which we now know to be
beryllium.

1.6 The Raisin Cookie Model of the Atom
Based on his experiments, Thomson proposed a picture of the atom
which became known as the raisin cookie model. In the neutral
atom, l, there are four electrons with a total charge of −4e, sitting
in a sphere (the “cookie”) with a charge of +4e spread throughout it.
It was known that chemical reactions could not change one element
into another, so in Thomson’s scenario, each element’s cookie sphere
had a permanently fixed radius, mass, and positive charge, different
from those of other elements. The electrons, however, were not a
permanent feature of the atom, and could be tacked on or pulled out
to make charged ions. Although we now know, for instance, that a
neutral atom with four electrons is the element beryllium, scientists
at the time did not know how many electrons the various neutral
atoms possessed.

This model is clearly different from the one you’ve learned in
grade school or through popular culture, where the positive charge
is concentrated in a tiny nucleus at the atom’s center. An equally
important change in ideas about the atom has been the realization
that atoms and their constituent subatomic particles behave entirely
differently from objects on the human scale. For instance, we’ll see
later that an electron can be in more than one place at one time.
The raisin cookie model was part of a long tradition of attempts
to make mechanical models of phenomena, and Thomson and his
contemporaries never questioned the appropriateness of building a
mental model of an atom as a machine with little parts inside. To-
day, mechanical models of atoms are still used (for instance the
tinker-toy-style molecular modeling kits like the ones used by Wat-
son and Crick to figure out the double helix structure of DNA), but
scientists realize that the physical objects are only aids to help our
brains’ symbolic and visual processes think about atoms.

Although there was no clear-cut experimental evidence for many
of the details of the raisin cookie model, physicists went ahead and
started working out its implications. For instance, suppose you had
a four-electron atom. All four electrons would be repelling each
other, but they would also all be attracted toward the center of the
“cookie” sphere. The result should be some kind of stable, sym-
metric arrangement in which all the forces canceled out. People
sufficiently clever with math soon showed that the electrons in a
four-electron atom should settle down at the vertices of a pyramid
with one less side than the Egyptian kind, i.e., a regular tetrahe-
dron. This deduction turns out to be wrong because it was based
on incorrect features of the model, but the model also had many
successes, a few of which we will now discuss.

Flow of electrical charge in wires example 3
One of my former students was the son of an electrician, and
had become an electrician himself. He related to me how his
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father had remained refused to believe all his life that electrons
really flowed through wires. If they had, he reasoned, the metal
would have gradually become more and more damaged, eventu-
ally crumbling to dust.

His opinion is not at all unreasonable based on the fact that elec-
trons are material particles, and that matter cannot normally pass
through matter without making a hole through it. Nineteenth-
century physicists would have shared his objection to a charged-
particle model of the flow of electrical charge. In the raisin-cookie
model, however, the electrons are very low in mass, and there-
fore presumably very small in size as well. It is not surprising that
they can slip between the atoms without damaging them.

Flow of electrical charge across cell membranes example 4
Your nervous system is based on signals carried by charge mov-
ing from nerve cell to nerve cell. Your body is essentially all liquid,
and atoms in a liquid are mobile. This means that, unlike the case
of charge flowing in a solid wire, entire charged atoms can flow in
your nervous system

Emission of electrons in a cathode ray tube example 5
Why do electrons detach themselves from the cathode of a vac-
uum tube? Certainly they are encouraged to do so by the re-
pulsion of the negative charge placed on the cathode and the
attraction from the net positive charge of the anode, but these are
not strong enough to rip electrons out of atoms by main force —
if they were, then the entire apparatus would have been instantly
vaporized as every atom was simultaneously ripped apart!

The raisin cookie model leads to a simple explanation. We know
that heat is the energy of random motion of atoms. The atoms in
any object are therefore violently jostling each other all the time,
and a few of these collisions are violent enough to knock electrons
out of atoms. If this occurs near the surface of a solid object, the
electron may can come loose. Ordinarily, however, this loss of
electrons is a self-limiting process; the loss of electrons leaves
the object with a net positive charge, which attracts the lost sheep
home to the fold. (For objects immersed in air rather than vacuum,
there will also be a balanced exchange of electrons between the
air and the object.)

This interpretation explains the warm and friendly yellow glow of
the vacuum tubes in an antique radio. To encourage the emission
of electrons from the vacuum tubes’ cathodes, the cathodes are
intentionally warmed up with little heater coils.

Discussion Questions

A Today many people would define an ion as an atom (or molecule)
with missing electrons or extra electrons added on. How would people
have defined the word “ion” before the discovery of the electron?
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B Since electrically neutral atoms were known to exist, there had to be
positively charged subatomic stuff to cancel out the negatively charged
electrons in an atom. Based on the state of knowledge immediately after
the Millikan and Thomson experiments, was it possible that the positively
charged stuff had an unquantized amount of charge? Could it be quan-
tized in units of +e? In units of +2e? In units of +5/7e?
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Summary
Selected Vocabulary
atom . . . . . . . the basic unit of one of the chemical elements
molecule . . . . . a group of atoms stuck together
electrical force . one of the fundamental forces of nature; a non-

contact force that can be either repulsive or
attractive

charge . . . . . . a numerical rating of how strongly an object
participates in electrical forces

coulomb (C) . . . the unit of electrical charge
ion . . . . . . . . . an electrically charged atom or molecule
cathode ray . . . the mysterious ray that emanated from the

cathode in a vacuum tube; shown by Thomson
to be a stream of particles smaller than atoms

electron . . . . . . Thomson’s name for the particles of which a
cathode ray was made

quantized . . . . describes a quantity, such as money or elec-
trical charge, that can only exist in certain
amounts

Notation
q . . . . . . . . . . charge
e . . . . . . . . . . the quantum of charge

Summary

All the forces we encounter in everyday life boil down to two
basic types: gravitational forces and electrical forces. A force such
as friction or a “sticky force” arises from electrical forces between
individual atoms.

Just as we use the word “mass” to describe how strongly an
object participates in gravitational forces, we use the word “charge”
for the intensity of its electrical forces. There are two types of
charge. Two charges of the same type repel each other, but objects
whose charges are different attract each other. Charge is measured
in units of coulombs (C).

Mobile charged particle model: A great many phenomena are
easily understood if we imagine matter as containing two types of
charged particles, which are at least partially able to move around.

Positive and negative charge: Ordinary objects that have not
been specially prepared have both types of charge spread evenly
throughout them in equal amounts. The object will then tend not
to exert electrical forces on any other object, since any attraction
due to one type of charge will be balanced by an equal repulsion
from the other. (We say “tend not to” because bringing the object
near an object with unbalanced amounts of charge could cause its
charges to separate from each other, and the force would no longer
cancel due to the unequal distances.) It therefore makes sense to
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describe the two types of charge using positive and negative signs,
so that an unprepared object will have zero total charge.

The Coulomb force law states that the magnitude of the electri-
cal force between two charged particles is given by |F| = k|q1||q2|/r2.

Conservation of charge: An even more fundamental reason for
using positive and negative signs for charge is that with this defini-
tion the total charge of a closed system is a conserved quantity.

Quantization of charge: Millikan’s oil drop experiment showed
that the total charge of an object could only be an integer multiple
of a basic unit of charge (e). This supported the idea the the “flow”
of electrical charge was the motion of tiny particles rather than the
motion of some sort of mysterious electrical fluid.

Einstein’s analysis of Brownian motion was the first definitive
proof of the existence of atoms. Thomson’s experiments with vac-
uum tubes demonstrated the existence of a new type of microscopic
particle with a very small ratio of mass to charge. Thomson cor-
rectly interpreted these as building blocks of matter even smaller
than atoms: the first discovery of subatomic particles. These parti-
cles are called electrons.

The above experimental evidence led to the first useful model of
the interior structure of atoms, called the raisin cookie model. In
the raisin cookie model, an atom consists of a relatively large, mas-
sive, positively charged sphere with a certain number of negatively
charged electrons embedded in it.
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Problem 1. Top: A realistic
picture of a neuron. Bottom:
A simplified diagram of one
segment of the tail (axon).

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 The figure shows a neuron, which is the type of cell your nerves
are made of. Neurons serve to transmit sensory information to the
brain, and commands from the brain to the muscles. All this data
is transmitted electrically, but even when the cell is resting and not
transmitting any information, there is a layer of negative electrical
charge on the inside of the cell membrane, and a layer of positive
charge just outside it. This charge is in the form of various ions
dissolved in the interior and exterior fluids. Why would the negative
charge remain plastered against the inside surface of the membrane,
and likewise why doesn’t the positive charge wander away from the
outside surface?

2 Use the nutritional information on some packaged food to
make an order-of-magnitude estimate of the amount of chemical
energy stored in one atom of food, in units of joules. Assume that
a typical atom has a mass of 10−26 kg. This constitutes a rough
estimate of the amounts of energy there are on the atomic scale.
[See chapter 1 of book 1, Newtonian Physics, for help on how to do
order-of-magnitude estimates. Note that a nutritional “calorie” is
really a kilocalorie; see page 219.]

√

3 (a) Recall that the gravitational energy of two gravitationally
interacting spheres is given by PE = −Gm1m2/r, where r is the
center-to-center distance. What would be the analogous equation
for two electrically interacting spheres? Justify your choice of a
plus or minus sign on physical grounds, considering attraction and
repulsion.

√

(b) Use this expression to estimate the energy required to pull apart
a raisin-cookie atom of the one-electron type, assuming a radius of
10−10 m.

√

(c) Compare this with the result of problem 2.

4 A neon light consists of a long glass tube full of neon, with
metal caps on the ends. Positive charge is placed on one end of the
tube, and negative charge on the other. The electric forces generated
can be strong enough to strip electrons off of a certain number of
neon atoms. Assume for simplicity that only one electron is ever
stripped off of any neon atom. When an electron is stripped off of
an atom, both the electron and the neon atom (now an ion) have
electric charge, and they are accelerated by the forces exerted by the
charged ends of the tube. (They do not feel any significant forces
from the other ions and electrons within the tube, because only
a tiny minority of neon atoms ever gets ionized.) Light is finally
produced when ions are reunited with electrons. Give a numerical
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Problem 6.

Problem 8.

comparison of the magnitudes and directions of the accelerations of
the electrons and ions. [You may need some data from page 218.]√

5 If you put two hydrogen atoms near each other, they will feel
an attractive force, and they will pull together to form a molecule.
(Molecules consisting of two hydrogen atoms are the normal form of
hydrogen gas.) How is this possible, since each is electrically neu-
tral? Shouldn’t the attractive and repulsive forces all cancel out
exactly? Use the raisin cookie model. (Students who have taken
chemistry often try to use fancier models to explain this, but if you
can’t explain it using a simple model, you probably don’t understand
the fancy model as well as you thought you did!) It’s not so easy
to prove that the force should actually be attractive rather than re-
pulsive, so just concentrate on explaining why it doesn’t necessarily
have to vanish completely.

6 The figure shows one layer of the three-dimensional structure
of a salt crystal. The atoms extend much farther off in all directions,
but only a six-by-six square is shown here. The larger circles are
the chlorine ions, which have charges of −e. The smaller circles
are sodium ions, with charges of +e. The center-to-center distance
between neighboring ions is about 0.3 nm. Real crystals are never
perfect, and the crystal shown here has two defects: a missing atom
at one location, and an extra lithium atom, shown as a grey circle,
inserted in one of the small gaps. If the lithium atom has a charge
of +e, what is the direction and magnitude of the total force on it?
Assume there are no other defects nearby in the crystal besides the
two shown here. [Hints: The force on the lithium ion is the vector
sum of all the forces of all the quadrillions of sodium and chlorine
atoms, which would obviously be too laborious to calculate. Nearly
all of these forces, however, are canceled by a force from an ion on
the opposite side of the lithium.]

√
?

7 The Earth and Moon are bound together by gravity. If, in-
stead, the force of attraction were the result of each having a charge
of the same magnitude but opposite in sign, find the quantity of
charge that would have to be placed on each to produce the re-
quired force.

√

8 In the semifinals of an electrostatic croquet tournament,
Jessica hits her positively charged ball, sending it across the playing
field, rolling to the left along the x axis. It is repelled by two other
positive charges. These two equal charges are fixed on the y axis at
the locations shown in the figure. (a) Express the force on the ball
in terms of the ball’s position, x. (b) At what value of x does the
ball experience the greatest deceleration? Express you answer in
terms of b. [Based on a problem by Halliday and Resnick.]

∫
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a / Marie and Pierre Curie were
the first to purify radium in signifi-
cant quantities. Radium’s intense
radioactivity made possible the
experiments that led to the mod-
ern planetary model of the atom,
in which electrons orbit a nucleus
made of protons and neutrons.

Chapter 2

The Nucleus

2.1 Radioactivity
Becquerel’s discovery of radioactivity

How did physicists figure out that the raisin cookie model was
incorrect, and that the atom’s positive charge was concentrated in
a tiny, central nucleus? The story begins with the discovery of ra-
dioactivity by the French chemist Becquerel. Up until radioactivity
was discovered, all the processes of nature were thought to be based
on chemical reactions, which were rearrangements of combinations
of atoms. Atoms exert forces on each other when they are close to-
gether, so sticking or unsticking them would either release or store
electrical energy. That energy could be converted to and from other
forms, as when a plant uses the energy in sunlight to make sugars
and carbohydrates, or when a child eats sugar, releasing the energy
in the form of kinetic energy.

Becquerel discovered a process that seemed to release energy
from an unknown new source that was not chemical. Becquerel,
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b / Henri Becquerel (1852-1908).

c / Becquerel’s photographic
plate. In the exposure at the
bottom of the image, he has
found that he could absorb the
radiations, casting the shadow
of a Maltese cross that was
placed between the plate and the
uranium salts.

whose father and grandfather had also been physicists, spent the
first twenty years of his professional life as a successful civil engi-
neer, teaching physics on a part-time basis. He was awarded the
chair of physics at the Musée d’Histoire Naturelle in Paris after the
death of his father, who had previously occupied it. Having now a
significant amount of time to devote to physics, he began studying
the interaction of light and matter. He became interested in the phe-
nomenon of phosphorescence, in which a substance absorbs energy
from light, then releases the energy via a glow that only gradually
goes away. One of the substances he investigated was a uranium
compound, the salt UKSO5. One day in 1896, cloudy weather in-
terfered with his plan to expose this substance to sunlight in order
to observe its fluorescence. He stuck it in a drawer, coincidentally on
top of a blank photographic plate — the old-fashioned glass-backed
counterpart of the modern plastic roll of film. The plate had been
carefully wrapped, but several days later when Becquerel checked it
in the darkroom before using it, he found that it was ruined, as if it
had been completely exposed to light.

History provides many examples of scientific discoveries that
happened this way: an alert and inquisitive mind decides to in-
vestigate a phenomenon that most people would not have worried
about explaining. Becquerel first determined by further experiments
that the effect was produced by the uranium salt, despite a thick
wrapping of paper around the plate that blocked out all light. He
tried a variety of compounds, and found that it was the uranium
that did it: the effect was produced by any uranium compound, but
not by any compound that didn’t include uranium atoms. The effect
could be at least partially blocked by a sufficient thickness of metal,
and he was able to produce silhouettes of coins by interposing them
between the uranium and the plate. This indicated that the effect
traveled in a straight line., so that it must have been some kind of
ray rather than, e.g., the seepage of chemicals through the paper.
He used the word “radiations,” since the effect radiated out from
the uranium salt.

At this point Becquerel still believed that the uranium atoms
were absorbing energy from light and then gradually releasing the
energy in the form of the mysterious rays, and this was how he
presented it in his first published lecture describing his experiments.
Interesting, but not earth-shattering. But he then tried to determine
how long it took for the uranium to use up all the energy that had
supposedly been stored in it by light, and he found that it never
seemed to become inactive, no matter how long he waited. Not only
that, but a sample that had been exposed to intense sunlight for a
whole afternoon was no more or less effective than a sample that
had always been kept inside. Was this a violation of conservation
of energy? If the energy didn’t come from exposure to light, where
did it come from?
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Three kinds of “radiations”

Unable to determine the source of the energy directly, turn-of-
the-century physicists instead studied the behavior of the “radia-
tions” once they had been emitted. Becquerel had already shown
that the radioactivity could penetrate through cloth and paper, so
the first obvious thing to do was to investigate in more detail what
thickness of material the radioactivity could get through. They soon
learned that a certain fraction of the radioactivity’s intensity would
be eliminated by even a few inches of air, but the remainder was
not eliminated by passing through more air. Apparently, then, the
radioactivity was a mixture of more than one type, of which one was
blocked by air. They then found that of the part that could pene-
trate air, a further fraction could be eliminated by a piece of paper
or a very thin metal foil. What was left after that, however, was
a third, extremely penetrating type, some of whose intensity would
still remain even after passing through a brick wall. They decided
that this showed there were three types of radioactivity, and with-
out having the faintest idea of what they really were, they made up
names for them. The least penetrating type was arbitrarily labeled
α (alpha), the first letter of the Greek alphabet, and so on through
β (beta) and finally γ (gamma) for the most penetrating type.

Radium: a more intense source of radioactivity

The measuring devices used to detect radioactivity were crude:
photographic plates or even human eyeballs (radioactivity makes
flashes of light in the jelly-like fluid inside the eye, which can be
seen by the eyeball’s owner if it is otherwise very dark). Because the
ways of detecting radioactivity were so crude and insensitive, further
progress was hindered by the fact that the amount of radioactivity
emitted by uranium was not really very great. The vital contribu-
tion of physicist/chemist Marie Curie and her husband Pierre was
to discover the element radium, and to purify and isolate significant
quantities it. Radium emits about a million times more radioactivity
per unit mass than uranium, making it possible to do the experi-
ments that were needed to learn the true nature of radioactivity.
The dangers of radioactivity to human health were then unknown,
and Marie died of leukemia thirty years later. (Pierre was run over
and killed by a horsecart.)

Tracking down the nature of alphas, betas, and gammas

As radium was becoming available, an apprentice scientist named
Ernest Rutherford arrived in England from his native New Zealand
and began studying radioactivity at the Cavendish Laboratory. The
young colonial’s first success was to measure the mass-to-charge ra-
tio of beta rays. The technique was essentially the same as the one
Thomson had used to measure the mass-to-charge ratio of cathode
rays by measuring their deflections in electric and magnetic fields.
The only difference was that instead of the cathode of a vacuum
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d / A simplified version of
Rutherford’s 1908 experiment,
showing that alpha particles were
doubly ionized helium atoms.

e / These pellets of uranium
fuel will be inserted into the metal
fuel rod and used in a nuclear
reactor. The pellets emit alpha
and beta radiation, which the
gloves are thick enough to stop.

tube, a nugget of radium was used to supply the beta rays. Not
only was the technique the same, but so was the result. Beta rays
had the same m/q ratio as cathode rays, which suggested they were
one and the same. Nowadays, it would make sense simply to use
the term “electron,” and avoid the archaic “cathode ray” and “beta
particle,” but the old labels are still widely used, and it is unfortu-
nately necessary for physics students to memorize all three names
for the same thing.

At first, it seemed that neither alphas or gammas could be de-
flected in electric or magnetic fields, making it appear that neither
was electrically charged. But soon Rutherford obtained a much more
powerful magnet, and was able to use it to deflect the alphas but
not the gammas. The alphas had a much larger value of m/q than
the betas (about 4000 times greater), which was why they had been
so hard to deflect. Gammas are uncharged, and were later found to
be a form of light.

The m/q ratio of alpha particles turned out to be the same
as those of two different types of ions, He++ (a helium atom with
two missing electrons) and H+

2 (two hydrogen atoms bonded into a
molecule, with one electron missing), so it seemed likely that they
were one or the other of those. The diagram shows a simplified ver-
sion of Rutherford’s ingenious experiment proving that they were
He++ ions. The gaseous element radon, an alpha emitter, was in-
troduced into one half of a double glass chamber. The glass wall
dividing the chamber was made extremely thin, so that some of the
rapidly moving alpha particles were able to penetrate it. The other
chamber, which was initially evacuated, gradually began to accu-
mulate a population of alpha particles (which would quickly pick up
electrons from their surroundings and become electrically neutral).
Rutherford then determined that it was helium gas that had ap-
peared in the second chamber. Thus alpha particles were proved to
be He++ ions. The nucleus was yet to be discovered, but in modern
terms, we would describe a He++ ion as the nucleus of a He atom.

To summarize, here are the three types of radiation emitted by
radioactive elements, and their descriptions in modern terms:

α particle stopped by a few inches of air He nucleus

β particle stopped by a piece of paper electron

γ ray penetrates thick shielding a type of light

Discussion Question

A Most sources of radioactivity emit alphas, betas, and gammas, not
just one of the three. In the radon experiment, how did Rutherford know
that he was studying the alphas?
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f / Ernest Rutherford (1871-
1937).

g / Marsden and Rutherford’s
apparatus.

2.2 The Planetary Model of the Atom
The stage was now set for the unexpected discovery that the posi-
tively charged part of the atom was a tiny, dense lump at the atom’s
center rather than the “cookie dough” of the raisin cookie model.
By 1909, Rutherford was an established professor, and had students
working under him. For a raw undergraduate named Marsden, he
picked a research project he thought would be tedious but straight-
forward.

It was already known that although alpha particles would be
stopped completely by a sheet of paper, they could pass through a
sufficiently thin metal foil. Marsden was to work with a gold foil
only 1000 atoms thick. (The foil was probably made by evaporating
a little gold in a vacuum chamber so that a thin layer would be
deposited on a glass microscope slide. The foil would then be lifted
off the slide by submerging the slide in water.)

Rutherford had already determined in his previous experiments
the speed of the alpha particles emitted by radium, a fantastic 1.5×
107 m/s. The experimenters in Rutherford’s group visualized them
as very small, very fast cannonballs penetrating the “cookie dough”
part of the big gold atoms. A piece of paper has a thickness of a
hundred thousand atoms or so, which would be sufficient to stop
them completely, but crashing through a thousand would only slow
them a little and turn them slightly off of their original paths.

Marsden’s supposedly ho-hum assignment was to use the appa-
ratus shown in figure g to measure how often alpha particles were
deflected at various angles. A tiny lump of radium in a box emit-
ted alpha particles, and a thin beam was created by blocking all
the alphas except those that happened to pass out through a tube.
Typically deflected in the gold by only a small amount, they would
reach a screen very much like the screen of a TV’s picture tube,
which would make a flash of light when it was hit. Here is the first
example we have encountered of an experiment in which a beam of
particles is detected one at a time. This was possible because each
alpha particle carried so much kinetic energy; they were moving at
about the same speed as the electrons in the Thomson experiment,
but had ten thousand times more mass.

Marsden sat in a dark room, watching the apparatus hour after
hour and recording the number of flashes with the screen moved to
various angles. The rate of the flashes was highest when he set the
screen at an angle close to the line of the alphas’ original path, but if
he watched an area farther off to the side, he would also occasionally
see an alpha that had been deflected through a larger angle. After
seeing a few of these, he got the crazy idea of moving the screen to
see if even larger angles ever occurred, perhaps even angles larger
than 90 degrees.
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i / The planetary model of
the atom.

h / Alpha particles being scattered by a gold nucleus. On this scale,
the gold atom is the size of a car, so all the alpha particles shown here
are ones that just happened to come unusually close to the nucleus.
For these exceptional alpha particles, the forces from the electrons are
unimportant, because they are so much more distant than the nucleus.

The crazy idea worked: a few alpha particles were deflected
through angles of up to 180 degrees, and the routine experiment
had become an epoch-making one. Rutherford said, “We have been
able to get some of the alpha particles coming backwards. It was
almost as incredible as if you fired a 15-inch shell at a piece of tissue
paper and it came back and hit you.” Explanations were hard to
come by in the raisin cookie model. What intense electrical forces
could have caused some of the alpha particles, moving at such astro-
nomical speeds, to change direction so drastically? Since each gold
atom was electrically neutral, it would not exert much force on an
alpha particle outside it. True, if the alpha particle was very near to
or inside of a particular atom, then the forces would not necessarily
cancel out perfectly; if the alpha particle happened to come very
close to a particular electron, the 1/r2 form of the Coulomb force
law would make for a very strong force. But Marsden and Ruther-
ford knew that an alpha particle was 8000 times more massive than
an electron, and it is simply not possible for a more massive object
to rebound backwards from a collision with a less massive object
while conserving momentum and energy. It might be possible in
principle for a particular alpha to follow a path that took it very
close to one electron, and then very close to another electron, and so
on, with the net result of a large deflection, but careful calculations
showed that such multiple “close encounters” with electrons would
be millions of times too rare to explain what was actually observed.

At this point, Rutherford and Marsden dusted off an unpop-
ular and neglected model of the atom, in which all the electrons
orbited around a small, positively charged core or “nucleus,” just
like the planets orbiting around the sun. All the positive charge
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and nearly all the mass of the atom would be concentrated in the
nucleus, rather than spread throughout the atom as in the raisin
cookie model. The positively charged alpha particles would be re-
pelled by the gold atom’s nucleus, but most of the alphas would not
come close enough to any nucleus to have their paths drastically
altered. The few that did come close to a nucleus, however, could
rebound backwards from a single such encounter, since the nucleus of
a heavy gold atom would be fifty times more massive than an alpha
particle. It turned out that it was not even too difficult to derive a
formula giving the relative frequency of deflections through various
angles, and this calculation agreed with the data well enough (to
within 15%), considering the difficulty in getting good experimental
statistics on the rare, very large angles.

What had started out as a tedious exercise to get a student
started in science had ended as a revolution in our understanding
of nature. Indeed, the whole thing may sound a little too much
like a moralistic fable of the scientific method with overtones of
the Horatio Alger genre. The skeptical reader may wonder why
the planetary model was ignored so thoroughly until Marsden and
Rutherford’s discovery. Is science really more of a sociological enter-
prise, in which certain ideas become accepted by the establishment,
and other, equally plausible explanations are arbitrarily discarded?
Some social scientists are currently ruffling a lot of scientists’ feath-
ers with critiques very much like this, but in this particular case,
there were very sound reasons for rejecting the planetary model. As
you’ll learn in more detail later in this course, any charged particle
that undergoes an acceleration dissipate energy in the form of light.
In the planetary model, the electrons were orbiting the nucleus in
circles or ellipses, which meant they were undergoing acceleration,
just like the acceleration you feel in a car going around a curve. They
should have dissipated energy as light, and eventually they should
have lost all their energy. Atoms don’t spontaneously collapse like
that, which was why the raisin cookie model, with its stationary
electrons, was originally preferred. There were other problems as
well. In the planetary model, the one-electron atom would have
to be flat, which would be inconsistent with the success of molecu-
lar modeling with spherical balls representing hydrogen and atoms.
These molecular models also seemed to work best if specific sizes
were used for different atoms, but there is no obvious reason in the
planetary model why the radius of an electron’s orbit should be a
fixed number. In view of the conclusive Marsden-Rutherford results,
however, these became fresh puzzles in atomic physics, not reasons
for disbelieving the planetary model.
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j / The planetary model ap-
plied to a nonmetal, 1, an
unmagnetized metal, 2, and a
magnetized metal, 3. Note that
these figures are all simplified in
several ways. For one thing, the
electrons of an individual atom do
not all revolve around the nucleus
in the same plane. It is also very
unusual for a metal to become so
strongly magnetized that 100%
of its atoms have their rotations
aligned as shown in this figure.

Some phenomena explained with the planetary model

The planetary model may not be the ultimate, perfect model of
the atom, but don’t underestimate its power. It already allows us
to visualize correctly a great many phenomena.

As an example, let’s consider the distinctions among nonmetals,
metals that are magnetic, and metals that are nonmagnetic. As
shown in figure j, a metal differs from a nonmetal because its outer-
most electrons are free to wander rather than owing their allegiance
to a particular atom. A metal that can be magnetized is one that
is willing to line up the rotations of some of its electrons so that
their axes are parallel. Recall that magnetic forces are forces made
by moving charges; we have not yet discussed the mathematics and
geometry of magnetic forces, but it is easy to see how random ori-
entations of the atoms in the nonmagnetic substance would lead to
cancellation of the forces.

Even if the planetary model does not immediately answer such
questions as why one element would be a metal and another a non-
metal, these ideas would be difficult or impossible to conceptualize
in the raisin cookie model.

Discussion Question

A In reality, charges of the same type repel one another and charges
of different types are attracted. Suppose the rules were the other way
around, giving repulsion between opposite charges and attraction be-
tween similar ones. What would the universe be like?

2.3 Atomic Number
As alluded to in a discussion question in the previous section, scien-
tists of this period had only a very approximate idea of how many
units of charge resided in the nuclei of the various chemical ele-
ments. Although we now associate the number of units of nuclear
charge with the element’s position on the periodic table, and call
it the atomic number, they had no idea that such a relationship
existed. Mendeleev’s table just seemed like an organizational tool,
not something with any necessary physical significance. And every-
thing Mendeleev had done seemed equally valid if you turned the
table upside-down or reversed its left and right sides, so even if you
wanted to number the elements sequentially with integers, there was
an ambiguity as to how to do it. Mendeleev’s original table was in
fact upside-down compared to the modern one.

In the period immediately following the discovery of the nucleus,
physicists only had rough estimates of the charges of the various
nuclei. In the case of the very lightest nuclei, they simply found
the maximum number of electrons they could strip off by various
methods: chemical reactions, electric sparks, ultraviolet light, and
so on. For example they could easily strip of one or two electrons
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k / A modern periodic table,
labeled with atomic numbers.
Mendeleev’s original table was
upside-down compared to this
one.

from helium, making He+ or He++, but nobody could make He+++,
presumably because the nuclear charge of helium was only +2e.
Unfortunately only a few of the lightest elements could be stripped
completely, because the more electrons were stripped off, the greater
the positive net charge remaining, and the more strongly the rest of
the negatively charged electrons would be held on. The heavy ele-
ments’ atomic numbers could only be roughly extrapolated from the
light elements, where the atomic number was about half the atom’s
mass expressed in units of the mass of a hydrogen atom. Gold, for
example, had a mass about 197 times that of hydrogen, so its atomic
number was estimated to be about half that, or somewhere around
100. We now know it to be 79.

How did we finally find out? The riddle of the nuclear charges
was at last successfully attacked using two different techniques,
which gave consistent results. One set of experiments, involving
x-rays, was performed by the young Henry Mosely, whose scientific
brilliance was soon to be sacrificed in a battle between European im-
perialists over who would own the Dardanelles, during that pointless
conflict then known as the War to End All Wars, and now referred
to as World War I.

l / An alpha particle has to come
much closer to the low-charged
copper nucleus in order to be de-
flected through the same angle.
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Since Mosely’s analysis requires several concepts with which you
are not yet familiar, we will instead describe the technique used
by James Chadwick at around the same time. An added bonus of
describing Chadwick’s experiments is that they presaged the impor-
tant modern technique of studying collisions of subatomic particles.
In grad school, I worked with a professor whose thesis adviser’s the-
sis adviser was Chadwick, and he related some interesting stories
about the man. Chadwick was apparently a little nutty and a com-
plete fanatic about science, to the extent that when he was held in a
German prison camp during World War II, he managed to cajole his
captors into allowing him to scrounge up parts from broken radios
so that he could attempt to do physics experiments.

Chadwick’s experiment worked like this. Suppose you perform
two Rutherford-type alpha scattering measurements, first one with a
gold foil as a target as in Rutherford’s original experiment, and then
one with a copper foil. It is possible to get large angles of deflection
in both cases, but as shown in figure m, the alpha particle must
be heading almost straight for the copper nucleus to get the same
angle of deflection that would have occurred with an alpha that
was much farther off the mark; the gold nucleus’ charge is so much
greater than the copper’s that it exerts a strong force on the alpha
particle even from far off. The situation is very much like that of a
blindfolded person playing darts. Just as it is impossible to aim an
alpha particle at an individual nucleus in the target, the blindfolded
person cannot really aim the darts. Achieving a very close encounter
with the copper atom would be akin to hitting an inner circle on the
dartboard. It’s much more likely that one would have the luck to
hit the outer circle, which covers a greater number of square inches.
By analogy, if you measure the frequency with which alphas are
scattered by copper at some particular angle, say between 19 and
20 degrees, and then perform the same measurement at the same
angle with gold, you get a much higher percentage for gold than for
copper.

m / An alpha particle must be
headed for the ring on the front
of the imaginary cylindrical pipe
in order to produce scattering at
an angle between 19 and 20 de-
grees. The area of this ring
is called the “cross-section” for
scattering at 19-20 ◦because it is
the cross-sectional area of a cut
through the pipe.
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In fact, the numerical ratio of the two nuclei’s charges can be
derived from this same experimentally determined ratio. Using the
standard notation Z for the atomic number (charge of the nucleus
divided by e), the following equation can be proved (example 1):

Z2
gold

Z2
copper

=
number of alphas scattered by gold at 19-20 ◦

number of alphas scattered by copper at 19-20 ◦

By making such measurements for targets constructed from all the
elements, one can infer the ratios of all the atomic numbers, and
since the atomic numbers of the light elements were already known,
atomic numbers could be assigned to the entire periodic table. Ac-
cording to Mosely, the atomic numbers of copper, silver and plat-
inum were 29, 47, and 78, which corresponded well with their posi-
tions on the periodic table. Chadwick’s figures for the same elements
were 29.3, 46.3, and 77.4, with error bars of about 1.5 times the fun-
damental charge, so the two experiments were in good agreement.

The point here is absolutely not that you should be ready to plug
numbers into the above equation for a homework or exam question!
My overall goal in this chapter is to explain how we know what we
know about atoms. An added bonus of describing Chadwick’s ex-
periment is that the approach is very similar to that used in modern
particle physics experiments, and the ideas used in the analysis are
closely related to the now-ubiquitous concept of a “cross-section.”
In the dartboard analogy, the cross-section would be the area of the
circular ring you have to hit. The reasoning behind the invention of
the term “cross-section” can be visualized as shown in figure m. In
this language, Rutherford’s invention of the planetary model came
from his unexpected discovery that there was a nonzero cross-section
for alpha scattering from gold at large angles, and Chadwick con-
firmed Mosely’s determinations of the atomic numbers by measuring
cross-sections for alpha scattering.

Proof of the relationship between Z and scattering example 1
The equation above can be derived by the following not very rigor-
ous proof. To deflect the alpha particle by a certain angle requires
that it acquire a certain momentum component in the direction
perpendicular to its original momentum. Although the nucleus’s
force on the alpha particle is not constant, we can pretend that
it is approximately constant during the time when the alpha is
within a distance equal to, say, 150% of its distance of closest
approach, and that the force is zero before and after that part of
the motion. (If we chose 120% or 200%, it shouldn’t make any
difference in the final result, because the final result is a ratio,
and the effects on the numerator and denominator should cancel
each other.) In the approximation of constant force, the change
in the alpha’s perpendicular momentum component is then equal
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to F∆t . The Coulomb force law says the force is proportional to
Z/r2. Although r does change somewhat during the time interval
of interest, it’s good enough to treat it as a constant number, since
we’re only computing the ratio between the two experiments’ re-
sults. Since we are approximating the force as acting over the
time during which the distance is not too much greater than the
distance of closest approach, the time interval ∆t must be propor-
tional to r , and the sideways momentum imparted to the alpha,
F∆t , is proportional to (Z/r2)r , or Z/r . If we’re comparing alphas
scattered at the same angle from gold and from copper, then ∆p
is the same in both cases, and the proportionality ∆p ∝ Z/r tells
us that the ones scattered from copper at that angle had to be
headed in along a line closer to the central axis by a factor equal-
ing Zgold/Zcopper. If you imagine a “dartboard ring” that the alphas
have to hit, then the ring for the gold experiment has the same
proportions as the one for copper, but it is enlarged by a factor
equal to Zgold/Zcopper. That is, not only is the radius of the ring
greater by that factor, but unlike the rings on a normal dartboard,
the thickness of the outer ring is also greater in proportion to its
radius. When you take a geometric shape and scale it up in size
like a photographic enlargement, its area is increased in propor-
tion to the square of the enlargement factor, so the area of the
dartboard ring in the gold experiment is greater by a factor equal
to (Zgold/Zcopper)2. Since the alphas are aimed entirely randomly,
the chances of an alpha hitting the ring are in proportion to the
area of the ring, which proves the equation given above.

As an example of the modern use of scattering experiments and
cross-section measurements, you may have heard of the recent ex-
perimental evidence for the existence of a particle called the top
quark. Of the twelve subatomic particles currently believed to be the
smallest constituents of matter, six form a family called the quarks,
distinguished from the other six by the intense attractive forces that
make the quarks stick to each other. (The other six consist of the
electron plus five other, more exotic particles.) The only two types of
quarks found in naturally occurring matter are the “up quark” and
“down quark,” which are what protons and neutrons are made of,
but four other types were theoretically predicted to exist, for a total
of six. (The whimsical term “quark” comes from a line by James
Joyce reading “Three quarks for master Mark.”) Until recently, only
five types of quarks had been proven to exist via experiments, and
the sixth, the top quark, was only theorized. There was no hope
of ever detecting a top quark directly, since it is radioactive, and
only exists for a zillionth of a second before evaporating. Instead,
the researchers searching for it at the Fermi National Accelerator
Laboratory near Chicago measured cross-sections for scattering of
nuclei off of other nuclei. The experiment was much like those of
Rutherford and Chadwick, except that the incoming nuclei had to
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be boosted to much higher speeds in a particle accelerator. The
resulting encounter with a target nucleus was so violent that both
nuclei were completely demolished, but, as Einstein proved, energy
can be converted into matter, and the energy of the collision creates
a spray of exotic, radioactive particles, like the deadly shower of
wood fragments produced by a cannon ball in an old naval battle.
Among those particles were some top quarks. The cross-sections
being measured were the cross-sections for the production of certain
combinations of these secondary particles. However different the
details, the principle was the same as that employed at the turn of
the century: you smash things together and look at the fragments
that fly off to see what was inside them. The approach has been
compared to shooting a clock with a rifle and then studying the
pieces that fly off to figure out how the clock worked.

Discussion Questions

A The diagram, showing alpha particles being deflected by a gold
nucleus, was drawn with the assumption that alpha particles came in on
lines at many different distances from the nucleus. Why wouldn’t they all
come in along the same line, since they all came out through the same
tube?

B Why does it make sense that, as shown in the figure, the trajectories
that result in 19 ◦ and 20 ◦ scattering cross each other?

C Rutherford knew the velocity of the alpha particles emitted by radium,
and guessed that the positively charged part of a gold atom had a charge
of about +100e (we now know it is +79e). Considering the fact that some
alpha particles were deflected by 180 ◦, how could he then use conserva-
tion of energy to derive an upper limit on the size of a gold nucleus? (For
simplicity, assume the size of the alpha particle is negligible compared to
that of the gold nucleus, and ignore the fact that the gold nucleus recoils
a little from the collision, picking up a little kinetic energy.)

2.4 The Structure of Nuclei
The proton

The fact that the nuclear charges were all integer multiples of e
suggested to many physicists that rather than being a pointlike ob-
ject, the nucleus might contain smaller particles having individual
charges of +e. Evidence in favor of this idea was not long in arriv-
ing. Rutherford reasoned that if he bombarded the atoms of a very
light element with alpha particles, the small charge of the target
nuclei would give a very weak repulsion. Perhaps those few alpha
particles that happened to arrive on head-on collision courses would
get so close that they would physically crash into some of the target
nuclei. An alpha particle is itself a nucleus, so this would be a col-
lision between two nuclei, and a violent one due to the high speeds
involved. Rutherford hit pay dirt in an experiment with alpha par-
ticles striking a target containing nitrogen atoms. Charged particles
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n / Examples of the construction
of atoms: hydrogen (top) and
helium (bottom). On this scale,
the electrons’ orbits would be the
size of a college campus.

were detected flying out of the target like parts flying off of cars in
a high-speed crash. Measurements of the deflection of these parti-
cles in electric and magnetic fields showed that they had the same
charge-to-mass ratio as singly-ionized hydrogen atoms. Rutherford
concluded that these were the conjectured singly-charged particles
that held the charge of the nucleus, and they were later named
protons. The hydrogen nucleus consists of a single proton, and in
general, an element’s atomic number gives the number of protons
contained in each of its nuclei. The mass of the proton is about 1800
times greater than the mass of the electron.

The neutron

It would have been nice and simple if all the nuclei could have
been built only from protons, but that couldn’t be the case. If you
spend a little time looking at a periodic table, you will soon notice
that although some of the atomic masses are very nearly integer
multiples of hydrogen’s mass, many others are not. Even where the
masses are close whole numbers, the masses of an element other
than hydrogen is always greater than its atomic number, not equal
to it. Helium, for instance, has two protons, but its mass is four
times greater than that of hydrogen.

Chadwick cleared up the confusion by proving the existence of
a new subatomic particle. Unlike the electron and proton, which
are electrically charged, this particle is electrically neutral, and he
named it the neutron. Chadwick’s experiment has been described
in detail in chapter 4 of book 2 of this series, but briefly the method
was to expose a sample of the light element beryllium to a stream of
alpha particles from a lump of radium. Beryllium has only four pro-
tons, so an alpha that happens to be aimed directly at a beryllium
nucleus can actually hit it rather than being stopped short of a col-
lision by electrical repulsion. Neutrons were observed as a new form
of radiation emerging from the collisions, and Chadwick correctly
inferred that they were previously unsuspected components of the
nucleus that had been knocked out. As described in Conservation
Laws, Chadwick also determined the mass of the neutron; it is very
nearly the same as that of the proton.

To summarize, atoms are made of three types of particles:

charge mass in units of
the proton’s mass

location in atom

proton +e 1 in nucleus

neutron 0 1.001 in nucleus

electron −e 1/1836 orbiting nucleus

The existence of neutrons explained the mysterious masses of
the elements. Helium, for instance, has a mass very close to four
times greater than that of hydrogen. This is because it contains
two neutrons in addition to its two protons. The mass of an atom is
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o / A version of the Thomson
apparatus modified for measuring
the mass-to-charge ratios of
ions rather than electrons. A
small sample of the element in
question, copper in our example,
is boiled in the oven to create
a thin vapor. (A vacuum pump
is continuously sucking on the
main chamber to keep it from
accumulating enough gas to stop
the beam of ions.) Some of the
atoms of the vapor are ionized by
a spark or by ultraviolet light. Ions
that wander out of the nozzle
and into the region between
the charged plates are then
accelerated toward the top of the
figure. As in the Thomson experi-
ment, mass-to-charge ratios are
inferred from the deflection of the
beam.

essentially determined by the total number of neutrons and protons.
The total number of neutrons plus protons is therefore referred to
as the atom’s mass number.

Isotopes

We now have a clear interpretation of the fact that helium is
close to four times more massive than hydrogen, and similarly for
all the atomic masses that are close to an integer multiple of the
mass of hydrogen. But what about copper, for instance, which had
an atomic mass 63.5 times that of hydrogen? It didn’t seem rea-
sonable to think that it possessed an extra half of a neutron! The
solution was found by measuring the mass-to-charge ratios of singly-
ionized atoms (atoms with one electron removed). The technique
is essentially that same as the one used by Thomson for cathode
rays, except that whole atoms do not spontaneously leap out of the
surface of an object as electrons sometimes do. Figure o shows an
example of how the ions can be created and injected between the
charged plates for acceleration.

Injecting a stream of copper ions into the device, we find a sur-
prise — the beam splits into two parts! Chemists had elevated to
dogma the assumption that all the atoms of a given element were
identical, but we find that 69% of copper atoms have one mass, and
31% have another. Not only that, but both masses are very nearly
integer multiples of the mass of hydrogen (63 and 65, respectively).
Copper gets its chemical identity from the number of protons in its
nucleus, 29, since chemical reactions work by electric forces. But
apparently some copper atoms have 63 − 29 = 34 neutrons while
others have 65− 29 = 36. The atomic mass of copper, 63.5, reflects
the proportions of the mixture of the mass-63 and mass-65 varieties.
The different mass varieties of a given element are called isotopesof
that element.

Isotopes can be named by giving the mass number as a subscript
to the left of the chemical symbol, e.g., 65Cu. Examples:

protons neutrons mass number
1H 1 0 0+1 = 1
4He 2 2 2+2 = 4
12C 6 6 6+6 = 12
14C 6 8 6+8 = 14
262Ha 105 157 105+157 = 262

self-check A
Why are the positive and negative charges of the accelerating plates
reversed in the isotope-separating apparatus compared to the Thomson
apparatus? . Answer, p. 205

Chemical reactions are all about the exchange and sharing of
electrons: the nuclei have to sit out this dance because the forces
of electrical repulsion prevent them from ever getting close enough
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q / The strong nuclear force
cuts off very sharply at a range of
about 1 fm.

to make contact with each other. Although the protons do have a
vitally important effect on chemical processes because of their elec-
trical forces, the neutrons can have no effect on the atom’s chemical
reactions. It is not possible, for instance, to separate 63Cu from 65Cu
by chemical reactions. This is why chemists had never realized that
different isotopes existed. (To be perfectly accurate, different iso-
topes do behave slightly differently because the more massive atoms
move more sluggishly and therefore react with a tiny bit less inten-
sity. This tiny difference is used, for instance, to separate out the
isotopes of uranium needed to build a nuclear bomb. The smallness
of this effect makes the separation process a slow and difficult one,
which is what we have to thank for the fact that nuclear weapons
have not been built by every terrorist cabal on the planet.)

Sizes and shapes of nuclei

Matter is nearly all nuclei if you count by weight, but in terms
of volume nuclei don’t amount to much. The radius of an individual
neutron or proton is very close to 1 fm (1 fm=10−15 m), so even a big
lead nucleus with a mass number of 208 still has a diameter of only
about 13 fm, which is ten thousand times smaller than the diameter
of a typical atom. Contrary to the usual imagery of the nucleus as a
small sphere, it turns out that many nuclei are somewhat elongated,
like an American football, and a few have exotic asymmetric shapes
like pears or kiwi fruits.

Discussion Questions

A Suppose the entire universe was in a (very large) cereal box, and
the nutritional labeling was supposed to tell a godlike consumer what per-
centage of the contents was nuclei. Roughly what would the percentage
be like if the labeling was according to mass? What if it was by volume?

2.5 The Strong Nuclear Force, Alpha Decay
and Fission

Once physicists realized that nuclei consisted of positively charged
protons and uncharged neutrons, they had a problem on their hands.
The electrical forces among the protons are all repulsive, so the
nucleus should simply fly apart! The reason all the nuclei in your
body are not spontaneously exploding at this moment is that there
is another force acting. This force, called the strong nuclear force, is
always attractive, and acts between neutrons and neutrons, neutrons
and protons, and protons and protons with roughly equal strength.
The strong nuclear force does not have any effect on electrons, which
is why it does not influence chemical reactions.

Unlike electric forces, whose strengths are given by the simple
Coulomb force law, there is no simple formula for how the strong
nuclear force depends on distance. Roughly speaking, it is effec-
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p / A nuclear power plant at Cat-
tenom, France. Unlike the coal
and oil plants that supply most
of the U.S.’s electrical power, a
nuclear power plant like this one
releases no pollution or green-
house gases into the Earth’s at-
mosphere, and therefore doesn’t
contribute to global warming. The
white stuff puffing out of this
plant is non-radioactive water va-
por. Although nuclear power
plants generate long-lived nuclear
waste, this waste arguably poses
much less of a threat to the bio-
sphere than greenhouse gases
would.

tive over ranges of ∼ 1 fm, but falls off extremely quickly at larger
distances (much faster than 1/r2). Since the radius of a neutron or
proton is about 1 fm, that means that when a bunch of neutrons and
protons are packed together to form a nucleus, the strong nuclear
force is effective only between neighbors.

Figure r illustrates how the strong nuclear force acts to keep
ordinary nuclei together, but is not able to keep very heavy nuclei
from breaking apart. In r/1, a proton in the middle of a carbon
nucleus feels an attractive strong nuclear force (arrows) from each
of its nearest neighbors. The forces are all in different directions,
and tend to cancel out. The same is true for the repulsive electrical
forces (not shown). In figure r/2, a proton at the edge of the nucleus
has neighbors only on one side, and therefore all the strong nuclear
forces acting on it are tending to pull it back in. Although all the
electrical forces from the other five protons (dark arrows) are all
pushing it out of the nucleus, they are not sufficient to overcome
the strong nuclear forces.

In a very heavy nucleus, r/3, a proton that finds itself near the
edge has only a few neighbors close enough to attract it significantly
via the strong nuclear force, but every other proton in the nucleus
exerts a repulsive electrical force on it. If the nucleus is large enough,
the total electrical repulsion may be sufficient to overcome the at-
traction of the strong force, and the nucleus may spit out a proton.
Proton emission is fairly rare, however; a more common type of ra-
dioactive decay1 in heavy nuclei is alpha decay, shown in r/4. The

1Alpha decay is more common because an alpha particle happens to be a
very stable arrangement of protons and neutrons.
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r / 1. The forces cancel. 2. The forces don’t cancel. 3. In a heavy
nucleus, the large number of electrical repulsions can add up to a force
that is comparable to the strong nuclear attraction. 4. Alpha emission. 5.
Fission.

imbalance of the forces is similar, but the chunk that is ejected is an
alpha particle (two protons and two neutrons) rather than a single
proton.

It is also possible for the nucleus to split into two pieces of
roughly equal size, r/5, a process known as fission. Note that in
addition to the two large fragments, there is a spray of individual
neutrons. In a nuclear fission bomb or a nuclear fission reactor,
some of these neutrons fly off and hit other nuclei, causing them to
undergo fission as well. The result is a chain reaction.

When a nucleus is able to undergo one of these processes, it is
said to be radioactive, and to undergo radioactive decay. Some of
the naturally occurring nuclei on earth are radioactive. The term
“radioactive” comes from Becquerel’s image of rays radiating out
from something, not from radio waves, which are a whole differ-
ent phenomenon. The term “decay” can also be a little misleading,
since it implies that the nucleus turns to dust or simply disappears
– actually it is splitting into two new nuclei with an the same total
number of neutrons and protons, so the term “radioactive transfor-
mation” would have been more appropriate. Although the original
atom’s electrons are mere spectators in the process of weak radioac-
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tive decay, we often speak loosely of “radioactive atoms” rather than
“radioactive nuclei.”

Randomness in physics

How does an atom decide when to decay? We might imagine
that it is like a termite-infested house that gets weaker and weaker,
until finally it reaches the day on which it is destined to fall apart.
Experiments, however, have not succeeded in detecting such “tick-
ing clock” hidden below the surface; the evidence is that all atoms
of a given isotope are absolutely identical. Why, then, would one
uranium atom decay today while another lives for another million
years? The answer appears to be that it is entirely random. We
can make general statements about the average time required for a
certain isotope to decay, or how long it will take for half the atoms
in a sample to decay (its half-life), but we can never predict the
behavior of a particular atom.

This is the first example we have encountered of an inescapable
randomness in the laws of physics. If this kind of randomness makes
you uneasy, you’re in good company. Einstein’s famous quote is
“...I am convinced that He [God] does not play dice.“ Einstein’s
distaste for randomness, and his association of determinism with
divinity, goes back to the Enlightenment conception of the universe
as a gigantic piece of clockwork that only had to be set in motion
initially by the Builder. Physics had to be entirely rebuilt in the
20th century to incorporate the fundamental randomness of physics,
and this modern revolution is the topic of book 6 in this series. In
particular, we will delay the mathematical development of the half-
life concept until then.

2.6 The Weak Nuclear Force; Beta Decay
All the nuclear processes we’ve discussed so far have involved re-
arrangements of neutrons and protons, with no change in the total
number of neutrons or the total number of protons. Now consider
the proportions of neutrons and protons in your body and in the
planet earth: neutrons and protons are roughly equally numerous
in your body’s carbon and oxygen nuclei, and also in the nickel and
iron that make up most of the earth. The proportions are about
50-50. But, as discussed in more detail in optional section 2.10, the
only chemical elements produced in any significant quantities by the
big bang2 were hydrogen (about 90%) and helium (about 10%). If
the early universe was almost nothing but hydrogen atoms, whose
nuclei are protons, where did all those neutrons come from?

The answer is that there is another nuclear force, the weak nu-
clear force, that is capable of transforming neutrons into protons

2The evidence for the big bang theory of the origin of the universe was dis-
cussed in book 3 of this series.
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and vice-versa. Two possible reactions are

n→ p + e− + ν̄ [electron decay]

and

p→ n + e+ + ν . [positron decay]

(There is also a third type called electron capture, in which a proton
grabs one of the atom’s electrons and they produce a neutron and
a neutrino.)

Whereas alpha decay and fission are just a redivision of the pre-
viously existing particles, these reactions involve the destruction of
one particle and the creation of three new particles that did not
exist before.

There are three new particles here that you have never previ-
ously encountered. The symbol e+ stands for an antielectron, which
is a particle just like the electron in every way, except that its elec-
tric charge is positive rather than negative. Antielectrons are also
known as positrons. Nobody knows why electrons are so common in
the universe and antielectrons are scarce. When an antielectron en-
counters an electron, they annihilate each other, producing gamma
rays, and this is the fate of all the antielectrons that are produced
by natural radioactivity on earth. Antielectrons are an example of
antimatter. A complete atom of antimatter would consist of antipro-
tons, antielectrons, and antineutrons. Although individual particles
of antimatter occur commonly in nature due to natural radioactivity
and cosmic rays, only a few complete atoms of antihydrogen have
ever been produced artificially.

The notation ν stands for a particle called a neutrino, and ν̄
means an antineutrino. Neutrinos and antineutrinos have no electric
charge (hence the name).

We can now list all four of the known fundamental forces of
physics:

• gravity

• electromagnetism

• strong nuclear force

• weak nuclear force

The other forces we have learned about, such as friction and the
normal force, all arise from electromagnetic interactions between
atoms, and therefore are not considered to be fundamental forces of
physics.
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Decay of 212Pb example 2
As an example, consider the radioactive isotope of lead 212Pb. It
contains 82 protons and 130 neutrons. It decays by the process
n → p + e− + ν̄ . The newly created proton is held inside the
nucleus by the strong nuclear force, so the new nucleus contains
83 protons and 129 neutrons. Having 83 protons makes it the
element bismuth, so it will be an atom of 212Bi.

In a reaction like this one, the electron flies off at high speed
(typically close to the speed of light), and the escaping electrons
are the things that make large amounts of this type of radioactivity
dangerous. The outgoing electron was the first thing that tipped
off scientists in the early 1900s to the existence of this type of ra-
dioactivity. Since they didn’t know that the outgoing particles were
electrons, they called them beta particles, and this type of radioac-
tive decay was therefore known as beta decay. A clearer but less
common terminology is to call the two processes electron decay and
positron decay.

The neutrino or antineutrino emitted in such a reaction pretty
much ignores all matter, because its lack of charge makes it immune
to electrical forces, and it also remains aloof from strong nuclear
interactions. Even if it happens to fly off going straight down, it
is almost certain to make it through the entire earth without in-
teracting with any atoms in any way. It ends up flying through
outer space forever. The neutrino’s behavior makes it exceedingly
difficult to detect, and when beta decay was first discovered nobody
realized that neutrinos even existed. We now know that the neu-
trino carries off some of the energy produced in the reaction, but at
the time it seemed that the total energy afterwards (not counting
the unsuspected neutrino’s energy) was greater than the total en-
ergy before the reaction, violating conservation of energy. Physicists
were getting ready to throw conservation of energy out the window
as a basic law of physics when indirect evidence led them to the
conclusion that neutrinos existed.

The solar neutrino problem

What about these neutrinos? Why haven’t you heard of them
before? It’s not because they’re rare — a billion neutrinos pass
through your body every microsecond, but until recently almost
nothing was known about them. Produced as a side-effect of the
nuclear reactions that power our sun and other stars, these ghostlike
bits of matter are believed to be the most numerous particles in the
universe. But they interact so weakly with ordinary matter that
nearly all the neutrinos that enter the earth on one side will emerge
from the other side of our planet without even slowing down.

Our first real peek at the properties of the elusive neutrino has
come from a huge detector in a played-out Japanese zinc mine, s. An
international team of physicists outfitted the mineshaft with wall-
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s / This neutrino detector is
in the process of being filled with
ultrapure water.

to-wall light sensors, and then filled the whole thing with water so
pure that you can see through it for a hundred meters, compared to
only a few meters for typical tap water. Neutrinos stream through
the 50 million liters of water continually, just as they flood every-
thing else around us, and the vast majority never interact with a
water molecule. A very small percentage, however, do annihilate
themselves in the water, and the tiny flashes of light they produce
can be detected by the beachball-sized vacuum tubes that line the
darkened mineshaft. Most of the neutrinos around us come from
the sun, but for technical reasons this type of water-based detector
is more sensitive to the less common but more energetic neutrinos
produced when cosmic ray particles strike the earth’s atmosphere.

Neutrinos were already known to come in three “flavors,” which
can be distinguished from each other by the particles created when
they collide with matter. An “electron-flavored neutrino” creates an
ordinary electron when it is annihilated, while the two other types
create more exotic particles called mu and tau particles. Think of
the three types of neutrinos as chocolate, vanilla, and strawberry.
When you buy a chocolate ice cream cone, you expect that it will
keep being chocolate as you eat it. The unexpected finding from
the Japanese experiment is that some of the neutrinos are changing
flavor between the time when they are produced by a cosmic ray and
the moment when they wink out of existence in the water. It’s as
though your chocolate ice cream cone transformed itself magically
into strawberry while your back was turned.

How did the physicists figure out the change in flavor? The
experiment detects some neutrinos originating in the atmosphere
above Japan, and also many neutrinos coming from distant parts of
the earth. A neutrino created above the Atlantic Ocean arrives in
Japan from underneath, and the experiment can distinguish these
upward-traveling neutrinos from the downward-moving local vari-
ety. They found that the mixture of neutrinos coming from below
was different from the mixture arriving from above, with some of
the electron-flavored and tau-flavored neutrinos having apparently
changed into mu-flavored neutrinos during their voyage through the
earth. The ones coming from above didn’t have time to change
flavors on their much shorter journey.

This is interpreted as evidence that the neutrinos are constantly
changing back and forth among the three flavors. On theoretical
grounds, it is believed that such a vibration can only occur if neu-
trinos have mass. Only a rough estimate of the mass is possible at
this point: it appears that neutrinos have a mass somewhere in the
neighborhood of one billionth of the mass of an electron, or about
10−39 kg.

If the neutrino’s mass is so tiny, does it even matter? It matters
to astronomers. Neutrinos are the only particles that can be used
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t / A detector being lowered
down a shaft at the IceCube
neutrino telescope in Antarctica.

to probe certain phenomena. For example, they are the only direct
probes we have for testing our models of the core of our own sun,
which is the source of energy for all life on earth. Once astronomers
have a good handle on the basic properties of the neutrino, they
can start thinking seriously about using them for astronomy. As of
2006, the mass of the neutrino has been confirmed by an accelerator-
based experiment, and neutrino observatories have been operating
for a few years in Antarctica, using huge volumes of natural ice in
the same way that the water was used in the Japanese experiment.

A In the reactions n → p + e− + ν̄ and p → n + e+ + ν, verify that
charge is conserved. In beta decay, when one of these reactions happens
to a neutron or proton within a nucleus, one or more gamma rays may
also be emitted. Does this affect conservation of charge? Would it be
possible for some extra electrons to be released without violating charge
conservation?

B When an antielectron and an electron annihilate each other, they
produce two gamma rays. Is charge conserved in this reaction?

2.7 Fusion
As we have seen, heavy nuclei tend to fly apart because each proton
is being repelled by every other proton in the nucleus, but is only
attracted by its nearest neighbors. The nucleus splits up into two
parts, and as soon as those two parts are more than about 1 fm
apart, the strong nuclear force no longer causes the two fragments
to attract each other. The electrical repulsion then accelerates them,
causing them to gain a large amount of kinetic energy. This release
of kinetic energy is what powers nuclear reactors and fission bombs.

It might seem, then, that the lightest nuclei would be the most
stable, but that is not the case. Let’s compare an extremely light
nucleus like 4He with a somewhat heavier one, 16O. A neutron or
proton in 4He can be attracted by the three others, but in 16O, it
might have five or six neighbors attracting it. The 16O nucleus is
therefore more stable.

It turns out that the most stable nuclei of all are those around
nickel and iron, having about 30 protons and 30 neutrons. Just as a
nucleus that is too heavy to be stable can release energy by splitting
apart into pieces that are closer to the most stable size, light nuclei
can release energy if you stick them together to make bigger nuclei
that are closer to the most stable size. Fusing one nucleus with
another is called nuclear fusion. Nuclear fusion is what powers our
sun and other stars.
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u / 1. Our sun’s source of energy is nuclear fusion, so nuclear fusion is also the source of power for all
life on earth, including, 2, this rain forest in Fatu-Hiva. 3. The first release of energy by nuclear fusion through
human technology was the 1952 Ivy Mike test at the Enewetak Atoll. 4. This array of gamma-ray detectors is
called GAMMASPHERE. During operation, the array is closed up, and a beam of ions produced by a particle
accelerator strikes a target at its center, producing nuclear fusion reactions. The gamma rays can be studied for
information about the structure of the fused nuclei, which are typically varieties not found in nature. 5. Nuclear
fusion promises to be a clean, inexhaustible source of energy. However, the goal of commercially viable nuclear
fusion power has remained elusive, due to the engineering difficulties involved in magnetically containing a
plasma (ionized gas) at a sufficiently high temperature and density. This photo shows the experimental JET
reactor, with the device opened up on the left, and in action on the right.

2.8 Nuclear Energy and Binding Energies
In the same way that chemical reactions can be classified as exother-
mic (releasing energy) or endothermic (requiring energy to react), so
nuclear reactions may either release or use up energy. The energies
involved in nuclear reactions are greater by a huge factor. Thou-
sands of tons of coal would have to be burned to produce as much
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energy as would be produced in a nuclear power plant by one kg of
fuel.

Although nuclear reactions that use up energy (endothermic
reactions) can be initiated in accelerators, where one nucleus is
rammed into another at high speed, they do not occur in nature, not
even in the sun. The amount of kinetic energy required is simply
not available.

To find the amount of energy consumed or released in a nuclear
reaction, you need to know how much nuclear interaction energy,
Unuc, was stored or released. Experimentalists have determined the
amount of nuclear energy stored in the nucleus of every stable el-
ement, as well as many unstable elements. This is the amount of
mechanical work that would be required to pull the nucleus apart
into its individual neutrons and protons, and is known as the nuclear
binding energy.

A reaction occurring in the sun example 3
The sun produces its energy through a series of nuclear fusion
reactions. One of the reactions is

1H +2 H→3 He + γ

The excess energy is almost all carried off by the gamma ray (not
by the kinetic energy of the helium-3 atom). The binding energies

in units of pJ (picojoules) are:

1H 0 J
2H 0.35593 pJ
3He 1.23489 pJ

The total initial

nuclear energy is 0 pJ+0.35593 pJ, and the final nuclear energy
is 1.23489 pJ, so by conservation of energy, the gamma ray must
carry off 0.87896 pJ of energy. The gamma ray is then absorbed
by the sun and converted to heat.

self-check B
Why is the binding energy of 1H exactly equal to zero? . Answer, p.
205

Conversion of mass to energy and energy to mass

If you add up the masses of the three particles produced in the
reaction n→ p + e− + ν̄, you will find that they do not equal the mass of
the neutron, so mass is not conserved. An even more blatant example is
the annihilation of an electron with a positron, e−+e+ → 2γ, in which the
original mass is completely destroyed, since gamma rays have no mass.
Nonconservation of mass is not just a property of nuclear reactions. It
also occurs in chemical reactions, but the change in mass is too small
to detect with ordinary laboratory balances.

The reason why mass is not being conserved is that mass is be-
ing converted to energy, according to Einstein’s celebrated equation
E = mc2, in which c stands for the speed of light. In the reaction
e− + e+ → 2γ, for instance, imagine for simplicity that the electron and
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positron are moving very slowly when they collide, so there is no signif-
icant amount of energy to start with. We are starting with mass and no
energy, and ending up with two gamma rays that possess energy but
no mass. Einstein’s E = mc2 tells us that the conversion factor between
mass and energy is equal to the square of the speed of light. Since
c is a big number, the amount of energy consumed or released by a
chemical reaction only shows up as a tiny change in mass. But in nu-
clear reactions, which involve large amounts of energy, the change in
mass may amount to as much as one part per thousand. Note that in
this context, c is not necessarily the speed of any of the particles. We
are just using its numerical value as a conversion factor. Note also that
E = mc2 does not mean that an object of mass m has a kinetic energy
equal to mc2; the energy being described by E = mc2 is the energy
you could release if you destroyed the particle and converted its mass
entirely into energy, and that energy would be in addition to any kinetic
or potential energy the particle had.

Have we now been cheated out of two perfectly good conservation
laws, the laws of conservation of mass and of energy? No, it’s just
that according to Einstein, the conserved quantity is E + mc2, not E or
m individually. The quantity E + mc2 is referred to as the mass-energy,
and no violation of the law of conservation of mass-energy has yet been
observed. In most practical situations, it is a perfectly reasonable to
treat mass and energy as separately conserved quantities.

It is now easy to explain why isolated protons (hydrogen nuclei) are
found in nature, but neutrons are only encountered in the interior of
a nucleus, not by themselves. In the process n → p + e− + ν̄, the
total final mass is less than the mass of the neutron, so mass is being
converted into energy. In the beta decay of a proton, p→ n+e+ +ν, , the
final mass is greater than the initial mass, so some energy needs to be
supplied for conversion into mass. A proton sitting by itself in a hydrogen
atom cannot decay, since it has no source of energy. Only protons
sitting inside nuclei can decay, and only then if the difference in potential
energy between the original nucleus and the new nucleus would result
in a release of energy. But any isolated neutron that is created in natural
or artificial reactions will decay within a matter of seconds, releasing
some energy.

The equation E = mc2 occurs naturally as part of Einstein’s theory
of special relativity, which is not what we are studying right now. This
brief treatment is only meant to clear up the issue of where the mass
was going in some of the nuclear reactions we were discussing.

Figure v is a compact way of showing the vast variety of the
nuclei. Each box represents a particular number of neutrons and
protons. The black boxes are nuclei that are stable, i.e., that would
require an input of energy in order to change into another. The
gray boxes show all the unstable nuclei that have been studied ex-
perimentally. Some of these last for billions of years on the aver-
age before decaying and are found in nature, but most have much
shorter average lifetimes, and can only be created and studied in
the laboratory.
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v / The known nuclei, represented on a chart of proton number versus neutron number. Note the two
nuclei in the bottom row with zero protons. One is simply a single neutron. The other is a cluster of four
neutrons. This “tetraneutron” was reported, unexpectedly, to be a bound system in results from a 2002
experiment. The result is controversial. If correct, it implies the existence of a heretofore unsuspected type of
matter, the neutron droplet, which we can think of as an atom with no protons or electrons.

The curve along which the stable nuclei lie is called the line of
stability. Nuclei along this line have the most stable proportion
of neutrons to protons. For light nuclei the most stable mixture
is about 50-50, but we can see that stable heavy nuclei have two
or three times more neutrons than protons. This is because the
electrical repulsions of all the protons in a heavy nucleus add up
to a powerful force that would tend to tear it apart. The presence
of a large number of neutrons increases the distances among the
protons, and also increases the number of attractions due to the
strong nuclear force.

2.9 Biological Effects of Ionizing Radiation
As a science educator, I find it frustrating that nowhere in the mas-
sive amount of journalism devoted to the Chernobyl disaster does
one ever find any numerical statements about the amount of radia-
tion to which people have been exposed. Anyone mentally capable of
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w / A map showing levels of
radiation near the site of the
Chernobyl disaster. At the
boundary of the most highly
contaminated (bright red) areas,
people would be exposed to
about 13,000 µSv per year, or
about four times the natural back-
ground level. In the pink areas,
which are still densely populated,
the exposure is comparable
to the natural level found in a
high-altitude city such as Denver.

understanding sports statistics or weather reports ought to be able
to understand such measurements, as long as something like the
following explanatory text was inserted somewhere in the article:

Radiation exposure is measured in units of Sieverts (Sv). The
average person is exposed to about 2000 µSv (microSieverts) each
year from natural background sources.

With this context, people would be able to come to informed
conclusions based on statements such as, “Children in Finland re-
ceived an average dose of µSv above natural background
levels because of the Chernobyl disaster.”

What is a Sievert? It measures the amount of energy per kilo-
gram deposited in the body by ionizing radiation, multiplied by a
“quality factor” to account for the different health hazards posed
by alphas, betas, gammas, neutrons, and other types of radiation.
Only ionizing radiation is counted, since nonionizing radiation sim-
ply heats one’s body rather than killing cells or altering DNA. For
instance, alpha particles are typically moving so fast that their ki-
netic energy is sufficient to ionize thousands of atoms, but it is
possible for an alpha particle to be moving so slowly that it would
not have enough kinetic energy to ionize even one atom.

Notwithstanding the pop culture images of the Incredible Hulk
and Godzilla, it is not possible for a multicellular animal to become
“mutated” as a whole. In most cases, a particle of ionizing radiation
will not even hit the DNA, and even if it does, it will only affect
the DNA of a single cell, not every cell in the animal’s body. Typ-
ically, that cell is simply killed, because the DNA becomes unable
to function properly. Once in a while, however, the DNA may be
altered so as to make that cell cancerous. For instance, skin cancer
can be caused by UV light hitting a single skin cell in the body of
a sunbather. If that cell becomes cancerous and begins reproducing
uncontrollably, she will end up with a tumor twenty years later.

Other than cancer, the only other dramatic effect that can result
from altering a single cell’s DNA is if that cell happens to be a
sperm or ovum, which can result in nonviable or mutated offspring.
Men are relatively immune to reproductive harm from radiation,
because their sperm cells are replaced frequently. Women are more
vulnerable because they keep the same set of ova as long as they
live.

A whole-body exposure of 5,000,000 µSv will kill a person within
a week or so. Luckily, only a small number of humans have ever been
exposed to such levels: one scientist working on the Manhattan
Project, some victims of the Nagasaki and Hiroshima explosions,
and 31 workers at Chernobyl. Death occurs by massive killing of
cells, especially in the blood-producing cells of the bone marrow.

Lower levels, on the order of 1,000,000 µSv, were inflicted on
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x / A typical example of radi-
ation hormesis: the health of
mice is improved by low levels
of radiation. In this study, young
mice were exposed to fairly high
levels of x-rays, while a control
group of mice was not exposed.
The mice were weighed, and
their rate of growth was taken
as a measure of their health. At
levels below about 50,000 µSv,
the radiation had a beneficial
effect on the health of the mice,
presumably by activating cellular
damage control mechanisms.
The two highest data points
are statistically significant at the
99% level. The curve is a fit to
a theoretical model. Redrawn
from T.D. Luckey, Hormesis with
Ionizing Radiation, CRC Press,
1980.

some people at Nagasaki and Hiroshima. No acute symptoms result
from this level of exposure, but certain types of cancer are signifi-
cantly more common among these people. It was originally expected
that the radiation would cause many mutations resulting in birth
defects, but very few such inherited effects have been observed.

A great deal of time has been spent debating the effects of very
low levels of ionizing radiation. The following table gives some sam-
ple figures.

maximum beneficial dose per day ∼ 10,000 µSv
CT scan ∼ 10,000 µSv
natural background per year 2,000-7,000 µSv
health guidelines for exposure to a fetus 1,000 µSv
flying from New York to Tokyo 150 µSv
chest x-ray 50 µSv

Note that the largest number, on the first line of the table, is the
maximum beneficial dose. The most useful evidence comes from
experiments in animals, which can intentionally be exposed to sig-
nificant and well measured doses of radiation under controlled con-
ditions. Experiments show that low levels of radiation activate cel-
lular damage control mechanisms, increasing the health of the or-
ganism. For example, exposure to radiation up to a certain level
makes mice grow faster; makes guinea pigs’ immune systems func-
tion better against diptheria; increases fertility in trout and mice;
improves fetal mice’s resistance to disease; increases the life-spans of
flour beetles and mice; and reduces mortality from cancer in mice.3

This type of effect is called radiation hormesis.

There is also some evidence that in humans, small doses of ra-
diation increase fertility, reduce genetic abnormalities, and reduce
mortality from cancer. The human data, however, tend to be very
poor compared to the animal data. Due to ethical issues, one cannot
do controlled experiments in humans. For example, one of the best
sources of information has been from the survivors of the Hiroshima
and Nagasaki bomb blasts, but these people were also exposed to
high levels of carcinogenic chemicals in the smoke from their burning
cities; for comparison, firefighters have a heightened risk of cancer,
and there are also significant concerns about cancer from the 9/11
attacks in New York. The direct empirical evidence about radiation
hormesis in humans is therefore not good enough to tell us anything
unambiguous,4 and the most scientifically reasonable approach is to
assume that the results in animals also hold for humans: small doses
of radiation in humans are beneficial, rather than harmful. However,

3Radiation Hormesis Overview, T.D. Luckey, www.radpro.com/641luckey.pdf
4For two opposing viewpoints, see Tubiana et al., “The Linear No-Threshold

Relationship Is Inconsistent with Radiation Biologic and Experimental Data,”
Radiology, 251 (2009) 13 and Little et al., “ Risks Associated with Low Doses
and Low Dose Rates of Ionizing Radiation: Why Linearity May Be (Almost) the
Best We Can Do,” Radiology, 251 (2009) 6.
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y / Wild Przewalski’s horses
prosper in the Chernobyl area.

z / Fossil fuels have done in-
comparably more damage to the
environment than nuclear power
ever has. Polar bears’ habitat is
rapidly being destroyed by global
warming.

a variety of cultural and historical factors have led to a situation in
which public health policy is based on the assumption, known as
“linear no-threshold” (LNT), that even tiny doses of radiation are
harmful, and that the risk they carry is proportional to the dose.
In other words, law and policy are made based on the assumption
that the effects of radiation on humans are dramatically different
than its effects on mice and guinea pigs. Even with the unrealis-
tic assumption of LNT, one can still evaluate risks by comparing
with natural background radiation. For example, we can see that
the effect of a chest x-ray is about a hundred times smaller than
the effect of spending a year in Colorado, where the level of natural
background radiation from cosmic rays is higher than average, due
to the high altitude. Dropping the implausible LNT assumption, we
can see that the impact on one’s health of spending a year in Col-
orado is likely to be positive, because the excess radiation is below
the maximum beneficial level.

In the late twentieth century, antinuclear activists largely suc-
ceeded in bringing construction of new nuclear power plants to a
halt in the U.S. Ironically, we now know that the burning of fossil
fuels, which leads to global warming, is a far more grave threat to
the environment than even the Chernobyl disaster. A team of bi-
ologists writes: ”During recent visits to Chernobyl, we experienced
numerous sightings of moose (Alces alces), roe deer (Capreol capre-
olus), Russian wild boar (Sus scrofa), foxes (Vulpes vulpes), river
otter (Lutra canadensis), and rabbits (Lepus europaeus) ... Diver-
sity of flowers and other plants in the highly radioactive regions is
impressive and equals that observed in protected habitats outside
the zone ... The observation that typical human activity (industrial-
ization, farming, cattle raising, collection of firewood, hunting, etc.)
is more devastating to biodiversity and abundance of local flora and
fauna than is the worst nuclear power plant disaster validates the
negative impact the exponential growth of human populations has
on wildlife.”5 Nuclear power is the only source of energy that is
sufficient to replace any significant percentage of energy from fossil
fuels on the rapid schedule demanded by the speed at which global
warming is progressing. People worried about the downside of nu-
clear energy might be better off putting their energy into issues
related to nuclear weapons: the poor stewardship of the former So-
viet Union’s warheads; nuclear proliferation in unstable states such
as Pakistan; and the poor safety and environmental history of the
superpowers’ nuclear weapons programs, including the loss of sev-
eral warheads in plane crashes, and the environmental disaster at

5Baker and Chesser, Env. Toxicology and Chem. 19 (1231) 2000. Similar
effects have been seen at the Bikini Atoll, the site of a 1954 hydrogen bomb test.
Although some species have disappeared from the area, the coral reef is in many
ways healthier than similar reefs elsewhere, because humans have tended to stay
away for fear of radiation (Richards et al., Marine Pollution Bulletin 56 (2008)
503).
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aa / The Crab Nebula is a
remnant of a supernova explo-
sion. Almost all the elements our
planet is made of originated in
such explosions.

ab / Construction of the UNI-
LAC accelerator in Germany, one
of whose uses is for experiments
to create very heavy artificial
elements. In such an experiment,
fusion products recoil through a
device called SHIP (not shown)
that separates them based on
their charge-to-mass ratios —
it is essentially just a scaled-up
version of Thomson’s appara-
tus. A typical experiment runs
for several months, and out of
the billions of fusion reactions
induced during this time, only
one or two may result in the
production of superheavy atoms.
In all the rest, the fused nucleus
breaks up immediately. SHIP
is used to identify the small
number of “good” reactions and
separate them from this intense
background.

the Hanford, Washington weapons plant.

Discussion Questions

A Should the quality factor for neutrinos be very small, because they
mostly don’t interact with your body?

B Would an alpha source be likely to cause different types of cancer
depending on whether the source was external to the body or swallowed
in contaminated food? What about a gamma source?

2.10 ? The Creation of the Elements
Creation of hydrogen and helium in the Big Bang

Did all the chemical elements we’re made of come into being in
the big bang?6 Temperatures in the first microseconds after the big
bang were so high that atoms and nuclei could not hold together
at all. After things had cooled down enough for nuclei and atoms
to exist, there was a period of about three minutes during which
the temperature and density were high enough for fusion to occur,
but not so high that atoms could hold together. We have a good,
detailed understanding of the laws of physics that apply under these
conditions, so theorists are able to say with confidence that the
only element heavier than hydrogen that was created in significant
quantities was helium.

We are stardust

In that case, where did all the other elements come from? As-
tronomers came up with the answer. By studying the combinations
of wavelengths of light, called spectra, emitted by various stars, they
had been able to determine what kinds of atoms they contained.
(We will have more to say about spectra at the end of this book.)
They found that the stars fell into two groups. One type was nearly
100% hydrogen and helium, while the other contained 99% hydrogen
and helium and 1% other elements. They interpreted these as two
generations of stars. The first generation had formed out of clouds
of gas that came fresh from the big bang, and their composition
reflected that of the early universe. The nuclear fusion reactions
by which they shine have mainly just increased the proportion of
helium relative to hydrogen, without making any heavier elements.
The members of the first generation that we see today, however, are
only those that lived a long time. Small stars are more miserly with
their fuel than large stars, which have short lives. The large stars of
the first generation have already finished their lives. Near the end of
its lifetime, a star runs out of hydrogen fuel and undergoes a series
of violent and spectacular reorganizations as it fuses heavier and
heavier elements. Very large stars finish this sequence of events by
undergoing supernova explosions, in which some of their material is

6The evidence for the big bang theory of the origin of the universe was dis-
cussed in book 3 of this series.
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flung off into the void while the rest collapses into an exotic object
such as a black hole or neutron star.

The second generation of stars, of which our own sun is an exam-
ple, condensed out of clouds of gas that had been enriched in heavy
elements due to supernova explosions. It is those heavy elements
that make up our planet and our bodies.

Artificial synthesis of heavy elements

Elements up to uranium, atomic number 92, were created by
these astronomical processes. Beyond that, the increasing electrical
repulsion of the protons leads to shorter and shorter half-lives. Even
if a supernova a billion years ago did create some quantity of an
element such as Berkelium, number 97, there would be none left in
the Earth’s crust today. The heaviest elements have all been created
by artificial fusion reactions in accelerators. As of 2006, the heaviest
element that has been created is 116.7

Although the creation of a new element, i.e., an atom with a
novel number of protons, has historically been considered a glam-
orous accomplishment, to the nuclear physicist the creation of an
atom with a hitherto unobserved number of neutrons is equally im-
portant. The greatest neutron number reached so far is 179. One
tantalizing goal of this type of research is the theoretical prediction
that there might be an island of stability beyond the previously ex-
plored tip of the chart of the nuclei shown in section 2.8. Just as
certain numbers of electrons lead to the chemical stability of the no-
ble gases (helium, neon, argon, ...), certain numbers of neutrons and
protons lead to a particularly stable packing of orbits. Calculations
dating back to the 1960’s have hinted that there might be relatively
stable nuclei having approximately 114 protons and 184 neutrons.
The isotopes of elements 114 and 116 that have been produced so
far have had half-lives in the second or millosecond range. This
may not seem like very long, but lifetimes in the microsecond range
are more typical for the superheavy elements that have previously
been discovered. There is even speculation that certain superheavy
isotopes would be stable enough to be produced in quantities that
could for instance be weighed and used in chemical reactions.

7An earlier claim of the creation of element 116 by a group at Berkeley turned
out to be a case of scientific fraud, but the element was later produced by a
different group, at Dubna, Russia.
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Summary
Selected Vocabulary
alpha particle . . a form of radioactivity consisting of helium nu-

clei
beta particle . . . a form of radioactivity consisting of electrons
gamma ray . . . . a form of radioactivity consisting of a very

high-frequency form of light
proton . . . . . . a positively charged particle, one of the types

that nuclei are made of
neutron . . . . . . an uncharged particle, the other types that nu-

clei are made of
isotope . . . . . . one of the possible varieties of atoms of a given

element, having a certain number of neutrons
atomic number . the number of protons in an atom’s nucleus;

determines what element it is
atomic mass . . . the mass of an atom
mass number . . the number of protons plus the number of neu-

trons in a nucleus; approximately proportional
to its atomic mass

strong nuclear
force . . . . . . . .

the force that holds nuclei together against
electrical repulsion

weak nuclear
force . . . . . . . .

the force responsible for beta decay

beta decay . . . . the radioactive decay of a nucleus via the re-
action n → p + e− + ν̄ or p → n + e+ + ν;
so called because an electron or antielectron is
also known as a beta particle

alpha decay . . . the radioactive decay of a nucleus via emission
of an alpha particle

fission . . . . . . . the radioactive decay of a nucleus by splitting
into two parts

fusion . . . . . . . a nuclear reaction in which two nuclei stick
together to form one bigger nucleus

millirem . . . . . a unit for measuring a person’s exposure to
radioactivity

Notation
e− . . . . . . . . . an electron
e+ . . . . . . . . . an antielectron; just like an electron, but with

positive charge
n . . . . . . . . . . a neutron
p . . . . . . . . . . a proton
ν . . . . . . . . . . a neutrino
ν̄ . . . . . . . . . . an antineutrino
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Other Terminology and Notation
Z . . . . . . . . . atomic number (number of protons in a nu-

cleus)
N . . . . . . . . . number of neutrons in a nucleus
A . . . . . . . . . mass number (N + Z)

Summary

Rutherford and Marsden observed that some alpha particles
from a beam striking a thin gold foil came back at angles up to
180 degrees. This could not be explained in the then-favored raisin
-cookie model of the atom, and led to the adoption of the planetary
model of the atom, in which the electrons orbit a tiny, positively-
charged nucleus. Further experiments showed that the nucleus itself
was a cluster of positively-charged protons and uncharged neutrons.

Radioactive nuclei are those that can release energy. The most
common types of radioactivity are alpha decay (the emission of a
helium nucleus), beta decay (the transformation of a neutron into
a proton or vice-versa), and gamma decay (the emission of a type
of very-high-frequency light). Stars are powered by nuclear fusion
reactions, in which two light nuclei collide and form a bigger nucleus,
with the release of energy.

Human exposure to ionizing radiation is measured in units of
millirem. The typical person is exposed to about 200 mrem worth
of natural background radiation per year.

Exploring Further

The First Three Minutes, Steven Weinberg. This book de-
scribes the first three minutes of the universe’s existence.
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Problem 1.

Problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A helium atom finds itself momentarily in this arrangement.
Find the direction and magnitude of the force acting on the right-
hand electron. The two protons in the nucleus are so close together
(∼ 1 fm) that you can consider them as being right on top of each
other.

√

2 The helium atom of problem 1 has some new experiences, goes
through some life changes, and later on finds itself in the configura-
tion shown here. What are the direction and magnitude of the force
acting on the bottom electron? (Draw a sketch to make clear the
definition you are using for the angle that gives direction.)

√

3 Suppose you are holding your hands in front of you, 10 cm
apart.
(a) Estimate the total number of electrons in each hand.

√

(b) Estimate the total repulsive force of all the electrons in one hand
on all the electrons in the other.

√

(c) Why don’t you feel your hands repelling each other?
(d) Estimate how much the charge of a proton could differ in mag-
nitude from the charge of an electron without creating a noticeable
force between your hands.

4 Suppose that a proton in a lead nucleus wanders out to the
surface of the nucleus, and experiences a strong nuclear force of
about 8 kN from the nearby neutrons and protons pulling it back
in. Compare this numerically to the repulsive electrical force from
the other protons, and verify that the net force is attractive. A lead
nucleus is very nearly spherical, and is about 6.5 fm in radius.

√

5 The subatomic particles called muons behave exactly like elec-
trons, except that a muon’s mass is greater by a factor of 206.77.
Muons are continually bombarding the Earth as part of the stream
of particles from space known as cosmic rays. When a muon strikes
an atom, it can displace one of its electrons. If the atom happens
to be a hydrogen atom, then the muon takes up an orbit that is on
the average 206.77 times closer to the proton than the orbit of the
ejected electron. How many times greater is the electric force experi-
enced by the muon than that previously felt by the electron?

√

6 The nuclear process of beta decay by electron capture is de-
scribed parenthetically in section 2.6. The reaction is p+e− → n+ν.
(a) Show that charge is conserved in this reaction.
(b) Conversion between energy and mass is discussed in the optional
topic on page 65. Based on these ideas, explain why electron cap-
ture doesn’t occur in hydrogen atoms. (If it did, matter wouldn’t
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exist!)
. Solution, p. 206

7 234Pu decays either by electron decay or by alpha decay. (A
given 234Pu nucleus may do either one; it’s random.) What are the
isotopes created as products of these two modes of decay?
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Chapter 3

Circuits, Part 1

Madam, what good is a baby? Michael Faraday, when asked by
Queen Victoria what the electrical devices in his lab were good for

A few years ago, my wife and I bought a house with Character,
Character being a survival mechanism that houses have evolved in
order to convince humans to agree to much larger mortgage pay-
ments than they’d originally envisioned. Anyway, one of the fea-
tures that gives our house Character is that it possesses, built into
the wall of the family room, a set of three pachinko machines. These
are Japanese gambling devices sort of like vertical pinball machines.
(The legal papers we got from the sellers hastened to tell us that
they were “for amusement purposes only.”) Unfortunately, only one
of the three machines was working when we moved in, and it soon
died on us. Having become a pachinko addict, I decided to fix it,
but that was easier said than done. The inside is a veritable Rube
Goldberg mechanism of levers, hooks, springs, and chutes. My hor-
monal pride, combined with my Ph.D. in physics, made me certain
of success, and rendered my eventual utter failure all the more de-
moralizing.

Contemplating my defeat, I realized how few complex mechan-
ical devices I used from day to day. Apart from our cars and my
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a / Gymnotus carapo, a knifefish,
uses electrical signals to sense
its environment and to commu-
nicate with others of its species.

saxophone, every technological tool in our modern life-support sys-
tem was electronic rather than mechanical.

3.1 Current
Unity of all types of electricity

We are surrounded by things we have been told are “electrical,”
but it’s far from obvious what they have in common to justify being
grouped together. What relationship is there between the way socks
cling together and the way a battery lights a lightbulb? We have
been told that both an electric eel and our own brains are somehow
electrical in nature, but what do they have in common?

British physicist Michael Faraday (1791-1867) set out to address
this problem. He investigated electricity from a variety of sources
— including electric eels! — to see whether they could all produce
the same effects, such as shocks and sparks, attraction and repul-
sion. “Heating” refers, for example, to the way a lightbulb filament
gets hot enough to glow and emit light. Magnetic induction is an
effect discovered by Faraday himself that connects electricity and
magnetism. We will not study this effect, which is the basis for the
electric generator, in detail until later in the book.

source effect
attraction and

shocks sparks repulsion heating
rubbing

√ √ √ √

battery
√ √ √ √

animal
√ √

(
√

)
√

magnetically
induced

√ √ √ √

The table shows a summary of some of Faraday’s results. Check
marks indicate that Faraday or his close contemporaries were able to
verify that a particular source of electricity was capable of producing
a certain effect. (They evidently failed to demonstrate attraction
and repulsion between objects charged by electric eels, although
modern workers have studied these species in detail and been able
to understand all their electrical characteristics on the same footing
as other forms of electricity.)

Faraday’s results indicate that there is nothing fundamentally
different about the types of electricity supplied by the various sources.
They are all able to produce a wide variety of identical effects. Wrote
Faraday, “The general conclusion which must be drawn from this
collection of facts is that electricity, whatever may be its source, is
identical in its nature.”
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b / André Marie Ampère (1775-
1836).

If the types of electricity are the same thing, what thing is that?
The answer is provided by the fact that all the sources of electricity
can cause objects to repel or attract each other. We use the word
“charge” to describe the property of an object that allows it to
participate in such electrical forces, and we have learned that charge
is present in matter in the form of nuclei and electrons. Evidently
all these electrical phenomena boil down to the motion of charged
particles in matter.

Electric current
If the fundamental phenomenon is the motion of charged parti-

cles, then how can we define a useful numerical measurement of it?
We might describe the flow of a river simply by the velocity of the
water, but velocity will not be appropriate for electrical purposes
because we need to take into account how much charge the moving
particles have, and in any case there are no practical devices sold
at Radio Shack that can tell us the velocity of charged particles.
Experiments show that the intensity of various electrical effects is
related to a different quantity: the number of coulombs of charge
that pass by a certain point per second. By analogy with the flow
of water, this quantity is called the electric current, I. Its units
of coulombs/second are more conveniently abbreviated as amperes,
1 A=1 C/s. (In informal speech, one usually says “amps.”)

The main subtlety involved in this definition is how to account
for the two types of charge. The stream of water coming from a
hose is made of atoms containing charged particles, but it produces
none of the effects we associate with electric currents. For example,
you do not get an electrical shock when you are sprayed by a hose.
This type of experiment shows that the effect created by the motion
of one type of charged particle can be canceled out by the motion of
the opposite type of charge in the same direction. In water, every
oxygen atom with a charge of +8e is surrounded by eight electrons
with charges of −e, and likewise for the hydrogen atoms.

We therefore refine our definition of current as follows:

definition of electric current
When charged particles are exchanged between regions of space
A and B, the electric current flowing from A to B is

I =
∆q

∆t
,

where ∆q is the change in region B’s total charge occurring
over a period of time ∆t.

In the garden hose example, your body picks up equal amounts of
positive and negative charge, resulting in no change in your total
charge, so the electrical current flowing into you is zero.
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Interpretation of ∆q/∆t example 1
. How should the expression ∆q/∆t be interpreted when the cur-
rent isn’t constant?

. You’ve seen lots of equations of this form before: v = ∆x/∆t ,
F = ∆p/∆t , etc. These are all descriptions of rates of change,
and they all require that the rate of change be constant. If the
rate of change isn’t constant, you instead have to use the slope
of the tangent line on a graph. The slope of a tangent line is
equivalent to a derivative in calculus; applications of calculus are
discussed in section 3.6.

Ions moving across a cell membrane example 2
. Figure c shows ions, labeled with their charges, moving in or
out through the membranes of three cells. If the ions all cross
the membranes during the same interval of time, how would the
currents into the cells compare with each other?

. Cell A has positive current going into it because its charge is
increased, i.e., has a positive value of ∆q.

Cell B has the same current as cell A, because by losing one unit
of negative charge it also ends up increasing its own total charge
by one unit.

Cell C’s total charge is reduced by three units, so it has a large
negative current going into it.

Cell D loses one unit of charge, so it has a small negative current
into it.

c / Example 2

It may seem strange to say that a negatively charged particle
going one way creates a current going the other way, but this is
quite ordinary. As we will see, currents flow through metal wires
via the motion of electrons, which are negatively charged, so the
direction of motion of the electrons in a circuit is always opposite to
the direction of the current. Of course it would have been convenient
of Benjamin Franklin had defined the positive and negative signs of
charge the opposite way, since so many electrical devices are based
on metal wires.
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d / 1. Static electricity runs
out quickly. 2. A practical circuit.
3. An open circuit. 4. How an
ammeter works. 5. Measuring
the current with an ammeter.

Number of electrons flowing through a lightbulb example 3
. If a lightbulb has 1.0 A flowing through it, how many electrons
will pass through the filament in 1.0 s?

. We are only calculating the number of electrons that flow, so we
can ignore the positive and negative signs. Solving for ∆q = I∆t
gives a charge of 1.0 C flowing in this time interval. The number
of electrons is

number of electrons = coulombs× electrons
coulomb

= coulombs/
coulombs
electron

= 1.0 C/e

= 6.2× 1018

3.2 Circuits
How can we put electric currents to work? The only method of
controlling electric charge we have studied so far is to charge differ-
ent substances, e.g., rubber and fur, by rubbing them against each
other. Figure d/1 shows an attempt to use this technique to light
a lightbulb. This method is unsatisfactory. True, current will flow
through the bulb, since electrons can move through metal wires, and
the excess electrons on the rubber rod will therefore come through
the wires and bulb due to the attraction of the positively charged
fur and the repulsion of the other electrons. The problem is that
after a zillionth of a second of current, the rod and fur will both have
run out of charge. No more current will flow, and the lightbulb will
go out.

Figure d/2 shows a setup that works. The battery pushes charge
through the circuit, and recycles it over and over again. (We will
have more to say later in this chapter about how batteries work.)
This is called a complete circuit. Today, the electrical use of the
word “circuit” is the only one that springs to mind for most people,
but the original meaning was to travel around and make a round
trip, as when a circuit court judge would ride around the boondocks,
dispensing justice in each town on a certain date.

Note that an example like d/3 does not work. The wire will
quickly begin acquiring a net charge, because it has no way to get
rid of the charge flowing into it. The repulsion of this charge will
make it more and more difficult to send any more charge in, and
soon the electrical forces exerted by the battery will be canceled
out completely. The whole process would be over so quickly that
the filament would not even have enough time to get hot and glow.
This is known as an open circuit. Exactly the same thing would
happen if the complete circuit of figure d/2 was cut somewhere with
a pair of scissors, and in fact that is essentially how an ordinary
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light switch works: by opening up a gap in the circuit.

The definition of electric current we have developed has the great
virtue that it is easy to measure. In practical electrical work, one
almost always measures current, not charge. The instrument used to
measure current is called an ammeter. A simplified ammeter, d/4,
simply consists of a coiled-wire magnet whose force twists an iron
needle against the resistance of a spring. The greater the current,
the greater the force. Although the construction of ammeters may
differ, their use is always the same. We break into the path of the
electric current and interpose the meter like a tollbooth on a road,
d/5. There is still a complete circuit, and as far as the battery and
bulb are concerned, the ammeter is just another segment of wire.

Does it matter where in the circuit we place the ammeter? Could
we, for instance, have put it in the left side of the circuit instead
of the right? Conservation of charge tells us that this can make no
difference. Charge is not destroyed or “used up” by the lightbulb,
so we will get the same current reading on either side of it. What is
“used up” is energy stored in the battery, which is being converted
into heat and light energy.

3.3 Voltage
The volt unit

Electrical circuits can be used for sending signals, storing infor-
mation, or doing calculations, but their most common purpose by
far is to manipulate energy, as in the battery-and-bulb example of
the previous section. We know that lightbulbs are rated in units of
watts, i.e., how many joules per second of energy they can convert
into heat and light, but how would this relate to the flow of charge as
measured in amperes? By way of analogy, suppose your friend, who
didn’t take physics, can’t find any job better than pitching bales of
hay. The number of calories he burns per hour will certainly depend
on how many bales he pitches per minute, but it will also be pro-
portional to how much mechanical work he has to do on each bale.
If his job is to toss them up into a hayloft, he will get tired a lot
more quickly than someone who merely tips bales off a loading dock
into trucks. In metric units,

joules

second
=

haybales

second
× joules

haybale
.

Similarly, the rate of energy transformation by a battery will not
just depend on how many coulombs per second it pushes through a
circuit but also on how much mechanical work it has to do on each
coulomb of charge:

joules

second
=

coulombs

second
× joules

coulomb
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e / Alessandro Volta (1745-1827).

or

power = current× work per unit charge .

Units of joules per coulomb are abbreviated as volts, 1 V=1 J/C,
named after the Italian physicist Alessandro Volta. Everyone knows
that batteries are rated in units of volts, but the voltage concept is
more general than that; it turns out that voltage is a property of
every point in space. To gain more insight, let’s think more carefully
about what goes on in the battery and bulb circuit.

The voltage concept in general

To do work on a charged particle, the battery apparently must be
exerting forces on it. How does it do this? Well, the only thing that
can exert an electrical force on a charged particle is another charged
particle. It’s as though the haybales were pushing and pulling each
other into the hayloft! This is potentially a horribly complicated
situation. Even if we knew how much excess positive or negative
charge there was at every point in the circuit (which realistically we
don’t) we would have to calculate zillions of forces using Coulomb’s
law, perform all the vector additions, and finally calculate how much
work was being done on the charges as they moved along. To make
things even more scary, there is more than one type of charged
particle that moves: electrons are what move in the wires and the
bulb’s filament, but ions are the moving charge carriers inside the
battery. Luckily, there are two ways in which we can simplify things:

The situation is unchanging. Unlike the imaginary setup
in which we attempted to light a bulb using a rubber rod and a
piece of fur, this circuit maintains itself in a steady state (after
perhaps a microsecond-long period of settling down after the
circuit is first assembled). The current is steady, and as charge
flows out of any area of the circuit it is replaced by the same
amount of charge flowing in. The amount of excess positive
or negative charge in any part of the circuit therefore stays
constant. Similarly, when we watch a river flowing, the water
goes by but the river doesn’t disappear.

Force depends only on position. Since the charge distri-
bution is not changing, the total electrical force on a charged
particle depends only on its own charge and on its location.
If another charged particle of the same type visits the same
location later on, it will feel exactly the same force.

The second observation tells us that there is nothing all that
different about the experience of one charged particle as compared
to another’s. If we single out one particle to pay attention to, and
figure out the amount of work done on it by electrical forces as it
goes from point A to point B along a certain path, then this is
the same amount of work that will be done on any other charged
particles of the same type as it follows the same path. For the sake of
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f / Example 4.

visualization, let’s think about the path that starts at one terminal
of the battery, goes through the light bulb’s filament, and ends at
the other terminal. When an object experiences a force that depends
only on its position (and when certain other, technical conditions
are satisfied), we can define an electrical energy associated with the
position of that object. The amount of work done on the particle
by electrical forces as it moves from A to B equals the drop in
electrical energy between A and B. This electrical energy is what is
being converted into other forms of energy such as heat and light.
We therefore define voltage in general as electrical energy per unit
charge:

definition of voltage difference
The difference in voltage between two points in space is de-

fined as
∆V = ∆PEelec/q ,

where ∆PEelec is the change in the electrical energy of a par-
ticle with charge q as it moves from the initial point to the
final point.

The amount of power dissipated (i.e., rate at which energy
is transformed by the flow of electricity) is then given by the
equation

P = I∆V .

Energy stored in a battery example 4
. The 1.2 V rechargeable battery in figure f is labeled 1800 milliamp-
hours. What is the maximum amount of energy the battery can
store?

. An ampere-hour is a unit of current multiplied by a unit of time.
Current is charge per unit time, so an ampere-hour is in fact a
funny unit of charge:

(1 A)(1 hour) = (1 C/s)(3600 s)
= 3600 C

1800 milliamp-hours is therefore 1800 × 10−3 × 3600 C = 6.5 ×
103 C. That’s a huge number of charged particles, but the total
loss of electrical energy will just be their total charge multiplied by
the voltage difference across which they move:

∆PEelec = q∆V

= (6.5× 103 C)(1.2 V)
= 7.8 kJ

Units of volt-amps example 5
. Doorbells are often rated in volt-amps. What does this combi-
nation of units mean?
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. Current times voltage gives units of power, P = I∆V , so volt-
amps are really just a nonstandard way of writing watts. They are
telling you how much power the doorbell requires.

Power dissipated by a battery and bulb example 6
. If a 9.0-volt battery causes 1.0 A to flow through a lightbulb, how
much power is dissipated?

. The voltage rating of a battery tells us what voltage difference
∆V it is designed to maintain between its terminals.

P = I ∆V
= 9.0 A · V

= 9.0
C
s
· J

C
= 9.0 J/s
= 9.0 W

The only nontrivial thing in this problem was dealing with the units.
One quickly gets used to translating common combinations like
A · V into simpler terms.

Here are a few questions and answers about the voltage concept.

Question: OK, so what is voltage, really?
Answer: A device like a battery has positive and negative charges
inside it that push other charges around the outside circuit. A
higher-voltage battery has denser charges in it, which will do more
work on each charged particle that moves through the outside cir-
cuit.

To use a gravitational analogy, we can put a paddlewheel at the
bottom of either a tall waterfall or a short one, but a kg of water
that falls through the greater gravitational energy difference will
have more energy to give up to the paddlewheel at the bottom.

Question: Why do we define voltage as electrical energy divided by
charge, instead of just defining it as electrical energy?
Answer: One answer is that it’s the only definition that makes the
equation P = I∆V work. A more general answer is that we want
to be able to define a voltage difference between any two points
in space without having to know in advance how much charge the
particles moving between them will have. If you put a nine-volt
battery on your tongue, then the charged particles that move across
your tongue and give you that tingly sensation are not electrons but
ions, which may have charges of +e, −2e, or practically anything.
The manufacturer probably expected the battery to be used mostly
in circuits with metal wires, where the charged particles that flowed
would be electrons with charges of −e. If the ones flowing across
your tongue happen to have charges of −2e, the electrical energy
difference for them will be twice as much, but dividing by their
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charge of −2e in the definition of voltage will still give a result of 9
V .

Question: Are there two separate roles for the charged particles in
the circuit, a type that sits still and exerts the forces, and another
that moves under the influence of those forces?
Answer: No. Every charged particle simultaneously plays both
roles. Newton’s third law says that any particle that has an electri-
cal force acting on it must also be exerting an electrical force back on
the other particle. There are no “designated movers” or “designated
force-makers.”

Question: Why does the definition of voltage only refer to voltage
differences?
Answer: It’s perfectly OK to define voltage as V = PEelec/q. But
recall that it is only differences in interaction energy, U , that have
direct physical meaning in physics. Similarly, voltage differences are
really more useful than absolute voltages. A voltmeter measures
voltage differences, not absolute voltages.

Discussion Questions

A A roller coaster is sort of like an electric circuit, but it uses gravi-
tational forces on the cars instead of electric ones. What would a high-
voltage roller coaster be like? What would a high-current roller coaster be
like?

B Criticize the following statements:

“He touched the wire, and 10000 volts went through him.”

“That battery has a charge of 9 volts.”

“You used up the charge of the battery.”

C When you touch a 9-volt battery to your tongue, both positive and
negative ions move through your saliva. Which ions go which way?

D I once touched a piece of physics apparatus that had been wired
incorrectly, and got a several-thousand-volt voltage difference across my
hand. I was not injured. For what possible reason would the shock have
had insufficient power to hurt me?
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3.4 Resistance
Resistance

So far we have simply presented it as an observed fact that a
battery-and-bulb circuit quickly settles down to a steady flow, but
why should it? Newton’s second law, a = F/m, would seem to
predict that the steady forces on the charged particles should make
them whip around the circuit faster and faster. The answer is that as
charged particles move through matter, there are always forces, anal-
ogous to frictional forces, that resist the motion. These forces need
to be included in Newton’s second law, which is really a = Ftotal/m,
not a = F/m. If, by analogy, you push a crate across the floor at
constant speed, i.e., with zero acceleration, the total force on it must
be zero. After you get the crate going, the floor’s frictional force is
exactly canceling out your force. The chemical energy stored in
your body is being transformed into heat in the crate and the floor,
and no longer into an increase in the crate’s kinetic energy. Simi-
larly, the battery’s internal chemical energy is converted into heat,
not into perpetually increasing the charged particles’ kinetic energy.
Changing energy into heat may be a nuisance in some circuits, such
as a computer chip, but it is vital in a lightbulb, which must get hot
enough to glow. Whether we like it or not, this kind of heating effect
is going to occur any time charged particles move through matter.

What determines the amount of heating? One flashlight bulb
designed to work with a 9-volt battery might be labeled 1.0 watts,
another 5.0. How does this work? Even without knowing the details
of this type of friction at the atomic level, we can relate the heat
dissipation to the amount of current that flows via the equation
P = I∆V. If the two flashlight bulbs can have two different values
of P when used with a battery that maintains the same ∆V , it
must be that the 5.0-watt bulb allows five times more current to
flow through it.

For many substances, including the tungsten from which light-
bulb filaments are made, experiments show that the amount of cur-
rent that will flow through it is directly proportional to the voltage
difference placed across it. For an object made of such a substance,
we define its electrical resistance as follows:

definition of resistance
If an object inserted in a circuit displays a current flow pro-
portional to the voltage difference across it, then we define its
resistance as the constant ratio

R = ∆V/I

The units of resistance are volts/ampere, usually abbreviated as
ohms, symbolized with the capital Greek letter omega, Ω.
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h / Four objects made of the
same substance have different
resistances.

Resistance of a lightbulb example 7
. A flashlight bulb powered by a 9-volt battery has a resistance of
10 Ω. How much current will it draw?

. Solving the definition of resistance for I, we find

I = ∆V/R
= 0.9 V/Ω
= 0.9 V/(V/A)
= 0.9 A

Ohm’s law states that many substances, including many solids
and some liquids, display this kind of behavior, at least for voltages
that are not too large. The fact that Ohm’s law is called a “law”
should not be taken to mean that all materials obey it, or that it has
the same fundamental importance as Newton’s laws, for example.
Materials are called ohmic or nonohmic, depending on whether they
obey Ohm’s law. Although we will concentrate on ohmic materials
in this book, it’s important to keep in mind that a great many
materials are nonohmic, and devices made from them are often very
important. For instance, a transistor is a nonohmic device that can
be used to amplify a signal (as in a guitar amplifier) or to store and
manipulate the ones and zeroes in a computer chip.

If objects of the same size and shape made from two different
ohmic materials have different resistances, we can say that one ma-
terial is more resistive than the other, or equivalently that it is less
conductive. Materials, such as metals, that are very conductive are
said to be good conductors. Those that are extremely poor conduc-
tors, for example wood or rubber, are classified as insulators. There
is no sharp distinction between the two classes of materials. Some,
such as silicon, lie midway between the two extremes, and are called
semiconductors.

On an intuitive level, we can understand the idea of resistance
by making the sounds “hhhhhh” and “ffffff.” To make air flow out
of your mouth, you use your diaphragm to compress the air in your
chest. The pressure difference between your chest and the air outside
your mouth is analogous to a voltage difference. When you make the
“h” sound, you form your mouth and throat in a way that allows air
to flow easily. The large flow of air is like a large current. Dividing
by a large current in the definition of resistance means that we get
a small resistance. We say that the small resistance of your mouth
and throat allows a large current to flow. When you make the “f”
sound, you increase the resistance and cause a smaller current to
flow.

Note that although the resistance of an object depends on the
substance it is made of, we cannot speak simply of the “resistance
of gold” or the “resistance of wood.” Figure h shows four examples
of objects that have had wires attached at the ends as electrical
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connections. If they were made of the same substance, they would
all nevertheless have different resistances because of their different
sizes and shapes. A more detailed discussion will be more natural
in the context of the following chapter, but it should not be too
surprising that the resistance of h/2 will be greater than that of h/1
— the image of water flowing through a pipe, however incorrect,
gives us the right intuition. Object h/3 will have a smaller resistance
than h/1 because the charged particles have less of it to get through.

Superconductors

All materials display some variation in resistance according to
temperature (a fact that is used in thermostats to make a ther-
mometer that can be easily interfaced to an electric circuit). More
spectacularly, most metals have been found to exhibit a sudden
change to zero resistance when cooled to a certain critical temper-
ature. They are then said to be superconductors. Theoretically,
superconductors should make a great many exciting devices possi-
ble, for example coiled-wire magnets that could be used to levitate
trains. In practice, the critical temperatures of all metals are very
low, and the resulting need for extreme refrigeration has made their
use uneconomical except for such specialized applications as particle
accelerators for physics research.

But scientists have recently made the surprising discovery that
certain ceramics are superconductors at less extreme temperatures.
The technological barrier is now in finding practical methods for
making wire out of these brittle materials. Wall Street is currently
investing billions of dollars in developing superconducting devices
for cellular phone relay stations based on these materials. In 2001,
the city of Copenhagen replaced a short section of its electrical power
trunks with superconducing cables, and they are now in operation
and supplying power to customers.

There is currently no satisfactory theory of superconductivity in
general, although superconductivity in metals is understood fairly
well. Unfortunately I have yet to find a fundamental explanation of
superconductivity in metals that works at the introductory level.
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i / A superconducting segment of the ATLAS accelerator at Argonne Na-
tional Laboratory near Chicago. It is used to accelerate beams of ions
to a few percent of the speed of light for nuclear physics research. The
shiny silver-colored surfaces are made of the element niobium, which is a
superconductor at relatively high temperatures compared to other metals
— relatively high meaning the temperature of liquid helium! The beam
of ions passes through the holes in the two small cylinders on the ends
of the curved rods. Charge is shuffled back and forth between them at
a frequency of 12 million cycles per second, so that they take turns be-
ing positive and negative. The positively charged beam consists of short
spurts, each timed so that when it is in one of the segments it will be
pulled forward by negative charge on the cylinder in front of it and pushed
forward by the positively charged one behind. The huge currents involved
(see example 9 on page 99) would quickly melt any metal that was not
superconducting, but in a superconductor they produce no heat at all.

Constant voltage throughout a conductor

The idea of a superconductor leads us to the question of how
we should expect an object to behave if it is made of a very good
conductor. Superconductors are an extreme case, but often a metal
wire can be thought of as a perfect conductor, for example if the
parts of the circuit other than the wire are made of much less con-
ductive materials. What happens if R equals zero in the equation
R = ∆V/I? The result of dividing two numbers can only be zero if
the number on top equals zero. This tells us that if we pick any two
points in a perfect conductor, the voltage difference between them
must be zero. In other words, the entire conductor must be at the
same voltage.

Constant voltage means that no work would be done on a charge
as it moved from one point in the conductor to another. If zero work
was done only along a certain path between two specific points, it
might mean that positive work was done along part of the path and
negative work along the rest, resulting in a cancellation. But there is
no way that the work could come out to be zero for all possible paths
unless the electrical force on a charge was in fact zero at every point.
Suppose, for example, that you build up a static charge by scuffing
your feet on a carpet, and then you deposit some of that charge onto
a doorknob, which is a good conductor. How can all that charge be
in the doorknob without creating any electrical force at any point
inside it? The only possible answer is that the charge moves around
until it has spread itself into just the right configuration so that the
forces exerted by all the little bits of excess surface charge on any
charged particle within the doorknob exactly canceled out.

We can explain this behavior if we assume that the charge placed
on the doorknob eventually settles down into a stable equilibrium.
Since the doorknob is a conductor, the charge is free to move through
it. If it was free to move and any part of it did experience a nonzero
total force from the rest of the charge, then it would move, and we
would not have an equilibrium.
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j / Short-circuiting a battery.
Warning: you can burn yourself
this way or start a fire! If you
want to try this, try making the
connection only very briefly, use
a low-voltage battery, and avoid
touching the battery or the wire,
both of which will get hot.

k / The symbol used in schemat-
ics to represent a resistor.

It also turns out that charge placed on a conductor, once it
reaches its equilibrium configuration, is entirely on the surface, not
on the interior. We will not prove this fact formally, but it is in-
tuitively reasonable. Suppose, for instance, that the net charge on
the conductor is negative, i.e., it has an excess of electrons. These
electrons all repel each other, and this repulsion will tend to push
them onto the surface, since being on the surface allows them to be
as far apart as possible.

Short circuits
So far we have been assuming a perfect conductor. What if it

is a good conductor, but not a perfect one? Then we can solve for
∆V = IR. An ordinary-sized current will make a very small result
when we multiply it by the resistance of a good conductor such as
a metal wire. The voltage throughout the wire will then be nearly
constant. If, on the other hand, the current is extremely large, we
can have a significant voltage difference. This is what happens in a
short-circuit: a circuit in which a low-resistance pathway connects
the two sides of a voltage source. Note that this is much more
specific than the popular use of the term to indicate any electrical
malfunction at all. If, for example, you short-circuit a 9-volt battery
as shown in figure j, you will produce perhaps a thousand amperes
of current, leading to a very large value of P = I∆V . The wire gets
hot!

self-check A
What would happen to the battery in this kind of short circuit? .

Answer, p. 205

Resistors

Inside any electronic gadget you will see quite a few little circuit
elements like the one shown below. These resistors are simply a
cylinder of ohmic material with wires attached to the end.

At this stage, most students have a hard time understanding why
resistors would be used inside a radio or a computer. We obviously
want a lightbulb or an electric stove to have a circuit element that
resists the flow of electricity and heats up, but heating is undesirable
in radios and computers. Without going too far afield, let’s use a
mechanical analogy to get a general idea of why a resistor would be
used in a radio.

The main parts of a radio receiver are an antenna, a tuner for
selecting the frequency, and an amplifier to strengthen the signal
sufficiently to drive a speaker. The tuner resonates at the selected
frequency, just as in the examples of mechanical resonance discussed
in book 3 of this series. The behavior of a mechanical resonator de-
pends on three things: its inertia, its stiffness, and the amount of
friction or damping. The first two parameters locate the peak of
the resonance curve, while the damping determines the width of the
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l / An example of a resistor
with a color code.

color meaning
black 0
brown 1
red 2
orange 3
yellow 4
green 5
blue 6
violet 7
gray 8
white 9
silver ±10%
gold ±5%

m / Color codes used on re-
sistors.

resonance. In the radio tuner we have an electrically vibrating sys-
tem that resonates at a particular frequency. Instead of a physical
object moving back and forth, these vibrations consist of electrical
currents that flow first in one direction and then in the other. In
a mechanical system, damping means taking energy out of the vi-
bration in the form of heat, and exactly the same idea applies to an
electrical system: the resistor supplies the damping, and therefore
controls the width of the resonance. If we set out to eliminate all
resistance in the tuner circuit, by not building in a resistor and by
somehow getting rid of all the inherent electrical resistance of the
wires, we would have a useless radio. The tuner’s resonance would
be so narrow that we could never get close enough to the right fre-
quency to bring in the station. The roles of inertia and stiffness are
played by other circuit elements we have not discusses (a capacitor
and a coil).

Many electrical devices are based on electrical resistance and
Ohm’s law, even if they do not have little components in them that
look like the usual resistor. The following are some examples.

Lightbulb

There is nothing special about a lightbulb filament — you can
easily make a lightbulb by cutting a narrow waist into a metallic
gum wrapper and connecting the wrapper across the terminals of
a 9-volt battery. The trouble is that it will instantly burn out.
Edison solved this technical challenge by encasing the filament in
an evacuated bulb, which prevented burning, since burning requires
oxygen.

Polygraph

The polygraph, or “lie detector,” is really just a set of meters
for recording physical measures of the subject’s psychological stress,
such as sweating and quickened heartbeat. The real-time sweat mea-
surement works on the principle that dry skin is a good insulator,
but sweaty skin is a conductor. Of course a truthful subject may
become nervous simply because of the situation, and a practiced
liar may not even break a sweat. The method’s practitioners claim
that they can tell the difference, but you should think twice before
allowing yourself to be polygraph tested. Most U.S. courts exclude
all polygraph evidence, but some employers attempt to screen out
dishonest employees by polygraph testing job applicants, an abuse
that ranks with such pseudoscience as handwriting analysis.

Fuse

A fuse is a device inserted in a circuit tollbooth-style in the same
manner as an ammeter. It is simply a piece of wire made of metals
having a relatively low melting point. If too much current passes

92 Chapter 3 Circuits, Part 1



n / 1. A simplified diagram of
how a voltmeter works. 2. Mea-
suring the voltage difference
across a lightbulb. 3. The same
setup drawn in schematic form. 4.
The setup for measuring current
is different.

through the fuse, it melts, opening the circuit. The purpose is to
make sure that the building’s wires do not carry so much current
that they themselves will get hot enough to start a fire. Most modern
houses use circuit breakers instead of fuses, although fuses are still
common in cars and small devices. A circuit breaker is a switch
operated by a coiled-wire magnet, which opens the circuit when
enough current flows. The advantage is that once you turn off some
of the appliances that were sucking up too much current, you can
immediately flip the switch closed. In the days of fuses, one might
get caught without a replacement fuse, or even be tempted to stuff
aluminum foil in as a replacement, defeating the safety feature.

Voltmeter

A voltmeter is nothing more than an ammeter with an additional
high-value resistor through which the current is also forced to flow.
Ohm’s law relates the current through the resistor is related directly
to the voltage difference across it, so the meter can be calibrated
in units of volts based on the known value of the resistor. The
voltmeter’s two probes are touched to the two locations in a circuit
between which we wish to measure the voltage difference, n/2. Note
how cumbersome this type of drawing is, and how difficult it can
be to tell what is connected to what. This is why electrical drawing
are usually shown in schematic form. Figure n/3 is a schematic
representation of figure n/2.

The setups for measuring current and voltage are different. When
we are measuring current, we are finding “how much stuff goes
through,” so we place the ammeter where all the current is forced
to go through it. Voltage, however, is not “stuff that goes through,”
it is a measure of electrical energy. If an ammeter is like the meter
that measures your water use, a voltmeter is like a measuring stick
that tells you how high a waterfall is, so that you can determine how
much energy will be released by each kilogram of falling water. We
do not want to force the water to go through the measuring stick!
The arrangement in figure n/3 is a parallel circuit: one in there are
“forks in the road” where some of the current will flow one way and
some will flow the other. Figure n/4 is said to be wired in series:
all the current will visit all the circuit elements one after the other.
We will deal with series and parallel circuits in more detail in the
following chapter.

If you inserted a voltmeter incorrectly, in series with the bulb and
battery, its large internal resistance would cut the current down so
low that the bulb would go out. You would have severely disturbed
the behavior of the circuit by trying to measure something about it.

Incorrectly placing an ammeter in parallel is likely to be even
more disconcerting. The ammeter has nothing but wire inside it to

Section 3.4 Resistance 93



provide resistance, so given the choice, most of the current will flow
through it rather than through the bulb. So much current will flow
through the ammeter, in fact, that there is a danger of burning out
the battery or the meter or both! For this reason, most ammeters
have fuses or circuit breakers inside. Some models will trip their
circuit breakers and make an audible alarm in this situation, while
others will simply blow a fuse and stop working until you replace it.

Discussion Questions

A In figure n/1, would it make any difference in the voltage measure-
ment if we touched the voltmeter’s probes to different points along the
same segments of wire?

B Explain why it would be incorrect to define resistance as the amount
of charge the resistor allows to flow.

3.5 Current-Conducting Properties of
Materials

Ohm’s law has a remarkable property, which is that current will flow
even in response to a voltage difference that is as small as we care
to make it. In the analogy of pushing a crate across a floor, it is
as though even a flea could slide the crate across the floor, albeit
at some very low speed. The flea cannot do this because of static
friction, which we can think of as an effect arising from the tendency
of the microscopic bumps and valleys in the crate and floor to lock
together. The fact that Ohm’s law holds for nearly all solids has
an interesting interpretation: at least some of the electrons are not
“locked down” at all to any specific atom.

More generally we can ask how charge actually flows in various
solids, liquids, and gases. This will lead us to the explanations of
many interesting phenomena, including lightning, the bluish crust
that builds up on the terminals of car batteries, and the need for
electrolytes in sports drinks.

Solids

In atomic terms, the defining characteristic of a solid is that its
atoms are packed together, and the nuclei cannot move very far from
their equilibrium positions. It makes sense, then, that electrons, not
ions, would be the charge carriers when currents flow in solids. This
fact was established experimentally by Tolman and Stewart, in an
experiment in which they spun a large coil of wire and then abruptly
stopped it. They observed a current in the wire immediately after
the coil was stopped, which indicated that charged particles that
were not permanently locked to a specific atom had continued to
move because of their own inertia, even after the material of the
wire in general stopped. The direction of the current showed that
it was negatively charged particles that kept moving. The current
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only lasted for an instant, however; as the negatively charged par-
ticles collected at the downstream end of the wire, farther particles
were prevented joining them due to their electrical repulsion, as well
as the attraction from the upstream end, which was left with a net
positive charge. Tolman and Stewart were even able to determine
the mass-to-charge ratio of the particles. We need not go into the
details of the analysis here, but particles with high mass would be
difficult to decelerate, leading to a stronger and longer pulse of cur-
rent, while particles with high charge would feel stronger electrical
forces decelerating them, which would cause a weaker and shorter
pulse. The mass-to-charge ratio thus determined was consistent with
the m/q of the electron to within the accuracy of the experiment,
which essentially established that the particles were electrons.

The fact that only electrons carry current in solids, not ions, has
many important implications. For one thing, it explains why wires
don’t fray or turn to dust after carrying current for a long time.
Electrons are very small (perhaps even pointlike), and it is easy to
imagine them passing between the cracks among the atoms without
creating holes or fractures in the atomic framework. For those who
know a little chemistry, it also explains why all the best conductors
are on the left side of the periodic table. The elements in that area
are the ones that have only a very loose hold on their outermost
electrons.

Gases

The molecules in a gas spend most of their time separated from
each other by significant distances, so it is not possible for them to
conduct electricity the way solids do, by handing off electrons from
atom to atom. It is therefore not surprising that gases are good
insulators.

Gases are also usually nonohmic. As opposite charges build up
on a stormcloud and the ground below, the voltage difference be-
comes greater and greater. Zero current flows, however, until finally
the voltage reaches a certain threshold and we have an impressive
example of what is known as a spark or electrical discharge. If air
was ohmic, the current between the cloud and the ground would
simply increase steadily as the voltage difference increased, rather
than being zero until a threshold was reached. This behavior can be
explained as follows. At some point, the electrical forces on the air
electrons and nuclei of the air molecules become so strong that elec-
trons are ripped right off of some of the molecules. The electrons
then accelerate toward either the cloud or the ground, whichever
is positively charged, and the positive ions accelerate the opposite
way. As these charge carriers accelerate, they strike and ionize other
molecules, which produces a rapidly growing cascade.
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Liquids and plasma

Molecules in a liquid are able to slide past each other, so ions
as well as electrons can carry currents. Pure water is a poor con-
ductor because the water molecules tend to hold onto their electrons
strongly, and there are therefore not many electrons or ions available
to move. Water can become quite a good conductor, however, with
the addition of even a small amount of certain substances called
electrolytes, which are typically salts. For example, if we add table
salt, NaCl, to water, the NaCl molecules dissolve into Na+ and Cl−

ions, which can then move and create currents. This is why elec-
tric currents can flow among the cells in our bodies: cellular fluid is
quite salty. When we sweat, we lose not just water but electrolytes,
so dehydration plays havoc with our cells’ electrical systems. It is
for this reason that electrolytes are included in sports drinks and
formulas for rehydrating infants who have diarrhea.

Since current flow in liquids involves entire ions, it is not sur-
prising that we can see physical evidence when it has occurred. For
example, after a car battery has been in use for a while, the H2SO4

battery acid becomes depleted of hydrogen ions, which are the main
charge carriers that complete the circuit on the inside of the bat-
tery. The leftover SO4 then forms a visible blue crust on the battery
posts.

Solids, liquids, and gases are not the only possible states of mat-
ter. If a gas is heated sufficiently, the collisions between atoms will
first become so energetic that molecules are broken apart into indi-
vidual atoms, and then with further heating some of the electrons
will become separated from their atoms. This state, known as a
plasma, consists of a mixture of neutral atoms, negatively charged
electrons, and positively charged ions. A plasma, like a liquid so-
lution, contains charged particles that are free to move, and it is
therefore also a good electrical conductor. Most of the sun is so hot
that it is a plasma. The sun can therefore sustain huge electric cur-
rents, which produce extremely intense magnetic fields, and these
are responsible for the existence of sunspots. Plasmas can also be
created artifically, as in nuclear fusion reactors like the one shown
in figure u/5 on page 64.

Speed of currents and electrical signals

When I talk on the phone to my mother in law two thousand
miles away, I do not notice any delay while the signal makes its way
back and forth. Electrical signals therefore must travel very quickly,
but how fast exactly? The answer is rather subtle. For the sake
of concreteness, let’s restrict ourselves to currents in metals, which
consist of electrons.

The electrons themselves are only moving at speeds of perhaps
a few thousand miles per hour, and their motion is mostly random
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thermal motion. This shows that the electrons in my phone cannot
possibly be zipping back and forth between California and New York
fast enough to carry the signals. Even if their thousand-mile-an-hour
motion was organized rather than random, it would still take them
many minutes to get there. Realistically, it will take the average
electron even longer than that to make the trip. The current in the
wire consists only of a slow overall drift, at a speed on the order
of a few centimeters per second, superimposed on the more rapid
random motion. We can compare this with the slow westward drift
in the population of the U.S. If we could make a movie of the motion
of all the people in the U.S. from outer space, and could watch it at
high speed so that the people appeared to be scurrying around like
ants, we would think that the motion was fairly random, and we
would not immediately notice the westward drift. Only after many
years would we realize that the number of people heading west over
the Sierras had exceeded the number going east, so that California
increased its share of the country’s population.

So why are electrical signals so fast if the average drift speed of
electrons is so slow? The answer is that a disturbance in an electrical
system can move much more quickly than the charges themselves.
It is as though we filled a pipe with golf balls and then inserted an
extra ball at one end, causing a ball to fall out at the other end.
The force propagated to the other end in a fraction of a second, but
the balls themselves only traveled a few centimeters in that time.

Because the reality of current conduction is so complex, we often
describe things using mental shortcuts that are technically incorrect.
This is OK as long as we know that they are just shortcuts. For
example, suppose the presidents of France and Russia shake hands,
and the French politician has inadvertently picked up a positive elec-
trical charge, which shocks the Russian. We may say that the excess
positively charged particles in the French leader’s body, which all
repel each other, take the handshake as an opportunity to get far-
ther apart by spreading out into two bodies rather than one. In
reality, it would be a matter of minutes before the ions in one per-
son’s body could actually drift deep into the other’s. What really
happens is that throughout the body of the recipient of the shock
there are already various positive and negative ions which are free
to move. Even before the perpetrator’s charged hand touches the
victim’s sweaty palm, the charges in the shocker’s body begin to
repel the positive ions and attract the negative ions in the other
person. The split-second sensation of shock is caused by the sudden
jumping of the victim’s ions by distances of perhaps a micrometer,
this effect occurring simultaneously throughout the whole body, al-
though more violently in the hand and arm, which are closer to the
other person.
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3.6
∫

Applications of Calculus
As discussed in example 1 on page 80, the definition of current as the
rate of change of charge with respect to time must be reexpressed
as a derivative in the case where the rate of change is not constant,

I =
dq

dt
.

Finding current given charge example 8
. A charged balloon falls to the ground, and its charge begins
leaking off to the Earth. Suppose that the charge on the balloon
is given by q = ae−bt . Find the current as a function of time, and
interpret the answer.

. Taking the derivative, we have

I =
dq
dt

= −abe−bt

An exponential function approaches zero as the exponent gets
more and more negative. This means that both the charge and
the current are decreasing in magnitude with time. It makes sense
that the charge approaches zero, since the balloon is losing its
charge. It also makes sense that the current is decreasing in
magnitude, since charge cannot flow at the same rate forever
without overshooting zero.
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Finding charge given current example 9
. In the segment of the ATLAS accelerator shown in figure i on
page 90, the current flowing back and forth between the two cylin-
ders is given by I = a cos bt . What is the charge on one of the
cylinders as a function of time? . We are given the current and
want to find the charge, i.e. we are given the derivative and we
want to find the original function that would give that derivative.
This means we need to integrate:

q =
∫

Idt

=
∫

a cos bt dt

=
a
b

sin bt + qo ,

where qo is a constant of integration.

We can interpret this in order to explain why a superconductor
needs to be used. The constant b must be very large, since the
current is supposed to oscillate back and forth millions of times a
second. Looking at the final result, we see that if b is a very large
number, and q is to be a significant amount of charge, then a must
be a very large number as well. If a is numerically large, then the
current must be very large, so it would heat the accelerator too
much if it was flowing through an ordinary conductor.

Section 3.6
∫

Applications of Calculus 99



Summary
Selected Vocabulary
current . . . . . . the rate at which charge crosses a certain

boundary
ampere . . . . . . the metric unit of current, one coulomb pe sec-

ond; also “amp”
ammeter . . . . . a device for measuring electrical current
circuit . . . . . . . an electrical device in which charge can come

back to its starting point and be recycled
rather than getting stuck in a dead end

open circuit . . . a circuit that does not function because it has
a gap in it

short circuit . . . a circuit that does not function because charge
is given a low-resistance “shortcut” path that
it can follow, instead of the path that makes
it do something useful

voltage . . . . . . electrical potential energy per unit charge that
will be possessed by a charged particle at a
certain point in space

volt . . . . . . . . the metric unit of voltage, one joule per
coulomb

voltmeter . . . . . a device for measuring voltage differences
ohmic . . . . . . . describes a substance in which the flow of cur-

rent between two points is proportional to the
voltage difference between them

resistance . . . . the ratio of the voltage difference to the cur-
rent in an object made of an ohmic substance

ohm . . . . . . . . the metric unit of electrical resistance, one volt
per ampere

Notation
I . . . . . . . . . . current
A . . . . . . . . . units of amperes
V . . . . . . . . . voltage
V . . . . . . . . . units of volts
R . . . . . . . . . resistance
Ω . . . . . . . . . units of ohms

Other Terminology and Notation
electric potential rather than the more informal “voltage” used

here; despite the misleading name, it is not the
same as electric potential energy

eV . . . . . . . . . a unit of energy, equal to e multiplied by 1
volt; 1.6× 10−19 joules

Summary

All electrical phenomena are alike in that that arise from the
presence or motion of charge. Most practical electrical devices are
based on the motion of charge around a complete circuit, so that
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the charge can be recycled and does not hit any dead ends. The
most useful measure of the flow of charge is current, I = ∆q/∆t.

An electrical device whose job is to transform energy from one
form into another, e.g., a lightbulb, uses power at a rate which de-
pends both on how rapidly charge is flowing through it and on how
much work is done on each unit of charge. The latter quantity is
known as the voltage difference between the point where the current
enters the device and the point where the current leaves it. Since
there is a type of potential energy associated with electrical forces,
the amount of work they do is equal to the difference in potential
energy between the two points, and we therefore define voltage dif-
ferences directly in terms of potential energy, ∆V = ∆PEelec/q.
The rate of power dissipation is P = I∆V .

Many important electrical phenomena can only be explained if
we understand the mechanisms of current flow at the atomic level. In
metals, currents are carried by electrons, in liquids by ions. Gases
are normally poor conductors unless their atoms are subjected to
such intense electrical forces that the atoms become ionized.

Many substances, including all solids, respond to electrical forces
in such a way that the flow of current between two points is pro-
portional to the voltage difference between those points. Such a
substance is called ohmic, and an object made out of an ohmic
substance can be rated in terms of its resistance, R = ∆V/I. An
important corollary is that a perfect conductor, with R = 0, must
have constant voltage everywhere within it.
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Problem 3.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A resistor has a voltage difference ∆V across it, causing a
current I to flow.
(a) Find an equation for the power it dissipates as heat in terms of
the variables I and R only, eliminating ∆V .

√

(b) If an electrical line coming to your house is to carry a given
amount of current, interpret your equation from part a to explain
whether the wire’s resistance should be small, or large.

2 (a) Express the power dissipated by a resistor in terms of R
and ∆V only, eliminating I.

√

(b) Electrical receptacles in your home are mostly 110 V, but cir-
cuits for electric stoves, air conditioners, and washers and driers are
usually 220 V. The two types of circuits have differently shaped re-
ceptacles. Suppose you rewire the plug of a drier so that it can be
plugged in to a 110 V receptacle. The resistor that forms the heat-
ing element of the drier would normally draw 200 W. How much
power does it actually draw now?

√

3 As discussed in the text, when a conductor reaches an equi-
librium where its charge is at rest, there is always zero electric force
on a charge in its interior, and any excess charge concentrates itself
on the surface. The surface layer of charge arranges itself so as to
produce zero total force at any point in the interior. (Otherwise the
free charge in the interior could not be at rest.) Suppose you have
a teardrop-shaped conductor like the one shown in the figure. Since
the teardrop is a conductor, there are free charges everywhere inside
it, but consider a free charged particle at the location shown with
a white circle. Explain why, in order to produce zero force on this
particle, the surface layer of charge must be denser in the pointed
part of the teardrop. (Similar reasoning shows why lightning rods
are made with points. The charged stormclouds induce positive and
negative charges to move to opposite ends of the rod. At the pointed
upper end of the rod, the charge tends to concentrate at the point,
and this charge attracts the lightning.)

4 Use the result of problem 3 on page 39 to find an equation for
the voltage at a point in space at a distance r from a point charge
Q. (Take your V = 0 distance to be anywhere you like.)

√
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Problem 5.

Problem 6.

5 Referring back to problem 6 on page 40 about the sodium chlo-
ride crystal, suppose the lithium ion is going to jump from the gap it
is occupying to one of the four closest neighboring gaps. Which one
will it jump to, and if it starts from rest, how fast will it be going
by the time it gets there? (It will keep on moving and accelerating
after that, but that does not concern us.) [Hint: The approach is
similar to the one used for the other problem, but you want to work
with voltage and potential energy rather than force.]

√
?

6 Referring back to our old friend the neuron from problem
1 on page 39, let’s now consider what happens when the nerve is
stimulated to transmit information. When the blob at the top (the
cell body) is stimulated, it causes Na+ ions to rush into the top of
the tail (axon). This electrical pulse will then travel down the axon,
like a flame burning down from the end of a fuse, with the Na+ ions
at each point first going out and then coming back in. If 1010 Na+

ions cross the cell membrane in 0.5 ms, what amount of current is
created?

√

7 If a typical light bulb draws about 900 mA from a 110-V
household circuit, what is its resistance? (Don’t worry about the
fact that it’s alternating current.)

√

8 Today, even a big luxury car like a Cadillac can have an
electrical system that is relatively low in power, since it doesn’t
need to do much more than run headlights, power windows, etc.
In the near future, however, manufacturers plan to start making
cars with electrical systems about five times more powerful. This
will allow certain energy-wasting parts like the water pump to be
run on electrical motors and turned off when they’re not needed
— currently they’re run directly on shafts from the motor, so they
can’t be shut off. It may even be possible to make an engine that
can shut off at a stoplight and then turn back on again without
cranking, since the valves can be electrically powered. Current cars’
electrical systems have 12-volt batteries (with 14-volt chargers), but
the new systems will have 36-volt batteries (with 42-volt chargers).
(a) Suppose the battery in a new car is used to run a device that
requires the same amount of power as the corresponding device in
the old car. Based on the sample figures above, how would the
currents handled by the wires in one of the new cars compare with
the currents in the old ones?
(b) The real purpose of the greater voltage is to handle devices that
need more power. Can you guess why they decided to change to 36-
volt batteries rather than increasing the power without increasing
the voltage?

√

9 (a) You take an LP record out of its sleeve, and it acquires a
static charge of 1 nC. You play it at the normal speed of 331

3 r.p.m.,
and the charge moving in a circle creates an electric current. What
is the current, in amperes?

√
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Problem 11.

Problem 13.

Problem 14.

(b) Although the planetary model of the atom can be made to work
with any value for the radius of the electrons’ orbits, more advanced
models that we will study later in this course predict definite radii.
If the electron is imagined as circling around the proton at a speed
of 2.2× 106 m/s, in an orbit with a radius of 0.05 nm, what electric
current is created?

√
?

10 We have referred to resistors dissipating heat, i.e., we have
assumed that P = I∆V is always greater than zero. Could I∆V
come out to be negative for a resistor? If so, could one make a
refrigerator by hooking up a resistor in such a way that it absorbed
heat instead of dissipating it?

11 You are given a battery, a flashlight bulb, and a single piece
of wire. Draw at least two configurations of these items that would
result in lighting up the bulb, and at least two that would not light
it. (Don’t draw schematics.) If you’re not sure what’s going on,
borrow the materials from your instructor and try it. Note that the
bulb has two electrical contacts: one is the threaded metal jacket,
and the other is the tip (at the bottom in the figure). [Problem by
Arnold Arons.]

12 In a wire carrying a current of 1.0 pA, how long do you have
to wait, on the average, for the next electron to pass a given point?
Express your answer in units of microseconds.

. Solution, p. 206

13 The figure shows a simplified diagram of an electron gun such
as the one used in the Thomson experiment, or the one that cre-
ates the electron beam in a TV tube. Electrons that spontaneously
emerge from the negative electrode (cathode) are then accelerated
to the positive electrode, which has a hole in it. (Once they emerge
through the hole, they will slow down. However, if the two electrodes
are fairly close together, this slowing down is a small effect, because
the attractive and repulsive forces experienced by the electron tend
to cancel.) (a) If the voltage difference between the electrodes is
∆V, what is the velocity of an electron as it emerges at B? (Assume
its initial velocity, at A, is negiligible.) (b) Evaluate your expres-
sion numerically for the case where ∆V=10 kV, and compare to the
speed of light. . Solution, p. 207

14 The figure shows a simplified diagram of a device called a
tandem accelerator, used for accelerating beams of ions up to speeds
on the order of 1% of the speed of light. The nuclei of these ions col-
lide with the nuclei of atoms in a target, producing nuclear reactions
for experiments studying the structure of nuclei. The outer shell of
the accelerator is a conductor at zero voltage (i.e., the same voltage
as the Earth). The electrode at the center, known as the “terminal,”
is at a high positive voltage, perhaps millions of volts. Negative ions
with a charge of −1 unit (i.e., atoms with one extra electron) are
produced offstage on the right, typically by chemical reactions with
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A printed circuit board, like
the kind referred to in problem
16.

cesium, which is a chemical element that has a strong tendency to
give away electrons. Relatively weak electric and magnetic forces
are used to transport these −1 ions into the accelerator, where they
are attracted to the terminal. Although the center of the terminal
has a hole in it to let the ions pass through, there is a very thin car-
bon foil there that they must physically penetrate. Passing through
the foil strips off some number of electrons, changing the atom into
a positive ion, with a charge of +n times the fundamental charge.
Now that the atom is positive, it is repelled by the terminal, and
accelerates some more on its way out of the accelerator. (a) Find
the velocity, v, of the emerging beam of positive ions, in terms of n,
their mass m, the terminal voltage V , and fundamental constants.
Neglect the small change in mass caused by the loss of electrons
in the stripper foil. (b) To fuse protons with protons, a minimum
beam velocity of about 11% of the speed of light is required. What
terminal voltage would be needed in this case?

15 Three charges, each of strength Q (Q > 0) form a fixed
equilateral triangle with sides of length b. You throw a particle of
mass m and positive charge q from far away, with an initial speed
v. Your goal is to get the particle to go to the center of the triangle,
your aim is perfect, and you are free to throw from any direction
you like. What is the minimum possible value of v?

16 You have to do different things with a circuit to measure
current than to measure a voltage difference. Which would be more
practical for a printed circuit board, in which the wires are actually
strips of metal inlaid on the surface of the board?

. Solution, p. 207
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An Intel 486 computer chip in its packaging.

Chapter 4

Circuits, Part 2

In chapter 3 we limited ourselves to relatively simple circuits, es-
sentially nothing more than a battery and a single lightbulb. The
purpose of this chapter is to introduce you to more complex circuits,
containing multiple resistors or voltage sources in series, in parallel,
or both.

Why do you need to know this stuff? After all, if you were
planning on being an electrical engineer you probably wouldn’t be
learning physics from this book. Consider, however, that every time
you plug in a lamp or a radio you are adding a circuit element to a
household circuit and making it more complex. Electrical safety, as
well, cannot really be understood without understanding multiple-
element circuits, since getting shocked usually involves at least two
parts: the device that is supposed to use power plus the body of the
person in danger. If you are a student majoring in the life sciences,
you should realize as well that all cells are inherently electrical, and
in any multicellular organism there will therefore be various series
and parallel circuits.

Even apart from these practical purposes, there is a very fun-
damental reason for reading this chapter: to understand chapter 3
better. At this point in their studies, I always observe students using
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b / The two shaded areas
shaped like the letter “E” are both
regions of constant voltage.

words and modes of reasoning that show they have not yet become
completely comfortable and fluent with the concepts of voltage and
current. They ask, “aren’t voltage and current sort of the same
idea?” They speak of voltage “going through” a lightbulb. Once
they begin honing their skills on more complicated circuits I always
see their confidence and understanding increase immeasurably.

4.1 Schematics
I see a chess position; Kasparov sees an interesting Ruy Lopez vari-
ation. To the uninitiated a schematic may look as unintelligible as
Mayan hieroglyphs, but even a little bit of eye training can go a long
way toward making its meaning leap off the page. A schematic is a
stylized and simplified drawing of a circuit. The purpose is to elim-
inate as many irrelevant features as possible, so that the relevant
ones are easier to pick out.

a / 1. Wrong: The shapes of the
wires are irrelevant. 2. Wrong:
Right angles should be used. 3.
Wrong: A simple pattern is made
to look unfamiliar and compli-
cated. 4. Right.

An example of an irrelevant feature is the physical shape, length,
and diameter of a wire. In nearly all circuits, it is a good approxi-
mation to assume that the wires are perfect conductors, so that any
piece of wire uninterrupted by other components has constant volt-
age throughout it. Changing the length of the wire, for instance,
does not change this fact. (Of course if we used miles and miles
of wire, as in a telephone line, the wire’s resistance would start to
add up, and its length would start to matter.) The shapes of the
wires are likewise irrelevant, so we draw them with standardized,
stylized shapes made only of vertical and horizontal lines with right-
angle bends in them. This has the effect of making similar circuits
look more alike and helping us to recognize familiar patterns, just
as words in a newspaper are easier to recognize than handwritten
ones. Figure a shows some examples of these concepts.

The most important first step in learning to read schematics is
to learn to recognize contiguous pieces of wire which must have con-
stant voltage throughout. In figure b, for example, the two shaded
E-shaped pieces of wire must each have constant voltage. This fo-
cuses our attention on two of the main unknowns we’d like to be
able to predict: the voltage of the left-hand E and the voltage of
the one on the right.
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4.2 Parallel Resistances and the Junction Rule
One of the simplest examples to analyze is the parallel resistance
circuit, of which figure b was an example. In general we may have
unequal resistances R1 and R2, as in c/1. Since there are only two
constant-voltage areas in the circuit, c/2, all three components have
the same voltage difference across them. A battery normally suc-
ceeds in maintaining the voltage differences across itself for which it
was designed, so the voltage drops ∆V1 and ∆V2 across the resistors
must both equal the voltage of the battery:

∆V1 = ∆V2 = ∆Vbattery .

Each resistance thus feels the same voltage difference as if it was
the only one in the circuit, and Ohm’s law tells us that the amount
of current flowing through each one is also the same as it would
have been in a one-resistor circuit. This is why household electrical
circuits are wired in parallel. We want every appliance to work
the same, regardless of whether other appliances are plugged in or
unplugged, turned on or switched off. (The electric company doesn’t
use batteries of course, but our analysis would be the same for any
device that maintains a constant voltage.)

c / 1. Two resistors in parallel.
2. There are two constant-voltage
areas. 3. The current that comes
out of the battery splits between
the two resistors, and later re-
unites. 4. The two resistors in
parallel can be treated as a single
resistor with a smaller resistance
value.

Of course the electric company can tell when we turn on every
light in the house. How do they know? The answer is that we draw
more current. Each resistance draws a certain amount of current,
and the amount that has to be supplied is the sum of the two indi-
vidual currents. The current is like a river that splits in half, c/3,
and then reunites. The total current is

Itotal = I1 + I2 .

This is an example of a general fact called the junction rule:

the junction rule
In any circuit that is not storing or releasing charge, conser-
vation of charge implies that the total current flowing out of
any junction must be the same as the total flowing in.

Coming back to the analysis of our circuit, we apply Ohm’s law
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to each resistance, resulting in

Itotal = ∆V/R1 + ∆V/R2

= ∆V

(
1

R1
+

1

R2

)
.

As far as the electric company is concerned, your whole house
is just one resistor with some resistance R, called the equivalent
resistance. They would write Ohm’s law as

Itotal = ∆V/R ,

from which we can determine the equivalent resistance by compari-
son with the previous expression:

1/R =
1

R1
+

1

R2

R =

(
1

R1
+

1

R2

)−1

[equivalent resistance of two resistors in parallel]

Two resistors in parallel, c/4, are equivalent to a single resistor with
a value given by the above equation.

Two lamps on the same household circuit example 1
. You turn on two lamps that are on the same household circuit.
Each one has a resistance of 1 ohm. What is the equivalent re-
sistance, and how does the power dissipation compare with the
case of a single lamp?

. The equivalent resistance of the two lamps in parallel is

R =
(

1
R1

+
1

R2

)−1

=
(

1
1 Ω

+
1

1 Ω

)−1

=
(

1 Ω−1 + 1 Ω−1
)−1

=
(

2 Ω−1
)−1

= 0.5 Ω

The voltage difference across the whole circuit is always the 110
V set by the electric company (it’s alternating current, but that’s
irrelevant). The resistance of the whole circuit has been cut in
half by turning on the second lamp, so a fixed amount of voltage
will produce twice as much current. Twice the current flowing
across the same voltage difference means twice as much power
dissipation, which makes sense.
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d / Three resistors in parallel.

e / Uniting four resistors in
parallel is equivalent to making
a single resistor with the same
length but four times the cross-
sectional area. The result is to
make a resistor with one quarter
the resistance.

The cutting in half of the resistance surprises many students,
since we are “adding more resistance” to the circuit by putting in
the second lamp. Why does the equivalent resistance come out to be
less than the resistance of a single lamp? This is a case where purely
verbal reasoning can be misleading. A resistive circuit element, such
as the filament of a lightbulb, is neither a perfect insulator nor
a perfect conductor. Instead of analyzing this type of circuit in
terms of “resistors,” i.e., partial insulators, we could have spoken of
“conductors.” This example would then seem reasonable, since we
“added more conductance,” but one would then have the incorrect
expectation about the case of resistors in series, discussed in the
following section.

Perhaps a more productive way of thinking about it is to use
mechanical intuition. By analogy, your nostrils resist the flow of
air through them, but having two nostrils makes it twice as easy to
breathe.

Three resistors in parallel example 2
. What happens if we have three or more resistors in parallel?

. This is an important example, because the solution involves
an important technique for understanding circuits: breaking them
down into smaller parts and them simplifying those parts. In the
circuit d/1, with three resistors in parallel, we can think of two
of the resistors as forming a single resistor, d/2, with equivalent
resistance

R12 =
(

1
R1

+
1

R2

)−1

.

We can then simplify the circuit as shown in d/3, so that it con-
tains only two resistances. The equivalent resistance of the whole
circuit is then given by

R123 =
(

1
R12

+
1

R3

)−1

.

Substituting for R12 and simplifying, we find the result

R123 =
(

1
R1

+
1

R2
+

1
R3

)−1

,

which you probably could have guessed. The interesting point
here is the divide-and-conquer concept, not the mathematical re-
sult.

An arbitrary number of identical resistors in parallel example 3
. What is the resistance of N identical resistors in parallel?

. Generalizing the results for two and three resistors, we have

RN =
(

1
R1

+
1

R2
+ . . .

)−1

,
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g / A voltmeter is really an
ammeter with an internal resistor.
When we measure the voltage
difference across a resistor, 1, we
are really constructing a parallel
resistance circuit, 2.

where “...” means that the sum includes all the resistors. If all the
resistors are identical, this becomes

RN =
(

N
R

)−1

=
R
N

Dependence of resistance on cross-sectional area example 4
We have alluded briefly to the fact that an object’s electrical re-
sistance depends on its size and shape, but now we are ready
to begin making more mathematical statements about it. As sug-
gested by figure e, increasing a resistors’s cross-sectional area is
equivalent to adding more resistors in parallel, which will lead to
an overall decrease in resistance. Any real resistor with straight,
parallel sides can be sliced up into a large number of pieces, each
with cross-sectional area of, say, 1 µm2. The number, N, of such
slices is proportional to the total cross-sectional area of the resis-
tor, and by application of the result of the previous example we
therefore find that the resistance of an object is inversely propor-
tional to its cross-sectional area.

f / A fat pipe has less resistance
than a skinny pipe.

An analogous relationship holds for water pipes, which is why
high-flow trunk lines have to have large cross-sectional areas. To
make lots of water (current) flow through a skinny pipe, we’d need
an impractically large pressure (voltage) difference.

Incorrect readings from a voltmeter example 5
A voltmeter is really just an ammeter with an internal resistor, and
we use a voltmeter in parallel with the thing that we’re trying to
measure the voltage difference across. This means that any time
we measure the voltage drop across a resistor, we’re essentially
putting two resistors in parallel. The ammeter inside the voltmeter
can be ignored for the purpose of analyzing what how current
flows in the circuit, since it is essentially just some coiled-up wire
with a very low resistance.
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Now if we are carrying out this measurement on a resistor that is
part of a larger circuit, we have changed the behavior of the cir-
cuit through our act of measuring. It is as though we had modified
the circuit by replacing the resistance R with the smaller equiva-
lent resistance of R and Rv in parallel. It is for this reason that
voltmeters are built with the largest possible internal resistance.
As a numerical example, if we use a voltmeter with an internal
resistance of 1 MΩ to measure the voltage drop across a one-
ohm resistor, the equivalent resistance is 0.999999 Ω, which is
not different enough to make any difference. But if we tried to use
the same voltmeter to measure the voltage drop across a 2−MΩ
resistor, we would be reducing the resistance of that part of the
circuit by a factor of three, which would produce a drastic change
in the behavior of the whole circuit.

This is the reason why you can’t use a voltmeter to measure the
voltage difference between two different points in mid-air, or between
the ends of a piece of wood. This is by no means a stupid thing to
want to do, since the world around us is not a constant-voltage
environment, the most extreme example being when an electrical
storm is brewing. But it will not work with an ordinary voltmeter
because the resistance of the air or the wood is many gigaohms. The
effect of waving a pair of voltmeter probes around in the air is that
we provide a reuniting path for the positive and negative charges
that have been separated — through the voltmeter itself, which is
a good conductor compared to the air. This reduces to zero the
voltage difference we were trying to measure.

In general, a voltmeter that has been set up with an open circuit
(or a very large resistance) between its probes is said to be “float-
ing.” An old-fashioned analog voltmeter of the type described here
will read zero when left floating, the same as when it was sitting
on the shelf. A floating digital voltmeter usually shows an error
message.

Section 4.2 Parallel Resistances and the Junction Rule 113



h / 1. A battery drives current
through two resistors in series. 2.
There are three constant-voltage
regions. 3. The three voltage
differences are related. 4. If
the meter crab-walks around the
circuit without flipping over or
crossing its legs, the resulting
voltages have plus and minus
signs that make them add up to
zero.

4.3 Series Resistances
The two basic circuit layouts are parallel and series, so a pair of
resistors in series, h/1, is another of the most basic circuits we can
make. By conservation of charge, all the current that flows through
one resistor must also flow through the other (as well as through the
battery):

I1 = I2 .

The only way the information about the two resistance values is
going to be useful is if we can apply Ohm’s law, which will relate the
resistance of each resistor to the current flowing through it and the
voltage difference across it. Figure h/2 shows the three constant-
voltage areas. Voltage differences are more physically significant
than voltages, so we define symbols for the voltage differences across
the two resistors in figure h/3.

We have three constant-voltage areas, with symbols for the dif-
ference in voltage between every possible pair of them. These three
voltage differences must be related to each other. It is as though I
tell you that Fred is a foot taller than Ginger, Ginger is a foot taller
than Sally, and Fred is two feet taller than Sally. The information
is redundant, and you really only needed two of the three pieces of
data to infer the third. In the case of our voltage differences, we
have

|∆V1|+ |∆V2| = |∆Vbattery| .

The absolute value signs are because of the ambiguity in how we
define our voltage differences. If we reversed the two probes of the
voltmeter, we would get a result with the opposite sign. Digital
voltmeters will actually provide a minus sign on the screen if the
wire connected to the “V” plug is lower in voltage than the one
connected to the “COM” plug. Analog voltmeters pin the needle
against a peg if you try to use them to measure negative voltages,
so you have to fiddle to get the leads connected the right way, and
then supply any necessary minus sign yourself.

Figure h/4 shows a standard way of taking care of the ambiguity
in signs. For each of the three voltage measurements around the
loop, we keep the same probe (the darker one) on the clockwise
side. It is as though the voltmeter was sidling around the circuit
like a crab, without ever “crossing its legs.” With this convention,
the relationship among the voltage drops becomes

∆V1 + ∆V2 = −∆Vbattery ,

or, in more symmetrical form,

∆V1 + ∆V2 + ∆Vbattery = 0 .

More generally, this is known as the loop rule for analyzing circuits:
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i / Example 6.

the loop rule
Assuming the standard convention for plus and minus signs,
the sum of the voltage drops around any closed loop in a
circuit must be zero.

Looking for an exception to the loop rule would be like asking
for a hike that would be downhill all the way and that would come
back to its starting point!

For the circuit we set out to analyze, the equation

∆V1 + ∆V2 + ∆Vbattery = 0

can now be rewritten by applying Ohm’s law to each resistor:

I1R1 + I2R2 + ∆Vbattery = 0 .

The currents are the same, so we can factor them out:

I (R1 +R2) + ∆Vbattery = 0 ,

and this is the same result we would have gotten if we had been
analyzing a one-resistor circuit with resistance R1 + R2. Thus the
equivalent resistance of resistors in series equals the sum of their
resistances.

Two lightbulbs in series example 6
. If two identical lightbulbs are placed in series, how do their
brightnesses compare with the brightness of a single bulb?

. Taken as a whole, the pair of bulbs act like a doubled resistance,
so they will draw half as much current from the wall. Each bulb
will be dimmer than a single bulb would have been.

The total power dissipated by the circuit is I∆V . The voltage drop
across the whole circuit is the same as before, but the current is
halved, so the two-bulb circuit draws half as much total power as
the one-bulb circuit. Each bulb draws one-quarter of the normal
power.

Roughly speaking, we might expect this to result in one quarter
the light being produced by each bulb, but in reality lightbulbs
waste quite a high percentage of their power in the form of heat
and wavelengths of light that are not visible (infrared and ultravi-
olet). Less light will be produced, but it’s hard to predict exactly
how much less, since the efficiency of the bulbs will be changed
by operating them under different conditions.

More than two equal resistances in series example 7
By straightforward application of the divide-and-conquer technique
discussed in the previous section, we find that the equivalent re-
sistance of N identical resistances R in series will be NR.
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j / Doubling the length of a
resistor is like putting two resis-
tors in series. The resistance is
doubled.

Dependence of resistance on length example 8
In the previous section, we proved that resistance is inversely
proportional to cross-sectional area. By equivalent reason about
resistances in series, we find that resistance is proportional to
length. Analogously, it is harder to blow through a long straw than
through a short one.

Putting the two arguments together, we find that the resistance
of an object with straight, parallel sides is given by

R = (constant) · L/A

The proportionality constant is called the resistivity, and it depends
only on the substance of which the object is made. A resistivity
measurement could be used, for instance, to help identify a sample
of an unknown substance.

Choice of high voltage for power lines example 9
Thomas Edison got involved in a famous technological contro-
versy over the voltage difference that should be used for electrical
power lines. At this time, the public was unfamiliar with electricity,
and easily scared by it. The president of the United States, for
instance, refused to have electrical lighting in the White House
when it first became commercially available because he consid-
ered it unsafe, preferring the known fire hazard of oil lamps to
the mysterious dangers of electricity. Mainly as a way to over-
come public fear, Edison believed that power should be transmit-
ted using small voltages, and he publicized his opinion by giving
demonstrations at which a dog was lured into position to be killed
by a large voltage difference between two sheets of metal on the
ground. (Edison’s opponents also advocated alternating current
rather than direct current, and AC is more dangerous than DC as
well. As we will discuss later, AC can be easily stepped up and
down to the desired voltage level using a device called a trans-
former.)

Now if we want to deliver a certain amount of power PL to a
load such as an electric lightbulb, we are constrained only by the
equation PL = I∆VL. We can deliver any amount of power we
wish, even with a low voltage, if we are willing to use large cur-
rents. Modern electrical distribution networks, however, use dan-
gerously high voltage differences of tens of thousands of volts.
Why did Edison lose the debate?

It boils down to money. The electric company must deliver the
amount of power PL desired by the customer through a transmis-
sion line whose resistance RT is fixed by economics and geogra-
phy. The same current flows through both the load and the trans-
mission line, dissipating power usefully in the former and waste-
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fully in the latter. The efficiency of the system is

efficiency =
power paid for by the customer

power paid for by the utility

=
PL

PL + PT

=
1

1 + PT/PL

Putting ourselves in the shoes of the electric company, we wish
to get rid of the variable PT , since it is something we control only
indirectly by our choice of ∆VT and I. Substituting PT = I∆VT , we
find

efficiency =
1

1 + I∆VT
PL

We assume the transmission line (but not necessarily the load) is
ohmic, so substituting ∆VT = IRT gives

efficiency =
1

1 + I2RT
PL

This quantity can clearly be maximized by making I as small as
possible, since we will then be dividing by the smallest possible
quantity on the bottom of the fraction. A low-current circuit can
only deliver significant amounts of power if it uses high voltages,
which is why electrical transmission systems use dangerous high
voltages.

k / Example 10.

A complicated circuit example 10
. All seven resistors in the left-hand panel of figure k are identi-
cal. Initially, the switch S is open as shown in the figure, and the
current through resistor A is Io. The switch is then closed. Find
the current through resistor B, after the switch is closed, in terms
of Io.
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. The second panel shows the circuit redrawn for simplicity, in the
initial condition with the switch open. When the switch is open, no
current can flow through the central resistor, so we may as well
ignore it. I’ve also redrawn the junctions, without changing what’s
connected to what. This is the kind of mental rearranging that
you’ll eventually learn to do automatically from experience with
analyzing circuits. The redrawn version makes it easier to see
what’s happening with the current. Charge is conserved, so any
charge that flows past point 1 in the circuit must also flow past
points 2 and 3. This would have been harder to reason about by
applying the junction rule to the original version, which appears
to have nine separate junctions.

In the new version, it’s also clear that the circuit has a great deal
of symmetry. We could flip over each parallel pair of identical re-
sistors without changing what’s connected to what, so that makes
it clear that the voltage drops and currents must be equal for the
members of each pair. We can also prove this by using the loop
rule. The loop rule says that the two voltage drops in loop 4 must
be equal, and similarly for loops 5 and 6. Since the resistors obey
Ohm’s law, equal voltage drops across them also imply equal cur-
rents. That means that when the current at point 1 comes to the
top junction, exactly half of it goes through each resistor. Then
the current reunites at 2, splits between the next pair, and so on.
We conclude that each of the six resistors in the circuit experi-
ences the same voltage drop and the same current. Applying the
loop rule to loop 7, we find that the sum of the three voltage drops
across the three left-hand resistors equals the battery’s voltage,
V , so each resistor in the circuit experiences a voltage drop V/3.
Letting R stand for the resistance of one of the resistors, we find
that the current through resistor B, which is the same as the cur-
rents through all the others, is given by Io = V/3R.

We now pass to the case where the switch is closed, as shown
in the third panel. The battery’s voltage is the same as before,
and each resistor’s resistance is the same, so we can still use the
same symbols V and R for them. It is no longer true, however,
that each resistor feels a voltage drop V/3. The equivalent resis-
tance of the whole circuit is R/2 + R/3 + R/2 = 4R/3, so the total
current drawn from the battery is 3V/4R. In the middle group
of resistors, this current is split three ways, so the new current
through B is (1/3)(3V/4R) = V/4R = 3Io/4.

Interpreting this result, we see that it comes from two effects that
partially cancel. Closing the switch reduces the equivalent re-
sistance of the circuit by giving charge another way to flow, and
increases the amount of current drawn from the battery. Resistor
B, however, only gets a 1/3 share of this greater current, not 1/2.
The second effect turns out to be bigger than the second effect,
and therefore the current through resistor B is lessened over all.
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Getting killed by your ammeter example 11
As with a voltmeter, an ammeter can give erroneous readings if it
is used in such a way that it changes the behavior the circuit. An
ammeter is used in series, so if it is used to measure the current
through a resistor, the resistor’s value will effectively be changed
to R + Ra, where Ra is the resistance of the ammeter. Ammeters
are designed with very low resistances in order to make it unlikely
that R + Ra will be significantly different from R.

In fact, the real hazard is death, not a wrong reading! Virtually
the only circuits whose resistances are significantly less than that
of an ammeter are those designed to carry huge currents. An
ammeter inserted in such a circuit can easily melt. When I was
working at a laboratory funded by the Department of Energy, we
got periodic bulletins from the DOE safety office about serious ac-
cidents at other sites, and they held a certain ghoulish fascination.
One of these was about a DOE worker who was completely in-
cinerated by the explosion created when he inserted an ordinary
Radio Shack ammeter into a high-current circuit. Later estimates
showed that the heat was probably so intense that the explosion
was a ball of plasma — a gas so hot that its atoms have been
ionized.

Discussion Questions

A We have stated the loop rule in a symmetric form where a series
of voltage drops adds up to zero. To do this, we had to define a standard
way of connecting the voltmeter to the circuit so that the plus and minus
signs would come out right. Suppose we wish to restate the junction rule
in a similar symmetric way, so that instead of equating the current coming
in to the current going out, it simply states that a certain sum of currents at
a junction adds up to zero. What standard way of inserting the ammeter
would we have to use to make this work?
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Summary
A schematic is a drawing of a circuit that standardizes and stylizes
its features to make it easier to understand. Any circuit can be
broken down into smaller parts. For instance, one big circuit may be
understood as two small circuits in series, another as three circuits
in parallel. When circuit elements are combined in parallel and in
series, we have two basic rules to guide us in understanding how the
parts function as a whole:

the junction rule: In any circuit that is not storing or re-
leasing charge, conservation of charge implies that the total
current flowing out of any junction must be the same as the
total flowing in.

the loop rule: Assuming the standard convention for plus
and minus signs, the sum of the voltage drops around any
closed loop in a circuit must be zero.

The simplest application of these rules is to pairs of resistors
combined in series or parallel. In such cases, the pair of resistors
acts just like a single unit with a certain resistance value, called
their equivalent resistance. Resistances in series add to produce a
larger equivalent resistance,

Rseries = R1 +R2 ,

because the current has to fight its way through both resistances.
Parallel resistors combine to produce an equivalent resistance that
is smaller than either individual resistance,

Rparallel =

(
1

R1
+

1

R2

)−1

,

because the current has two different paths open to it.

An important example of resistances in parallel and series is the
use of voltmeters and ammeters in resistive circuits. A voltmeter
acts as a large resistance in parallel with the resistor across which
the voltage drop is being measured. The fact that its resistance
is not infinite means that it alters the circuit it is being used to
investigate, producing a lower equivalent resistance. An ammeter
acts as a small resistance in series with the circuit through which the
current is to be determined. Its resistance is not quite zero, which
leads to an increase in the resistance of the circuit being tested.

120 Chapter 4 Circuits, Part 2



Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 (a) Many battery-operated devices take more than one battery.
If you look closely in the battery compartment, you will see that the
batteries are wired in series. Consider a flashlight circuit. What does
the loop rule tell you about the effect of putting several batteries in
series in this way?
(b) The cells of an electric eel’s nervous system are not that different
from ours — each cell can develop a voltage difference across it of
somewhere on the order of one volt. How, then, do you think an
electric eel can create voltages of thousands of volts between different
parts of its body?

2 The heating element of an electric stove is connected in series
with a switch that opens and closes many times per second. When
you turn the knob up for more power, the fraction of the time that
the switch is closed increases. Suppose someone suggests a simpler
alternative for controlling the power by putting the heating element
in series with a variable resistor controlled by the knob. (With the
knob turned all the way clockwise, the variable resistor’s resistance is
nearly zero, and when it’s all the way counterclockwise, its resistance
is essentially infinite.) (a) Draw schematics. (b) Why would the
simpler design be undesirable?

3 A 1.0 Ω toaster and a 2.0 Ω lamp are connected in parallel with
the 110-V supply of your house. (Ignore the fact that the voltage is
AC rather than DC.)
(a) Draw a schematic of the circuit.
(b) For each of the three components in the circuit, find the current
passing through it and the voltage drop across it.
(c) Suppose they were instead hooked up in series. Draw a schematic
and calculate the same things.

4 Wire is sold in a series of standard diameters, called “gauges.”
The difference in diameter between one gauge and the next in the
series is about 20%. How would the resistance of a given length of
wire compare with the resistance of the same length of wire in the
next gauge in the series?

√

5 The figure shows two possible ways of wiring a flashlight with
a switch. Both will serve to turn the bulb on and off, although the
switch functions in the opposite sense. Why is method 1 preferable?
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Problem 6.

Problem 8.

6 In the figure, the battery is 9 V.
(a) What are the voltage differences across each light bulb?
(b) What current flows through each of the three components of the
circuit?
(c) If a new wire is added to connect points A and B, how will the
appearances of the bulbs change? What will be the new voltages
and currents?
(d) Suppose no wire is connected from A to B, but the two bulbs
are switched. How will the results compare with the results from
the original setup as drawn?

7 You have a circuit consisting of two unknown resistors in series,
and a second circuit consisting of two unknown resistors in parallel.
(a) What, if anything, would you learn about the resistors in the
series circuit by finding that the currents through them were equal?
(b) What if you found out the voltage differences across the resistors
in the series circuit were equal?
(c) What would you learn about the resistors in the parallel circuit
from knowing that the currents were equal?
(d) What if the voltages in the parallel circuit were equal?

8 A student in a biology lab is given the following instruc-
tions: “Connect the cerebral eraser (C.E.) and the neural depo-
larizer (N.D.) in parallel with the power supply (P.S.). (Under no
circumstances should you ever allow the cerebral eraser to come
within 20 cm of your head.) Connect a voltmeter to measure the
voltage across the cerebral eraser, and also insert an ammeter in
the circuit so that you can make sure you don’t put more than 100
mA through the neural depolarizer.” The diagrams show two lab
groups’ attempts to follow the instructions. (a) Translate diagram
a into a standard-style schematic. What is correct and incorrect
about this group’s setup? (b) Do the same for diagram b.

9 How many different resistance values can be created by com-
bining three unequal resistors? (Don’t count possibilities where not
all the resistors are used.)

10 A person in a rural area who has no electricity runs an
extremely long extension cord to a friend’s house down the road so
she can run an electric light. The cord is so long that its resistance,
x, is not negligible. Show that the lamp’s brightness is greatest if
its resistance, y, is equal to x. Explain physically why the lamp is
dim for values of y that are too small or too large.

∫
11 What resistance values can be created by combining a 1 kΩ
resistor and a 10 kΩ resistor? . Solution, p. 207
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Problems 13 and 14.

Problem 15.

Problem 16.

Problem 17.

12 Suppose six identical resistors, each with resistance R, are
connected so that they form the edges of a tetrahedron (a pyramid
with three sides in addition to the base, i.e., one less side than an
Egyptian pyramid). What resistance value or values can be obtained
by making connections onto any two points on this arrangement?

. Solution, p. 207 ?

13 The figure shows a circuit containing five lightbulbs con-
nected to a battery. Suppose you’re going to connect one probe of a
voltmeter to the circuit at the point marked with a dot. How many
unique, nonzero voltage differences could you measure by connecting
the other probe to other wires in the circuit?

14 The lightbulbs in the figure are all identical. If you were
inserting an ammeter at various places in the circuit, how many
unique currents could you measure? If you know that the current
measurement will give the same number in more than one place,
only count that as one unique current.

15 The bulbs are all identical. Which one doesn’t light up? ?

16 Each bulb has a resistance of one ohm. How much power is
drawn from the one-volt battery? ?

17 The bulbs all have unequal resistances. Given the three
currents shown in the figure, find the currents through bulbs A, B,
C, and D.
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Chapter 5

Fields of Force

“Okay. Your duties are as follows: Get Breen. I don’t care how you get
him, but get him soon. That faker! He posed for twenty years as a scientist
without ever being apprehended. Well, I’m going to do some apprehend-
ing that’ll make all previous apprehending look like no apprehension at all.
You with me?”

“Yes,” said Battle, very much confused. “What’s that thing you have?”

“Piggy-back heat-ray. You transpose the air in its path into an unstable
isotope which tends to carry all energy as heat. Then you shoot your juice
light, or whatever along the isotopic path and you burn whatever’s on the
receiving end. You want a few?”

“No,” said Battle. “I have my gats. What else have you got for offense
and defense?” Underbottam opened a cabinet and proudly waved an
arm. “Everything,” he said.

“Disintegraters, heat-rays, bombs of every type. And impenetrable
shields of energy, massive and portable. What more do I need?”

From THE REVERSIBLE REVOLUTIONS by Cecil Corwin, Cosmic
Stories, March 1941. Art by Morey, Bok, Kyle, Hunt, Forte. Copyright
expired.

Cutting-edge science readily infiltrates popular culture, though
sometimes in garbled form. The Newtonian imagination populated
the universe mostly with that nice solid stuff called matter, which
was made of little hard balls called atoms. In the early twentieth
century, consumers of pulp fiction and popularized science began
to hear of a new image of the universe, full of x-rays, N-rays, and
Hertzian waves. What they were beginning to soak up through
their skins was a drastic revision of Newton’s concept of a universe
made of chunks of matter which happened to interact via forces. In
the newly emerging picture, the universe was made of force, or, to
be more technically accurate, of ripples in universal fields of force.
Unlike the average reader of Cosmic Stories in 1941, you now possess
enough technical background to understand what a “force field”
really is.

5.1 Why Fields?
Time delays in forces exerted at a distance

What convinced physicists that they needed this new concept of
a field of force? Although we have been dealing mostly with elec-
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a / A bar magnet’s atoms are
(partially) aligned.

b / A bar magnet interacts
with our magnetic planet.

c / Magnets aligned north-south.

trical forces, let’s start with a magnetic example. (In fact the main
reason I’ve delayed a detailed discussion of magnetism for so long
is that mathematical calculations of magnetic effects are handled
much more easily with the concept of a field of force.) First a little
background leading up to our example. A bar magnet, a, has an axis
about which many of the electrons’ orbits are oriented. The earth
itself is also a magnet, although not a bar-shaped one. The interac-
tion between the earth-magnet and the bar magnet, b, makes them
want to line up their axes in opposing directions (in other words
such that their electrons rotate in parallel planes, but with one set
rotating clockwise and the other counterclockwise as seen looking
along the axes). On a smaller scale, any two bar magnets placed
near each other will try to align themselves head-to-tail, c.

Now we get to the relevant example. It is clear that two people
separated by a paper-thin wall could use a pair of bar magnets to
signal to each other. Each person would feel her own magnet trying
to twist around in response to any rotation performed by the other
person’s magnet. The practical range of communication would be
very short for this setup, but a sensitive electrical apparatus could
pick up magnetic signals from much farther away. In fact, this is
not so different from what a radio does: the electrons racing up
and down the transmitting antenna create forces on the electrons
in the distant receiving antenna. (Both magnetic and electric forces
are involved in real radio signals, but we don’t need to worry about
that yet.)

A question now naturally arises as to whether there is any time
delay in this kind of communication via magnetic (and electric)
forces. Newton would have thought not, since he conceived of
physics in terms of instantaneous action at a distance. We now
know, however, that there is such a time delay. If you make a
long-distance phone call that is routed through a communications
satellite, you should easily be able to detect a delay of about half a
second over the signal’s round trip of 50,000 miles. Modern measure-
ments have shown that electric, magnetic, and gravitational forces
all travel at the speed of light, 3× 108 m/s.1 (In fact, we will soon
discuss how light itself is made of electricity and magnetism.)

If it takes some time for forces to be transmitted through space,
then apparently there is some thing that travels through space. The
fact that the phenomenon travels outward at the same speed in all
directions strongly evokes wave metaphors such as ripples on a pond.

More evidence that fields of force are real: they carry energy.

The smoking-gun argument for this strange notion of traveling
force ripples comes from the fact that they carry energy.

1As discussed in book 6 of this series, one consequence of Einstein’s theory of
relativity is that material objects can never move faster than the speed of light.
It can also be shown that signals or information are subject to the same limit.
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d / The second magnet is re-
versed.

e / Both magnets are reversed.

f / The wind patterns in a
certain area of the ocean could
be charted in a “sea of arrows”
representation like this. Each
arrow represents both the wind’s
strength and its direction at a
certain location.

First suppose that the person holding the bar magnet on the
right decides to reverse hers, resulting in configuration d. She had
to do mechanical work to twist it, and if she releases the magnet,
energy will be released as it flips back to c. She has apparently stored
energy by going from c to d. So far everything is easily explained
without the concept of a field of force.

But now imagine that the two people start in position c and
then simultaneously flip their magnets extremely quickly to position
e, keeping them lined up with each other the whole time. Imagine,
for the sake of argument, that they can do this so quickly that
each magnet is reversed while the force signal from the other is
still in transit. (For a more realistic example, we’d have to have
two radio antennas, not two magnets, but the magnets are easier
to visualize.) During the flipping, each magnet is still feeling the
forces arising from the way the other magnet used to be oriented.
Even though the two magnets stay aligned during the flip, the time
delay causes each person to feel resistance as she twists her magnet
around. How can this be? Both of them are apparently doing
mechanical work, so they must be storing magnetic energy somehow.
But in the traditional Newtonian conception of matter interacting
via instantaneous forces at a distance, interaction energy arises from
the relative positions of objects that are interacting via forces. If
the magnets never changed their orientations relative to each other,
how can any magnetic energy have been stored?

The only possible answer is that the energy must have gone
into the magnetic force ripples crisscrossing the space between the
magnets. Fields of force apparently carry energy across space, which
is strong evidence that they are real things.

This is perhaps not as radical an idea to us as it was to our
ancestors. We are used to the idea that a radio transmitting antenna
consumes a great deal of power, and somehow spews it out into the
universe. A person working around such an antenna needs to be
careful not to get too close to it, since all that energy can easily
cook flesh (a painful phenomenon known as an “RF burn”).

5.2 The Gravitational Field
Given that fields of force are real, how do we define, measure,

and calculate them? A fruitful metaphor will be the wind patterns
experienced by a sailing ship. Wherever the ship goes, it will feel a
certain amount of force from the wind, and that force will be in a
certain direction. The weather is ever-changing, of course, but for
now let’s just imagine steady wind patterns. Definitions in physics
are operational, i.e., they describe how to measure the thing being
defined. The ship’s captain can measure the wind’s “field of force”
by going to the location of interest and determining both the direc-
tion of the wind and the strength with which it is blowing. Charting
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all these measurements on a map leads to a depiction of the field of
wind force like the one shown in the figure. This is known as the
“sea of arrows” method of visualizing a field.

Now let’s see how these concepts are applied to the fundamental
force fields of the universe. We’ll start with the gravitational field,
which is the easiest to understand. As with the wind patterns,
we’ll start by imagining gravity as a static field, even though the
existence of the tides proves that there are continual changes in the
gravity field in our region of space. Defining the direction of the
gravitational field is easy enough: we simply go to the location of
interest and measure the direction of the gravitational force on an
object, such as a weight tied to the end of a string.

But how should we define the strength of the gravitational field?
Gravitational forces are weaker on the moon than on the earth, but
we cannot specify the strength of gravity simply by giving a certain
number of newtons. The number of newtons of gravitational force
depends not just on the strength of the local gravitational field but
also on the mass of the object on which we’re testing gravity, our
“test mass.” A boulder on the moon feels a stronger gravitational
force than a pebble on the earth. We can get around this problem
by defining the strength of the gravitational field as the force acting
on an object, divided by the object’s mass.

definition of the gravitational field
The gravitational field vector, g, at any location in space is
found by placing a test mass mt at that point. The field vector
is then given by g = F/mt, where F is the gravitational force
on the test mass.

The magnitude of the gravitational field near the surface of the
earth is about 9.8 N/kg, and it’s no coincidence that this number
looks familiar, or that the symbol g is the same as the one for
gravitational acceleration. The force of gravity on a test mass will
equal mtg, where g is the gravitational acceleration. Dividing by
mt simply gives the gravitational acceleration. Why define a new
name and new units for the same old quantity? The main reason is
that it prepares us with the right approach for defining other fields.

The most subtle point about all this is that the gravitational
field tells us about what forces would be exerted on a test mass by
the earth, sun, moon, and the rest of the universe, if we inserted a
test mass at the point in question. The field still exists at all the
places where we didn’t measure it.

Gravitational field of the earth example 1
. What is the magnitude of the earth’s gravitational field, in terms
of its mass, M, and the distance r from its center?

. Substituting |F| = GMmt/r2 into the definition of the gravitational
field, we find |g| = GM/r2. This expression could be used for
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g / The gravitational field sur-
rounding a clump of mass such
as the earth.

h / The gravitational fields of
the earth and moon superpose.
Note how the fields cancel at one
point, and how there is no bound-
ary between the interpenetrating
fields surrounding the two bodies.

the field of any spherically symmetric mass distribution, since the
equation we assumed for the gravitational force would apply in
any such case.

Sources and sinks
If we make a sea-of-arrows picture of the gravitational fields

surrounding the earth, g, the result is evocative of water going down
a drain. For this reason, anything that creates an inward-pointing
field around itself is called a sink. The earth is a gravitational sink.
The term “source” can refer specifically to things that make outward
fields, or it can be used as a more general term for both “outies”
and “innies.” However confusing the terminology, we know that
gravitational fields are only attractive, so we will never find a region
of space with an outward-pointing field pattern.

Knowledge of the field is interchangeable with knowledge of its
sources (at least in the case of a static, unchanging field). If aliens
saw the earth’s gravitational field pattern they could immediately
infer the existence of the planet, and conversely if they knew the
mass of the earth they could predict its influence on the surrounding
gravitational field.

Superposition of fields

A very important fact about all fields of force is that when there
is more than one source (or sink), the fields add according to the
rules of vector addition. The gravitational field certainly will have
this property, since it is defined in terms of the force on a test
mass, and forces add like vectors. Superposition is an important
characteristics of waves, so the superposition property of fields is
consistent with the idea that disturbances can propagate outward
as waves in a field.

Reduction in gravity on Io due to Jupiter’s gravity example 2
. The average gravitational field on Jupiter’s moon Io is 1.81 N/kg.
By how much is this reduced when Jupiter is directly overhead?
Io’s orbit has a radius of 4.22 × 108 m, and Jupiter’s mass is
1.899× 1027 kg.

. By the shell theorem, we can treat the Jupiter as if its mass was
all concentrated at its center, and likewise for Io. If we visit Io and
land at the point where Jupiter is overhead, we are on the same
line as these two centers, so the whole problem can be treated
one-dimensionally, and vector addition is just like scalar addition.
Let’s use positive numbers for downward fields (toward the center
of Io) and negative for upward ones. Plugging the appropriate
data into the expression derived in example 1, we find that the
Jupiter’s contribution to the field is −0.71 N/kg. Superposition
says that we can find the actual gravitational field by adding up
the fields created by Io and Jupiter: 1.81− 0.71 N/kg = 1.1 N/kg.
You might think that this reduction would create some spectacular
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effects, and make Io an exciting tourist destination. Actually you
would not detect any difference if you flew from one side of Io
to the other. This is because your body and Io both experience
Jupiter’s gravity, so you follow the same orbital curve through the
space around Jupiter.

Gravitational waves

A source that sits still will create a static field pattern, like a steel
ball sitting peacefully on a sheet of rubber. A moving source will cre-
ate a spreading wave pattern in the field, like a bug thrashing on the
surface of a pond. Although we have started with the gravitational
field as the simplest example of a static field, stars and planets do
more stately gliding than thrashing, so gravitational waves are not
easy to detect. Newton’s theory of gravity does not describe gravi-
tational waves, but they are predicted by Einstein’s general theory
of relativity. J.H. Taylor and R.A. Hulse were awarded the Nobel
Prize in 1993 for giving indirect evidence that Einstein’s waves actu-
ally exist. They discovered a pair of exotic, ultra-dense stars called
neutron stars orbiting one another very closely, and showed that
they were losing orbital energy at the rate predicted by Einstein’s
theory.

i / The part of the LIGO grav-
ity wave detector at Hanford Nu-
clear Reservation, near Richland,
Washington. The other half of the
detector is in Louisiana.

A Caltech-MIT collaboration has built a pair of gravitational
wave detectors called LIGO to search for more direct evidence of
gravitational waves. Since they are essentially the most sensitive
vibration detectors ever made, they are located in quiet rural areas,
and signals will be compared between them to make sure that they
were not due to passing trucks. The project began operating at full
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j / Example 3.

sensitivity in 2005, and is now able to detect a vibration that causes
a change of 10−18 m in the distance between the mirrors at the ends
of the 4-km vacuum tunnels. This is a thousand times less than the
size of an atomic nucleus! There is only enough funding to keep the
detectors operating for a few more years, so the physicists can only
hope that during that time, somewhere in the universe, a sufficiently
violent cataclysm will occur to make a detectable gravitational wave.
(More accurately, they want the wave to arrive in our solar system
during that time, although it will have been produced millions of
years before.)

5.3 The Electric Field
Definition

The definition of the electric field is directly analogous to, and
has the same motivation as, the definition of the gravitational field:

definition of the electric field
The electric field vector, E, at any location in space is found
by placing a test charge qt at that point. The electric field
vector is then given by E = F/qt, where F is the electric force
on the test charge.

Charges are what create electric fields. Unlike gravity, which is
always attractive, electricity displays both attraction and repulsion.
A positive charge is a source of electric fields, and a negative one is
a sink.

The most difficult point about the definition of the electric field
is that the force on a negative charge is in the opposite direction
compared to the field. This follows from the definition, since di-
viding a vector by a negative number reverses its direction. It’s as
though we had some objects that fell upward instead of down.

self-check A
Find an equation for the magnitude of the field of a single point charge
Q. . Answer, p. 205

Superposition of electric fields example 3
. Charges q and −q are at a distance b from each other, as
shown in the figure. What is the electric field at the point P, which
lies at a third corner of the square?

. The field at P is the vector sum of the fields that would have
been created by the two charges independently. Let positive x be
to the right and let positive y be up.

Negative charges have fields that point at them, so the charge
−q makes a field that points to the right, i.e., has a positive x
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k / A dipole field. Electric fields
diverge from a positive charge
and converge on a negative
charge.

l / A water molecule is a dipole.

component. Using the answer to the self-check, we have

E−q,x =
kq
b2

E−q,y = 0 .

Note that if we had blindly ignored the absolute value signs and
plugged in −q to the equation, we would have incorrectly con-
cluded that the field went to the left.

By the Pythagorean theorem, the positive charge is at a distance√
2b from P, so the magnitude of its contribution to the field is

E = kq/2b2. Positive charges have fields that point away from
them, so the field vector is at an angle of 135 ◦counterclockwise
from the x axis.

Eq,x =
kq
2b2 cos 135 ◦

= − kq
23/2b2

Eq,y =
kq
2b2 sin 135 ◦

=
kq

23/2b2

The total field is

Ex =
(

1− 2−3/2
) kq

b2

Ey =
kq

23/2b2

Dipoles
The simplest set of sources that can occur with electricity but

not with gravity is the dipole, consisting of a positive charge and a
negative charge with equal magnitudes. More generally, an electric
dipole can be any object with an imbalance of positive charge on
one side and negative on the other. A water molecule, l, is a dipole
because the electrons tend to shift away from the hydrogen atoms
and onto the oxygen atom.

Your microwave oven acts on water molecules with electric fields.
Let us imagine what happens if we start with a uniform electric field,
m/1, made by some external charges, and then insert a dipole, m/2,
consisting of two charges connected by a rigid rod. The dipole dis-
turbs the field pattern, but more important for our present purposes
is that it experiences a torque. In this example, the positive charge
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feels an upward force, but the negative charge is pulled down. The
result is that the dipole wants to align itself with the field, m/3. The
microwave oven heats food with electrical (and magnetic) waves.
The alternation of the torque causes the molecules to wiggle and in-
crease the amount of random motion. The slightly vague definition
of a dipole given above can be improved by saying that a dipole is
any object that experiences a torque in an electric field.

What determines the torque on a dipole placed in an externally
created field? Torque depends on the force, the distance from the
axis at which the force is applied, and the angle between the force
and the line from the axis to the point of application. Let a dipole
consisting of charges +q and −q separated by a distance ` be placed
in an external field of magnitude |E|, at an angle θ with respect to
the field. The total torque on the dipole is

τ =
`

2
q|E| sin θ +

`

2
q|E| sin θ

= `q|E| sin θ .

(Note that even though the two forces are in opposite directions,
the torques do not cancel, because they are both trying to twist the
dipole in the same direction.) The quantity `q is called the dipole
moment, notated D. (More complex dipoles can also be assigned
a dipole moment — they are defined as having the same dipole
moment as the two-charge dipole that would experience the same
torque.)

Dipole moment of a molecule of NaCl gas example 4
. In a molecule of NaCl gas, the center-to-center distance be-
tween the two atoms is about 0.6 nm. Assuming that the chlo-
rine completely steals one of the sodium’s electrons, compute the
magnitude of this molecule’s dipole moment.

. The total charge is zero, so it doesn’t matter where we choose
the origin of our coordinate system. For convenience, let’s choose
it to be at one of the atoms, so that the charge on that atom
doesn’t contribute to the dipole moment. The magnitude of the

m / 1. A uniform electric field created by some charges “off-stage.”
2. A dipole is placed in the field. 3. The dipole aligns with the field.
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dipole moment is then

D = (6× 10−10 m)(e)

= (6× 10−10 m)(1.6× 10−19 C)

= 1× 10−28 C ·m

Alternative definition of the electric field

The behavior of a dipole in an externally created field leads us
to an alternative definition of the electric field:

alternative definition of the electric field
The electric field vector, E, at any location in space is defined
by observing the torque exerted on a test dipole Dt placed
there. The direction of the field is the direction in which the
field tends to align a dipole (from − to +), and the field’s
magnitude is |E| = τ/Dt sin θ.

The main reason for introducing a second definition for the same
concept is that the magnetic field is most easily defined using a
similar approach.

Voltage related to electric field

Voltage is potential energy per unit charge, and electric field is
force per unit charge. We can therefore relate voltage and field if
we start from the relationship between potential energy and force,

∆PE = −Fd , [assuming constant force and

motion parallel to the force]

and divide by charge,

∆PE

q
= −F

q
d ,

giving

∆V = −Ed , [assuming constant force and

motion parallel to the force]

In other words, the difference in voltage between two points equals
the electric field strength multiplied by the distance between them.
The interpretation is that a strong electric field is a region of space
where the voltage is rapidly changing. By analogy, a steep hillside
is a place on the map where the altitude is rapidly changing.

Field generated by an electric eel example 5
. Suppose an electric eel is 1 m long, and generates a voltage
difference of 1000 volts between its head and tail. What is the
electric field in the water around it?
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n / Example 6.

. We are only calculating the amount of field, not its direction, so
we ignore positive and negative signs. Subject to the possibly in-
accurate assumption of a constant field parallel to the eel’s body,
we have

|E| = ∆V
∆x

= 1000 V/m .

The hammerhead shark example 6
One of the reasons hammerhead sharks have their heads shaped
the way they do is that, like quite a few other fish, they can sense
electric fields as a way of finding prey, which may for example
be hidden in the sand. From the equation E = ∆V/∆x , we can
see that if the shark is sensing the voltage difference between
two points, it will be able to detect smaller electric fields if those
two points are farther apart. The shark has a network of sensory
organs, called the ampullae of Lorenzini, on the skin of its head.
Since the network is spread over a wider head, the ∆x is larger.
Some sharks can detect electric fields as weak as 50 picovolts
per meter!

Relating the units of electric field and voltage example 7
From our original definition of the electric field, we expect it to
have units of newtons per coulomb, N/C. The example above,
however, came out in volts per meter, V/m. Are these inconsis-
tent? Let’s reassure ourselves that this all works. In this kind
of situation, the best strategy is usually to simplify the more com-
plex units so that they involve only mks units and coulombs. Since
voltage is defined as electrical energy per unit charge, it has units
of J/C:

V
m

=
J/C
m

=
J

C ·m
.

To connect joules to newtons, we recall that work equals force
times distance, so J = N ·m, so

V
m

=
N ·m
C ·m

=
N
C

As with other such difficulties with electrical units, one quickly
begins to recognize frequently occurring combinations.
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o / Discussion question H.

Discussion Questions

A In the definition of the electric field, does the test charge need to be
1 coulomb? Does it need to be positive?

B Does a charged particle such as an electron or proton feel a force
from its own electric field?

C Is there an electric field surrounding a wall socket that has nothing
plugged into it, or a battery that is just sitting on a table?

D In a flashlight powered by a battery, which way do the electric fields
point? What would the fields be like inside the wires? Inside the filament
of the bulb?

E Criticize the following statement: “An electric field can be represented
by a sea of arrows showing how current is flowing.”

F The field of a point charge, |E| = kQ/r2, was derived in the self-
check above. How would the field pattern of a uniformly charged sphere
compare with the field of a point charge?

G The interior of a perfect electrical conductor in equilibrium must
have zero electric field, since otherwise the free charges within it would
be drifting in response to the field, and it would not be in equilibrium. What
about the field right at the surface of a perfect conductor? Consider the
possibility of a field perpendicular to the surface or parallel to it.
H Compare the dipole moments of the molecules and molecular ions
shown in the figure.

I Small pieces of paper that have not been electrically prepared in
any way can be picked up with a charged object such as a charged piece
of tape. In our new terminology, we could describe the tape’s charge as
inducing a dipole moment in the paper. Can a similar technique be used
to induce not just a dipole moment but a charge?

J The earth and moon are fairly uneven in size and far apart, like a
baseball and a ping-pong ball held in your outstretched arms. Imagine
instead a planetary system with the character of a double planet: two
planets of equal size, close together. Sketch a sea of arrows diagram of
their gravitational field.

5.4
∫

Voltage for Nonuniform Fields
The calculus-savvy reader will have no difficulty generalizing the
field-voltage relationship to the case of a varying field. The potential
energy associated with a varying force is

∆PE = −
∫
F dx , [one dimension]

so for electric fields we divide by q to find

∆V = −
∫
E dx , [one dimension]

Applying the fundamental theorem of calculus yields

E = −dV

dx
. [one dimension]
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Voltage associated with a point charge example 8
. What is the voltage associated with a point charge?

. As derived previously in self-check A on page 131, the field is

|E| = kQ
r2

The difference in voltage between two points on the same radius
line is

∆V =
∫

dV

= −
∫

Exdx

In the general discussion above, x was just a generic name for
distance traveled along the line from one point to the other, so in
this case x really means r .

∆V = −
∫ r2

r1

Er dr

= −
∫ r2

r1

kQ
r2 dr

=
kQ
r

]r2

r1

=
kQ
r2
− kQ

r1
.

The standard convention is to use r1 =∞ as a reference point, so
that the voltage at any distance r from the charge is

V =
kQ
r

.

The interpretation is that if you bring a positive test charge closer
to a positive charge, its electrical energy is increased; if it was
released, it would spring away, releasing this as kinetic energy.

self-check B
Show that you can recover the expression for the field of a point charge
by evaluating the derivative Ex = −dV/dx . . Answer, p. 205
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q / The constant-voltage curves
surrounding a point charge. Near
the charge, the curves are so
closely spaced that they blend
together on this drawing due to
the finite width with which they
were drawn. Some electric fields
are shown as arrows.

p / Left: A topographical map of Stowe, Vermont. From one constant-height line to the next is a height
difference of 200 feet. Lines far apart, as in the lower village, indicate relatively flat terrain, while lines
close together, like the ones to the west of the main town, represent a steep slope. Streams flow downhill,
perpendicular to the constant-height lines. Right: The same map has been redrawn in perspective, with
shading to suggest relief.

5.5 Two or Three Dimensions
The topographical map shown in figure p suggests a good way

to visualize the relationship between field and voltage in two dimen-
sions. Each contour on the map is a line of constant height; some of
these are labeled with their elevations in units of feet. Height is re-
lated to gravitational potential energy, so in a gravitational analogy,
we can think of height as representing voltage. Where the contour
lines are far apart, as in the town, the slope is gentle. Lines close
together indicate a steep slope.

If we walk along a straight line, say straight east from the town,
then height (voltage) is a function of the east-west coordinate x.
Using the usual mathematical definition of the slope, and writing
V for the height in order to remind us of the electrical analogy, the
slope along such a line is ∆V/∆x. If the slope isn’t constant, we
either need to use the slope of the V − x graph, or use calculus and
talk about the derivative dV/dx.

What if everything isn’t confined to a straight line? Water flows
downhill. Notice how the streams on the map cut perpendicularly
through the lines of constant height.

It is possible to map voltages in the same way, as shown in
figure q. The electric field is strongest where the constant-voltage
curves are closest together, and the electric field vectors always point
perpendicular to the constant-voltage curves.

138 Chapter 5 Fields of Force



r / Self-check C.

Figure s shows some examples of ways to visualize field and
voltage patterns.

Mathematically, the calculus of section 5.4 generalizes to three
dimensions as follows:

Ex = −dV/dx

Ey = −dV/dy

Ez = −dV/dz

self-check C
Imagine that the topographical map in figure r represents voltage rather
than height. (a) Consider the stream that starts near the center of the
map. Determine the positive and negative signs of dV/dx and dV/dy ,
and relate these to the direction of the force that is pushing the current
forward against the resistance of friction. (b) If you wanted to find a lot
of electric charge on this map, where would you look? . Answer, p.
206

s / Two-dimensional field and volt-
age patterns. Top: A uni-
formly charged rod. Bottom:
A dipole. In each case, the
diagram on the left shows the
field vectors and constant-voltage
curves, while the one on the
right shows the voltage (up-down
coordinate) as a function of x
and y. Interpreting the field di-
agrams: Each arrow represents
the field at the point where its tail
has been positioned. For clar-
ity, some of the arrows in regions
of very strong field strength are
not shown they would be too
long to show. Interpreting the
constant-voltage curves: In re-
gions of very strong fields, the
curves are not shown because
they would merge together to
make solid black regions. In-
terpreting the perspective plots:
Keep in mind that even though
we’re visualizing things in three
dimensions, these are really two-
dimensional voltage patterns be-
ing represented. The third (up-
down) dimension represents volt-
age, not position.
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t / Example 9.

5.6
∫
? Electric Field of a Continuous Charge

Distribution
Charge really comes in discrete chunks, but often it is mathemat-
ically convenient to treat a set of charges as if they were like a
continuous fluid spread throughout a region of space. For example,
a charged metal ball will have charge spread nearly uniformly all
over its surface, and in for most purposes it will make sense to ig-
nore the fact that this uniformity is broken at the atomic level. The
electric field made by such a continuous charge distribution is the
sum of the fields created by every part of it. If we let the “parts”
become infinitesimally small, we have a sum of an infinite number of
infinitesimal numbers, which is an integral. If it was a discrete sum,
we would have a total electric field in the x direction that was the
sum of all the x components of the individual fields, and similarly
we’d have sums for the y and z components. In the continuous case,
we have three integrals.

Field of a uniformly charged rod example 9
. A rod of length L has charge Q spread uniformly along it. Find
the electric field at a point a distance d from the center of the rod,
along the rod’s axis.

. This is a one-dimensional situation, so we really only need to
do a single integral representing the total field along the axis. We
imagine breaking the rod down into short pieces of length dz,
each with charge dq. Since charge is uniformly spread along the
rod, we have dq = λdz, where λ = Q/L (Greek lambda) is the
charge per unit length, in units of coulombs per meter. Since
the pieces are infinitesimally short, we can treat them as point
charges and use the expression kdq/r2 for their contributions to
the field, where r = d − z is the distance from the charge at z to
the point in which we are interested.

Ez =
∫

kdq
r2

=
∫ +L/2

−L/2

kλdz
r2

= kλ
∫ +L/2

−L/2

dz
(d − z)2

The integral can be looked up in a table, or reduced to an ele-
mentary form by substituting a new variable for d − z. The result
is

Ez = kλ
(

1
d − z

)+L/2

−L/2

=
kQ
L

(
1

d − L/2
− 1

d + L/2

)
.
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For large values of d , this expression gets smaller for two rea-
sons: (1) the denominators of the fractions become large, and
(2) the two fractions become nearly the same, and tend to cancel
out. This makes sense, since the field should get weaker as we
get farther away from the charge. In fact, the field at large dis-
tances must approach kQ/d2, since from a great distance, the
rod looks like a point.

It’s also interesting to note that the field becomes infinite at the
ends of the rod, but is not infinite on the interior of the rod. Can
you explain physically why this happens?
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Summary
Selected Vocabulary
field . . . . . . . . a property of a point in space describing the

forces that would be exerted on a particle if it
was there

sink . . . . . . . . a point at which field vectors converge
source . . . . . . . a point from which field vectors diverge; of-

ten used more inclusively to refer to points of
either convergence or divergence

electric field . . . the force per unit charge exerted on a test
charge at a given point in space

gravitational field the force per unit mass exerted on a test mass
at a given point in space

electric dipole . . an object that has an imbalance between pos-
itive charge on one side and negative charge
on the other; an object that will experience a
torque in an electric field

Notation
g . . . . . . . . . . the gravitational field
E . . . . . . . . . the electric field
D . . . . . . . . . an electric dipole moment

Other Terminology and Notation
d, p, m . . . . . . other notations for the electric dipole moment

Summary

Newton conceived of a universe where forces reached across space
instantaneously, but we now know that there is a delay in time before
a change in the configuration of mass and charge in one corner of the
universe will make itself felt as a change in the forces experienced
far away. We imagine the outward spread of such a change as a
ripple in an invisible universe-filling field of force.

We define the gravitational field at a given point as the force per
unit mass exerted on objects inserted at that point, and likewise the
electric field is defined as the force per unit charge. These fields are
vectors, and the fields generated by multiple sources add according
to the rules of vector addition.

When the electric field is constant, the voltage difference between
two points lying on a line parallel to the field is related to the field
by the equation ∆V = —Ed, where d is the distance between the
two points.
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Problem 1.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 In our by-now-familiar neuron, the voltage difference be-
tween the inner and outer surfaces of the cell membrane is about
Vout − Vin = −70 mV in the resting state, and the thickness of the
membrane is about 6.0 nm (i.e., only about a hundred atoms thick).
What is the electric field inside the membrane?

√

2 The gap between the electrodes in an automobile engine’s
spark plug is 0.060 cm. To produce an electric spark in a gasoline-
air mixture, an electric field of 3.0 × 106 V/m must be achieved.
On starting a car, what minimum voltage must be supplied by the
ignition circuit? Assume the field is uniform.

√

(b) The small size of the gap between the electrodes is inconvenient
because it can get blocked easily, and special tools are needed to
measure it. Why don’t they design spark plugs with a wider gap?

3 (a) At time t = 0, a positively charged particle is placed,
at rest, in a vacuum, in which there is a uniform electric field of
magnitude E. Write an equation giving the particle’s speed, v, in
terms of t, E, and its mass and charge m and q.

√

(b) If this is done with two different objects and they are observed
to have the same motion, what can you conclude about their masses
and charges? (For instance, when radioactivity was discovered, it
was found that one form of it had the same motion as an electron
in this type of experiment.)

4 Show that the magnitude of the electric field produced by a
simple two-charge dipole, at a distant point along the dipole’s axis,
is to a good approximation proportional to D/r3, where r is the
distance from the dipole. [Hint: Use the approximation (1 + ε)p ≈
1 + pε, which is valid for small ε.] ?

5 Given that the field of a dipole is proportional to D/r3 (see
previous problem), show that its voltage varies as D/r2. (Ignore
positive and negative signs and numerical constants of proportion-
ality.)

∫
6 A carbon dioxide molecule is structured like O-C-O, with
all three atoms along a line. The oxygen atoms grab a little bit of
extra negative charge, leaving the carbon positive. The molecule’s
symmetry, however, means that it has no overall dipole moment,
unlike a V-shaped water molecule, for instance. Whereas the voltage
of a dipole of magnitude D is proportional to D/r2 (problem 5), it
turns out that the voltage of a carbon dioxide molecule along its
axis equals k/r3, where r is the distance from the molecule and k
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Problem 11.

is a constant. What would be the electric field of a carbon dioxide
molecule at a distance r?

∫
7 A proton is in a region in which the electric field is given by
E = a + bx3. If the proton starts at rest at x1 = 0, find its speed,
v, when it reaches position x2. Give your answer in terms of a, b,
x2, and e and m, the charge and mass of the proton.

√ ∫
8

Consider the electric field created by a uniform ring of total charge
q and radius b. (a) Show that the field at a point on the ring’s axis
at a distance a from the plane of the ring is kqa(a2 + b2)−3/2. (b)
Show that this expression has the right behavior for a = 0 and for
a much greater than b. ?

9 Consider the electric field created by an infinite uniformly
charged plane. Starting from the result of problem 8, show that the
field at any point is 2πkσ, where σ is the density of charge on the
plane, in units of coulombs per square meter. Note that the result
is independent of the distance from the plane. [Hint: Slice the plane
into infinitesimal concentric rings, centered at the point in the plane
closest to the point at which the field is being evaluated. Integrate
the rings’ contributions to the field at this point to find the total
field.] . Solution, p. 207

∫
10 Consider the electric field created by a uniformly charged
cylinder that extends to infinity in one direction. (a) Starting from
the result of problem 8, show that the field at the center of the
cylinder’s mouth is 2πkσ, where σ is the density of charge on the
cylinder, in units of coulombs per square meter. [Hint: You can use
a method similar to the one in problem 9.] (b) This expression is
independent of the radius of the cylinder. Explain why this should
be so. For example, what would happen if you doubled the cylinder’s
radius?

∫
11 Three charges are arranged on a square as shown. All three
charges are positive. What value of q2/q1 will produce zero electric
field at the center of the square? . Solution, p. 207
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a / The first two humans to know
what starlight was: James Clerk
Maxwell and Katherine Maxwell,
1869.

Chapter 6

Electromagnetism

In this chapter we discuss the intimate relationship between mag-
netism and electricity discovered by James Clerk Maxwell. Maxwell
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b / Breaking a bar magnet in half
doesn’t create two monopoles, it
creates two smaller dipoles.

c / An explanation at the atomic
level.

realized that light was a wave made up of electric and magnetic
fields linked to each other. He is said to have gone for a walk with
his wife one night and told her that she was the only other person
in the world who knew what starlight really was.

6.1 The Magnetic Field
No magnetic monopoles

If you could play with a handful of electric dipoles and a handful
of bar magnets, they would appear very similar. For instance, a pair
of bar magnets wants to align themselves head-to-tail, and a pair of
electric dipoles does the same thing. (It is unfortunately not that
easy to make a permanent electric dipole that can be handled like
this, since the charge tends to leak.)

You would eventually notice an important difference between the
two types of objects, however. The electric dipoles can be broken
apart to form isolated positive charges and negative charges. The
two-ended device can be broken into parts that are not two-ended.
But if you break a bar magnet in half, b, you will find that you have
simply made two smaller two-ended objects.

The reason for this behavior is not hard to divine from our mi-
croscopic picture of permanent iron magnets. An electric dipole has
extra positive “stuff” concentrated in one end and extra negative in
the other. The bar magnet, on the other hand, gets its magnetic
properties not from an imbalance of magnetic “stuff” at the two
ends but from the orientation of the rotation of its electrons. One
end is the one from which we could look down the axis and see the
electrons rotating clockwise, and the other is the one from which
they would appear to go counterclockwise. There is no difference
between the “stuff” in one end of the magnet and the other, c.

Nobody has ever succeeded in isolating a single magnetic pole.
In technical language, we say that magnetic monopoles do not seem
to exist. Electric monopoles do exist — that’s what charges are.

Electric and magnetic forces seem similar in many ways. Both
act at a distance, both can be either attractive or repulsive, and
both are intimately related to the property of matter called charge.
(Recall that magnetism is an interaction between moving charges.)
Physicists’s aesthetic senses have been offended for a long time be-
cause this seeming symmetry is broken by the existence of elec-
tric monopoles and the absence of magnetic ones. Perhaps some
exotic form of matter exists, composed of particles that are mag-
netic monopoles. If such particles could be found in cosmic rays
or moon rocks, it would be evidence that the apparent asymmetry
was only an asymmetry in the composition of the universe, not in
the laws of physics. For these admittedly subjective reasons, there
have been several searches for magnetic monopoles. Experiments
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d / A standard dipole made
from a square loop of wire short-
ing across a battery. It acts very
much like a bar magnet, but its
strength is more easily quantified.

e / A dipole tends to align it-
self to the surrounding magnetic
field.

have been performed, with negative results, to look for magnetic
monopoles embedded in ordinary matter. Soviet physicists in the
1960s made exciting claims that they had created and detected mag-
netic monopoles in particle accelerators, but there was no success
in attempts to reproduce the results there or at other accelerators.
The most recent search for magnetic monopoles, done by reanalyz-
ing data from the search for the top quark at Fermilab, turned up
no candidates, which shows that either monopoles don’t exist in
nature or they are extremely massive and thus hard to create in
accelerators.

Definition of the magnetic field
Since magnetic monopoles don’t seem to exist, it would not make

much sense to define a magnetic field in terms of the force on a
test monopole. Instead, we follow the philosophy of the alternative
definition of the electric field, and define the field in terms of the
torque on a magnetic test dipole. This is exactly what a magnetic
compass does: the needle is a little iron magnet which acts like a
magnetic dipole and shows us the direction of the earth’s magnetic
field.

To define the strength of a magnetic field, however, we need some
way of defining the strength of a test dipole, i.e., we need a definition
of the magnetic dipole moment. We could use an iron permanent
magnet constructed according to certain specifications, but such an
object is really an extremely complex system consisting of many
iron atoms, only some of which are aligned. A more fundamental
standard dipole is a square current loop. This could be little resistive
circuit consisting of a square of wire shorting across a battery.

We will find that such a loop, when placed in a magnetic field,
experiences a torque that tends to align plane so that its face points
in a certain direction. (Since the loop is symmetric, it doesn’t care
if we rotate it like a wheel without changing the plane in which it
lies.) It is this preferred facing direction that we will end up defining
as the direction of the magnetic field.

Experiments show if the loop is out of alignment with the field,
the torque on it is proportional to the amount of current, and also
to the interior area of the loop. The proportionality to current
makes sense, since magnetic forces are interactions between moving
charges, and current is a measure of the motion of charge. The
proportionality to the loop’s area is also not hard to understand,
because increasing the length of the sides of the square increases
both the amount of charge contained in this circular “river” and
the amount of leverage supplied for making torque. Two separate
physical reasons for a proportionality to length result in an overall
proportionality to length squared, which is the same as the area of
the loop. For these reasons, we define the magnetic dipole moment
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f / The unit of magnetic field,
the tesla, is named after Serbian-
American inventor Nikola Tesla.

g / The magnetic field pat-
tern of a bar magnet. This picture
was made by putting iron filings
on a piece of paper, and bringing
a bar magnet up underneath it.
Note how the field pattern passes
across the body of the magnet,
forming closed loops, as in figure
h/2. There are no sources or
sinks.

of a square current loop as

Dm = IA , [definition of the magnetic

dipole moment of a square current loop]

We now define the magnetic field in a manner entirely analogous to
the second definition of the electric field:

definition of the magnetic field
The magnetic field vector, B, at any location in space is de-
fined by observing the torque exerted on a magnetic test dipole
Dmt consisting of a square current loop. The field’s magnitude
is |B| = τ/Dmt sin θ, where θ is the angle by which the loop is
misaligned. The direction of the field is perpendicular to the
loop; of the two perpendiculars, we choose the one such that
if we look along it, the loop’s current is counterclockwise.

We find from this definition that the magnetic field has units
of N ·m/A ·m2 = N/A ·m. This unwieldy combination of units is
abbreviated as the tesla, 1 T = 1 N/A·m. Refrain from memorizing
the part about the counterclockwise direction at the end; in section
6.4 we’ll see how to understand this in terms of more basic principles.

The nonexistence of magnetic monopoles means that unlike an
electric field, h/1, a magnetic one, h/2, can never have sources or
sinks. The magnetic field vectors lead in paths that loop back on
themselves, without ever converging or diverging at a point.

6.2 Calculating Magnetic Fields and Forces
Magnetostatics

Our study of the electric field built on our previous understand-
ing of electric forces, which was ultimately based on Coulomb’s law
for the electric force between two point charges. Since magnetism
is ultimately an interaction between currents, i.e., between moving
charges, it is reasonable to wish for a magnetic analog of Coulomb’s
law, an equation that would tell us the magnetic force between any
two moving point charges.

Such a law, unfortunately, does not exist. Coulomb’s law de-
scribes the special case of electrostatics: if a set of charges is sitting
around and not moving, it tells us the interactions among them.
Coulomb’s law fails if the charges are in motion, since it does not
incorporate any allowance for the time delay in the outward propa-
gation of a change in the locations of the charges.

A pair of moving point charges will certainly exert magnetic
forces on one another, but their magnetic fields are like the v-shaped
bow waves left by boats. Each point charge experiences a magnetic
field that originated from the other charge when it was at some
previous position. There is no way to construct a force law that tells
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h / Electric fields, 1, have sources
and sinks, but magnetic fields, 2,
don’t.

i / Some magnetic fields.

us the force between them based only on their current positions in
space.

There is, however, a science of magnetostatics that covers a great
many important cases. Magnetostatics describes magnetic forces
among currents in the special case where the currents are steady
and continuous, leading to magnetic fields throughout space that
do not change over time.

If we cannot build a magnetostatics from a force law for point
charges, then where do we start? It can be done, but the level
of mathematics required (vector calculus) is inappropriate for this
course. Luckily there is an alternative that is more within our reach.
Physicists of generations past have used the fancy math to derive
simple equations for the fields created by various static current dis-
tributions, such as a coil of wire, a circular loop, or a straight wire.
Virtually all practical situations can be treated either directly using
these equations or by doing vector addition, e.g., for a case like the
field of two circular loops whose fields add onto one another. Figure
i shows the equations for some of the more commonly encountered
configurations, with illustrations of their field patterns.

Field created by a long, straight wire carrying current I:

B =
µoI
2πr

Here r is the distance from the center of the wire. The field vectors
trace circles in planes perpendicular to the wire, going clockwise when
viewed from along the direction of the current.

Field created by a single circular loop of current:
The field vectors form a dipole-like pattern, coming through the loop
and back around on the outside. Each oval path traced out by the field
vectors appears clockwise if viewed from along the direction the current
is going when it punches through it. There is no simple equation for a
field at an arbitrary point in space, but for a point lying along the central
axis perpendicular to the loop, the field is

B =
1
2
µoIb2 (b2 + z2)−3/2

,

where b is the radius of the loop and z is the distance of the point from
the plane of the loop.

Field created by a solenoid (cylindrical coil):
The field pattern is similar to that of a single loop, but for a long solenoid
the paths of the field vectors become very straight on the inside of the
coil and on the outside immediately next to the coil. For a sufficiently
long solenoid, the interior field also becomes very nearly uniform, with
a magnitude of

B = µoIN/` ,

where N is the number of turns of wire and ` is the length of the solenoid.
The field near the mouths or outside the coil is not constant, and is
more difficult to calculate. For a long solenoid, the exterior field is much
smaller than the interior field.
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j / Example 1.

Don’t memorize the equations! The symbol µo is an abbreviation
for the constant 4π×10−7 T·m/A. It is the magnetic counterpart of
the Coulomb force constant k. The Coulomb constant tells us how
much electric field is produced by a given amount of charge, while
µo relates currents to magnetic fields. Unlike k, µo has a definite
numerical value because of the design of the metric system.

Force on a charge moving through a magnetic field

We now know how to calculate magnetic fields in some typical
situations, but one might also like to be able to calculate magnetic
forces, such as the force of a solenoid on a moving charged particle,
or the force between two parallel current-carrying wires.

We will restrict ourselves to the case of the force on a charged
particle moving through a magnetic field, which allows us to calcu-
late the force between two objects when one is a moving charged
particle and the other is one whose magnetic field we know how to
find. An example is the use of solenoids inside a TV tube to guide
the electron beam as it paints a picture.

Experiments show that the magnetic force on a moving charged
particle has a magnitude given by

|F| = q|v||B| sin θ ,

where v is the velocity vector of the particle, and θ is the angle be-
tween the v and B vectors. Unlike electric and gravitational forces,
magnetic forces do not lie along the same line as the field vector.
The force is always perpendicular to both v and B. Given two vec-
tors, there is only one line perpendicular to both of them, so the
force vector points in one of the two possible directions along this
line. For a positively charged particle, the direction of the force
vector can be found as follows. First, position the v and B vectors
with their tails together. The direction of F is such that if you sight
along it, the B vector is clockwise from the v vector; for a nega-
tively charged particle the direction of the force is reversed. Note
that since the force is perpendicular to the particle’s motion, the
magnetic field never does work on it.

Magnetic levitation example 1
In figure j, a small, disk-shaped permanent magnet is stuck on the
side of a battery, and a wire is clasped loosely around the battery,
shorting it. A large current flows through the wire. The electrons
moving through the wire feel a force from the magnetic field made
by the permanent magnet, and this force levitates the wire.

From the photo, it’s possible to find the direction of the magnetic
field made by the permanent magnet. The electrons in the copper
wire are negatively charged, so they flow from the negative (flat)
terminal of the battery to the positive terminal (the one with the
bump, in front). As the electrons pass by the permanent magnet,
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k / Example 2.

l / Michael Faraday (1791-1867),
the son of a poor blacksmith, dis-
covered induction experimentally.

we can imagine that they would experience a field either toward
the magnet, or away from it, depending on which way the magnet
was flipped when it was stuck onto the battery. Imagine sighting
along the upward force vector, which you could do if you were
a tiny bug lying on your back underneath the wire. Since the
electrons are negatively charged, the B vector must be counter-
clockwise from the v vector, which means toward the magnet.

A circular orbit example 2
Magnetic forces cause a beam of electrons to move in a circle.
The beam is created in a vacuum tube, in which a small amount
of hydrogen gas has been left. A few of the electrons strike hy-
drogen molecules, creating light and letting us see the beam. A
magnetic field is produced by passing a current (meter) through
the circular coils of wire in front of and behind the tube. In the
bottom figure, with the magnetic field turned on, the force per-
pendicular to the electrons’ direction of motion causes them to
move in a circle.

Hallucinations during an MRI scan example 3
During an MRI scan of the head, the patient’s nervous system
is exposed to intense magnetic fields. The average velocities of
the charge-carrying ions in the nerve cells is fairly low, but if the
patient moves her head suddenly, the velocity can be high enough
that the magnetic field makes significant forces on the ions. This
can result in visual and auditory hallucinations, e.g., frying bacon
sounds.

6.3 Induction
Electromagnetism and relative motion

The theory of electric and magnetic fields constructed up to
this point contains a paradox. One of the most basic principles
of physics, dating back to Newton and Galileo and still going strong
today, states that motion is relative, not absolute. Thus the laws of
physics should not function any differently in a moving frame of ref-
erence, or else we would be able to tell which frame of reference was
the one in an absolute state of rest. As an example from mechanics,
imagine that a child is tossing a ball up and down in the back seat of
a moving car. In the child’s frame of reference, the car is at rest and
the landscape is moving by; in this frame, the ball goes straight up
and down, and obeys Newton’s laws of motion and Newton’s law of
gravity. In the frame of reference of an observer watching from the
sidewalk, the car is moving and the sidewalk isn’t. In this frame,
the ball follows a parabolic arc, but it still obeys Newton’s laws.

When it comes to electricity and magnetism, however, we have a
problem, which was first clearly articulated by Einstein: if we state
that magnetism is an interaction between moving charges, we have
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m / A line of positive charges.

n / Observer A sees a posi-
tively charged particle moves
through a region of upward
magnetic field, which we assume
to be uniform, between the poles
of two magnets. The resulting
force along the z axis causes the
particle’s path to curve toward us.

apparently created a law of physics that violates the principle that
motion is relative, since different observers in different frames would
disagree about how fast the charges were moving, or even whether
they were moving at all. The incorrect solution that Einstein was
taught (and disbelieved) as a student around the year 1900 was that
the relative nature of motion applied only to mechanics, not to elec-
tricity and magnetism. The full story of how Einstein restored the
principle of relative motion to its rightful place in physics involves
his theory of special relativity, which we will not take up until book 6
of this series. However, a few simple and qualitative thought exper-
iments will suffice to show how, based on the principle that motion
is relative, there must be some new and previously unsuspected re-
lationships between electricity and magnetism. These relationships
form the basis for many practical, everyday devices, such as genera-
tors and transformers, and they also lead to an explanation of light
itself as an electromagnetic phenomenon.

Let’s imagine an electrical example of relative motion in the
same spirit as the story of the child in the back of the car. Suppose
we have a line of positive charges, m. Observer A is in a frame of
reference which is at rest with respect to these charges, and observes
that they create an electric field pattern that points outward, away
from the charges, in all directions, like a bottle brush. Suppose,
however, that observer B is moving to the right with respect to the
charges. As far as B is concerned, she’s the one at rest, while the
charges (and observer A) move to the left. In agreement with A, she
observes an electric field, but since to her the charges are in motion,
she must also observe a magnetic field in the same region of space,
exactly like the magnetic field made by a current in a long, straight
wire.

Who’s right? They’re both right. In A’s frame of reference,
there is only an E, while in B’s frame there is both an E and a B.
The principle of relative motion forces us to conclude that depend-
ing on our frame of reference we will observe a different combination
of fields. Although we will not prove it (the proof requires special
relativity, which we get to in book 6), it is true that either frame of
reference provides a perfectly self-consistent description of things.
For instance, if an electron passes through this region of space, both
A and B will see it swerve, speed up, and slow down. A will suc-
cessfully explain this as the result of an electric field, while B will
ascribe the electron’s behavior to a combination of electric and mag-
netic forces.

Thus, if we believe in the principle of relative motion, then we
must accept that electric and magnetic fields are closely related
phenomena, two sides of the same coin.

Now consider figure n. Observer A is at rest with respect to the
bar magnets, and sees the particle swerving off in the z direction, as
it should according to the rule given in section 6.2 (sighting along
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o / The geometry of induced
fields. The induced field tends to
form a whirlpool pattern around
the change in the vector produc-
ing it. Note how they circulate in
opposite directions.

the force vector, i.e., from behind the page, the B vector is clockwise
from the v vector). Suppose observer B, on the other hand, is mov-
ing to the right along the x axis, initially at the same speed as the
particle. B sees the bar magnets moving to the left and the particle
initially at rest but then accelerating along the z axis in a straight
line. It is not possible for a magnetic field to start a particle moving
if it is initially at rest, since magnetism is an interaction of moving
charges with moving charges. B is thus led to the inescapable con-
clusion that there is an electric field in this region of space, which
points along the z axis. In other words, what A perceives as a pure
B field, B sees as a mixture of E and B.

In general, observers who are not at rest with respect to one an-
other will perceive different mixtures of electric and magnetic fields.

The principle of induction

So far everything we’ve been doing might not seem terribly use-
ful, since it seems that nothing surprising will happen as long as
we stick to a single frame of reference, and don’t worry about what
people in other frames think. That isn’t the whole story, however,
as was discovered experimentally by Faraday in 1831 and explored
mathematically by Maxwell later in the same century. Let’s state
Faraday’s idea first, and then see how something like it must follow
inevitably from the principle that motion is relative:

the principle of induction
Any electric field that changes over time will produce a mag-
netic field in the space around it.

Any magnetic field that changes over time will produce an
electric field in the space around it.

The induced field tends to have a whirlpool pattern, as shown in
figure o, but the whirlpool image is not to be taken too literally; the
principle of induction really just requires a field pattern such that,
if one inserted a paddlewheel in it, the paddlewheel would spin. All
of the field patterns shown in figure p are ones that could be created
by induction; all have a counterclockwise “curl” to them.

p / Three fields with counterclock-
wise “curls.”
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r / A generator

q / 1. Observer A is at rest with respect to the bar magnet, and observes
magnetic fields that have different strengths at different distances from the
magnet. 2. Observer B, hanging out in the region to the left of the magnet,
sees the magnet moving toward her, and detects that the magnetic field
in that region is getting stronger as time passes. As in 1, there is an
electric field along the z axis because she’s in motion with respect to the
magnet. The ∆B vector is upward, and the electric field has a curliness
to it: a paddlewheel inserted in the electric field would spin clockwise as
seen from above, since the clockwise torque made by the strong electric
field on the right is greater than the counterclockwise torque made by the
weaker electric field on the left.

Figure q shows an example of the fundamental reason why a
changing B field must create an E field. The electric field would
be inexplicable to observer B if she believed only in Coulomb’s law,
and thought that all electric fields are made by electric charges. If
she knows about the principle of induction, however, the existence
of this field is to be expected.

The generator example 4
A generator, r, consists of a permanent magnet that rotates within
a coil of wire. The magnet is turned by a motor or crank, (not
shown). As it spins, the nearby magnetic field changes. Accord-
ing to the principle of induction, this changing magnetic field re-
sults in an electric field, which has a whirlpool pattern. This elec-
tric field pattern creates a current that whips around the coils of
wire, and we can tap this current to light the lightbulb.

self-check A
When you’re driving a car, the engine recharges the battery continu-
ously using a device called an alternator, which is really just a genera-
tor like the one shown on the previous page, except that the coil rotates
while the permanent magnet is fixed in place. Why can’t you use the
alternator to start the engine if your car’s battery is dead? . Answer,
p. 206

The transformer example 5
In section 4.3 we discussed the advantages of transmitting power
over electrical lines using high voltages and low currents. How-
ever, we don’t want our wall sockets to operate at 10000 volts!
For this reason, the electric company uses a device called a trans-
former, (g), to convert to lower voltages and higher currents inside
your house. The coil on the input side creates a magnetic field.
Transformers work with alternating current, so the magnetic field
surrounding the input coil is always changing. This induces an
electric field, which drives a current around the output coil.

If both coils were the same, the arrangement would be symmetric,
and the output would be the same as the input, but an output coil
with a smaller number of coils gives the electric forces a smaller
distance through which to push the electrons. Less mechanical
work per unit charge means a lower voltage. Conservation of en-
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ergy, however, guarantees that the amount of power on the output
side must equal the amount put in originally, IinVin = IoutVout , so
this reduced voltage must be accompanied by an increased cur-
rent.

A mechanical analogy example 6
Figure s shows an example of induction (left) with a mechanical
analogy (right). The two bar magnets are initially pointing in op-
posite directions, 1, and their magnetic fields cancel out. If one
magnet is flipped, 2, their fields reinforce, but the change in the
magnetic field takes time to spread through space. Eventually,
3, the field becomes what you would expect from the theory of
magnetostatics. In the mechanical analogy, the sudden motion of
the hand produces a violent kink or wave pulse in the rope, the
pulse travels along the rope, and it takes some time for the rope
to settle down. An electric field is also induced in by the chang-
ing magnetic field, even though there is no net charge anywhere
to to act as a source. (These simplified drawings are not meant
to be accurate representations of the complete three-dimensional
pattern of electric and magnetic fields.)

s / Example 6.

Discussion Question

A In figures n and q, observer B is moving to the right. What would
have happened if she had been moving to the left?
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6.4 Electromagnetic Waves
The most important consequence of induction is the existence of
electromagnetic waves. Whereas a gravitational wave would consist
of nothing more than a rippling of gravitational fields, the principle
of induction tells us that there can be no purely electrical or purely
magnetic waves. Instead, we have waves in which there are both
electric and magnetic fields, such as the sinusoidal one shown in the
figure. Maxwell proved that such waves were a direct consequence
of his equations, and derived their properties mathematically. The
derivation would be beyond the mathematical level of this book, so
we will just state the results.

t / An electromagnetic wave.

A sinusoidal electromagnetic wave has the geometry shown in
figure t. The E and B fields are perpendicular to the direction of
motion, and are also perpendicular to each other. If you look along
the direction of motion of the wave, the B vector is always 90 degrees
clockwise from the E vector. The magnitudes of the two fields are
related by the equation |E| = c|B|.

How is an electromagnetic wave created? It could be emitted,
for example, by an electron orbiting an atom or currents going back
and forth in a transmitting antenna. In general any accelerating
charge will create an electromagnetic wave, although only a current
that varies sinusoidally with time will create a sinusoidal wave. Once
created, the wave spreads out through space without any need for
charges or currents along the way to keep it going. As the electric
field oscillates back and forth, it induces the magnetic field, and
the oscillating magnetic field in turn creates the electric field. The
whole wave pattern propagates through empty space at a velocity
c = 3.0 × 108 m/s, which is related to the constants k and µo by
c =

√
4πk/µo.

Polarization

Two electromagnetic waves traveling in the same direction through
space can differ by having their electric and magnetic fields in dif-
ferent directions, a property of the wave called its polarization.
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u / Heinrich Hertz (1857-1894).

Light is an electromagnetic wave

Once Maxwell had derived the existence of electromagnetic waves,
he became certain that they were the same phenomenon as light.
Both are transverse waves (i.e., the vibration is perpendicular to
the direction the wave is moving), and the velocity is the same.

Heinrich Hertz (for whom the unit of frequency is named) verified
Maxwell’s ideas experimentally. Hertz was the first to succeed in
producing, detecting, and studying electromagnetic waves in detail
using antennas and electric circuits. To produce the waves, he had
to make electric currents oscillate very rapidly in a circuit. In fact,
there was really no hope of making the current reverse directions
at the frequencies of 1015 Hz possessed by visible light. The fastest
electrical oscillations he could produce were 109 Hz, which would
give a wavelength of about 30 cm. He succeeded in showing that,
just like light, the waves he produced were polarizable, and could be
reflected and refracted (i.e., bent, as by a lens), and he built devices
such as parabolic mirrors that worked according to the same optical
principles as those employing light. Hertz’s results were convincing
evidence that light and electromagnetic waves were one and the
same.

The electromagnetic spectrum
Today, electromagnetic waves with frequencies in the range em-

ployed by Hertz are known as radio waves. Any remaining doubts
that the “Hertzian waves,” as they were then called, were the same
type of wave as light waves were soon dispelled by experiments in
the whole range of frequencies in between, as well as the frequencies
outside that range. In analogy to the spectrum of visible light, we
speak of the entire electromagnetic spectrum, of which the visible
spectrum is one segment.

The terminology for the various parts of the spectrum is worth
memorizing, and is most easily learned by recognizing the logical re-
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lationships between the wavelengths and the properties of the waves
with which you are already familiar. Radio waves have wavelengths
that are comparable to the size of a radio antenna, i.e., meters to
tens of meters. Microwaves were named that because they have
much shorter wavelengths than radio waves; when food heats un-
evenly in a microwave oven, the small distances between neighboring
hot and cold spots is half of one wavelength of the standing wave
the oven creates. The infrared, visible, and ultraviolet obviously
have much shorter wavelengths, because otherwise the wave nature
of light would have been as obvious to humans as the wave nature of
ocean waves. To remember that ultraviolet, x-rays, and gamma rays
all lie on the short-wavelength side of visible, recall that all three of
these can cause cancer. (As we’ll discuss later in the course, there is
a basic physical reason why the cancer-causing disruption of DNA
can only be caused by very short-wavelength electromagnetic waves.
Contrary to popular belief, microwaves cannot cause cancer, which
is why we have microwave ovens and not x-ray ovens!)

Why the sky is blue example 7
When sunlight enters the upper atmosphere, a particular air molecule
finds itself being washed over by an electromagnetic wave of fre-
quency f . The molecule’s charged particles (nuclei and electrons)
act like oscillators being driven by an oscillating force, and re-
spond by vibrating at the same frequency f . Energy is sucked
out of the incoming beam of sunlight and converted into the ki-
netic energy of the oscillating particles. However, these particles
are accelerating, so they act like little radio antennas that put the
energy back out as spherical waves of light that spread out in all
directions. An object oscillating at a frequency f has an accel-
eration proportional to f 2, and an accelerating charged particle
creates an electromagnetic wave whose fields are proportional
to its acceleration, so the field of the reradiated spherical wave
is proportional to f 2. The energy of a field is proportional to the
square of the field, so the energy of the reradiated is proportional
to f 4. Since blue light has about twice the frequency of red light,
this process is about 24 = 16 times as strong for blue as for red,
and that’s why the sky is blue.

6.5 Calculating Energy In Fields
We have seen that the energy stored in a wave (actually the energy
density) is typically proportional to the square of the wave’s ampli-
tude. Fields of force can make wave patterns, for which we might
expect the same to be true. This turns out to be true not only for

158 Chapter 6 Electromagnetism



wave-like field patterns but for all fields:

energy stored in the gravitational field per m3 = − 1

8πG
|g|2

energy stored in the electric field per m3 =
1

8πk
|E2|

energy stored in the magnetic field per m3 =
1

2µo
|B|2

Although funny factors of 8π and the plus and minus signs may
have initially caught your eye, they are not the main point. The
important idea is that the energy density is proportional to the
square of the field strength in all three cases. We first give a simple
numerical example and work a little on the concepts, and then turn
our attention to the factors out in front.

Getting killed by a solenoid example 8
Solenoids are very common electrical devices, but they can be a
hazard to someone who is working on them. Imagine a solenoid
that initially has a DC current passing through it. The current cre-
ates a magnetic field inside and around it, which contains energy.
Now suppose that we break the circuit. Since there is no longer
a complete circuit, current will quickly stop flowing, and the mag-
netic field will collapse very quickly. The field had energy stored
in it, and even a small amount of energy can create a danger-
ous power surge if released over a short enough time interval. It
is prudent not to fiddle with a solenoid that has current flowing
through it, since breaking the circuit could be hazardous to your
health.

As a typical numerical estimate, let’s assume a 40 cm × 40 cm
× 40 cm solenoid with an interior magnetic field of 1.0 T (quite
a strong field). For the sake of this rough estimate, we ignore
the exterior field, which is weak, and assume that the solenoid is
cubical in shape. The energy stored in the field is

(energy per unit volume)(volume) =
1

2µo
|B|2V

= 3× 104 J

That’s a lot of energy!

In chapter 5 when we discussed the original reason for intro-
ducing the concept of a field of force, a prime motivation was that
otherwise there was no way to account for the energy transfers in-
volved when forces were delayed by an intervening distance. We
used to think of the universe’s energy as consisting of
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kinetic energy

+gravitational potential energy based on the distances between

objects that interact gravitationally

+electric potential energy based on the distances between

objects that interact electrically

+magnetic potential energy based on the distances between

objects that interact magnetically ,

but in nonstatic situations we must use a different method:

kinetic energy

+gravitational potential energy stored in gravitational fields

+electric potential energy stored in electric fields

+magnetic potential stored in magnetic fields
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v / Example 9.

w / Example 10.

Surprisingly, the new method still gives the same answers for the
static cases.

Energy stored in a capacitor example 9
A pair of parallel metal plates, seen from the side in figure v,

can be used to store electrical energy by putting positive charge
on one side and negative charge on the other. Such a device is
called a capacitor. (We have encountered such an arrangement
previously, but there its purpose was to deflect a beam of elec-
trons, not to store energy.)

In the old method of describing potential energy, 1, we think in
terms of the mechanical work that had to be done to separate
the positive and negative charges onto the two plates, working
against their electrical attraction. The new description, 2, at-
tributes the storage of energy to the newly created electric field
occupying the volume between the plates. Since this is a static
case, both methods give the same, correct answer.

Potential energy of a pair of opposite charges example 10
Imagine taking two opposite charges, w, that were initially far
apart and allowing them to come together under the influence
of their electrical attraction.

According to the old method, potential energy is lost because the
electric force did positive work as it brought the charges together.
(This makes sense because as they come together and acceler-
ate it is their potential energy that is being lost and converted to
kinetic energy.)

By the new method, we must ask how the energy stored in the
electric field has changed. In the region indicated approximately
by the shading in the figure, the superposing fields of the two
charges undergo partial cancellation because they are in oppos-
ing directions. The energy in the shaded region is reduced by
this effect. In the unshaded region, the fields reinforce, and the
energy is increased.

It would be quite a project to do an actual numerical calculation of
the energy gained and lost in the two regions (this is a case where
the old method of finding energy gives greater ease of computa-
tion), but it is fairly easy to convince oneself that the energy is
less when the charges are closer. This is because bringing the
charges together shrinks the high-energy unshaded region and
enlarges the low-energy shaded region.

Energy in an electromagnetic wave example 11
The old method would give zero energy for a region of space
containing an electromagnetic wave but no charges. That would
be wrong! We can only use the old method in static cases.

Now let’s give at least some justification for the other features
of the three expressions for energy density, − 1

8πG |g|
2, 1

8πk |E
2|, and
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x / Discussion question A.

1
2µo
|B|2, besides the proportionality to the square of the field strength.

First, why the different plus and minus signs? The basic idea is
that the signs have to be opposite in the gravitational and electric
cases because there is an attraction between two positive masses
(which are the only kind that exist), but two positive charges would
repel. Since we’ve already seen examples where the positive sign in
the electric energy makes sense, the gravitational energy equation
must be the one with the minus sign.

It may also seem strange that the constants G, k, and µo are in
the denominator. They tell us how strong the three different forces
are, so shouldn’t they be on top? No. Consider, for instance, an
alternative universe in which gravity is twice as strong as in ours.
The numerical value of G is doubled. Because G is doubled, all the
gravitational field strengths are doubled as well, which quadruples
the quantity |g|2. In the expression − 1

8πG |g|
2, we have quadrupled

something on top and doubled something on the bottom, which
makes the energy twice as big. That makes perfect sense.

Discussion Questions
A The figure shows a positive charge in the gap between two capacitor
plates. First make a large drawing of the field pattern that would be formed
by the capacitor itself, without the extra charge in the middle. Next, show
how the field pattern changes when you add the particle at these two po-
sitions. Compare the energy of the electric fields in the two cases. Does
this agree with what you would have expected based on your knowledge
of electrical forces?

B Criticize the following statement: “A solenoid makes a charge in the
space surrounding it, which dissipates when you release the energy.”

C In example 10, I argued that the fields surrounding a positive
and negative charge contain less energy when the charges are closer
together. Perhaps a simpler approach is to consider the two extreme pos-
sibilities: the case where the charges are infinitely far apart, and the one
in which they are at zero distance from each other, i.e., right on top of
each other. Carry out this reasoning for the case of (1) a positive charge
and a negative charge of equal magnitude, (2) two positive charges of
equal magnitude, (3) the gravitational energy of two equal masses.

6.6 ? Symmetry and Handedness
The physicist Richard Feynman helped to get me hooked on physics
with an educational film containing the following puzzle. Imagine
that you establish radio contact with an alien on another planet.
Neither of you even knows where the other one’s planet is, and you
aren’t able to establish any landmarks that you both recognize. You
manage to learn quite a bit of each other’s languages, but you’re
stumped when you try to establish the definitions of left and right
(or, equivalently, clockwise and counterclockwise). Is there any way
to do it?
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If there was any way to do it without reference to external land-
marks, then it would imply that the laws of physics themselves were
asymmetric, which would be strange. Why should they distinguish
left from right? The gravitational field pattern surrounding a star
or planet looks the same in a mirror, and the same goes for elec-
tric fields. However, the field patterns shown in section 6.2 seem
to violate this principle, but do they really? Could you use these
patterns to explain left and right to the alien? In fact, the answer is
no. If you look back at the definition of the magnetic field in section
6.1, it also contains a reference to handedness: the counterclockwise
direction of the loop’s current as viewed along the magnetic field.
The aliens might have reversed their definition of the magnetic field,
in which case their drawings of field patterns would look like mirror
images of ours.

Until the middle of the twentieth century, physicists assumed
that any reasonable set of physical laws would have to have this
kind of symmetry between left and right. An asymmetry would
be grotesque. Whatever their aesthetic feelings, they had to change
their opinions about reality when experiments showed that the weak
nuclear force (section 6.5) violates right-left symmetry! It is still
a mystery why right-left symmetry is observed so scrupulously in
general, but is violated by one particular type of physical process.
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Summary
Selected Vocabulary
magnetic field . . a field of force, defined in terms of the torque

exerted on a test dipole
magnetic dipole . an object, such as a current loop, an atom,

or a bar magnet, that experiences torques due
to magnetic forces; the strength of magnetic
dipoles is measured by comparison with a stan-
dard dipole consisting of a square loop of wire
of a given size and carrying a given amount of
current

induction . . . . . the production of an electric field by a chang-
ing magnetic field, or vice-versa

Notation
B . . . . . . . . . the magnetic field
Dm . . . . . . . . magnetic dipole moment

Summary

Magnetism is an interaction of moving charges with other moving
charges. The magnetic field is defined in terms of the torque on a
magnetic test dipole. It has no sources or sinks; magnetic field
patterns never converge on or diverge from a point.

The magnetic and electric fields are intimately related. The
principle of induction states that any changing electric field produces
a magnetic field in the surrounding space, and vice-versa. These
induced fields tend to form whirlpool patterns.

The most important consequence of the principle of induction
is that there are no purely magnetic or purely electric waves. Dis-
turbances in the electrical and magnetic fields propagate outward
as combined magnetic and electric waves, with a well-defined rela-
tionship between their magnitudes and directions. These electro-
magnetic waves are what light is made of, but other forms of elec-
tromagnetic waves exist besides visible light, including radio waves,
x-rays, and gamma rays.

Fields of force contain energy. The density of energy is pro-
portional to the square of the magnitude of the field. In the case
of static fields, we can calculate potential energy either using the
previous definition in terms of mechanical work or by calculating
the energy stored in the fields. If the fields are not static, the old
method gives incorrect results and the new one must be used.
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Problem 2.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 In an electrical storm, the cloud and the ground act like a
parallel-plate capacitor, which typically charges up due to frictional
electricity in collisions of ice particles in the cold upper atmosphere.
Lightning occurs when the magnitude of the electric field builds up
to a critical value, Ec, at which air is ionized.
(a) Treat the cloud as a flat square with sides of length L. If it is at
a height h above the ground, find the amount of energy released in
the lightning strike.

√

(b) Based on your answer from part a, which is more dangerous, a
lightning strike from a high-altitude cloud or a low-altitude one?
(c) Make an order-of-magnitude estimate of the energy released by
a typical lightning bolt, assuming reasonable values for its size and
altitude. Ec is about 106 V/m.

See problem 21 for a note on how recent research affects this esti-
mate.
2 The neuron in the figure has been drawn fairly short, but some
neurons in your spinal cord have tails (axons) up to a meter long.
The inner and outer surfaces of the membrane act as the “plates”
of a capacitor. (The fact that it has been rolled up into a cylinder
has very little effect.) In order to function, the neuron must create
a voltage difference V between the inner and outer surfaces of the
membrane. Let the membrane’s thickness, radius, and length be t,
r, and L. (a) Calculate the energy that must be stored in the electric
field for the neuron to do its job. (In real life, the membrane is made
out of a substance called a dielectric, whose electrical properties
increase the amount of energy that must be stored. For the sake of
this analysis, ignore this fact.) [Hint: The volume of the membrane
is essentially the same as if it was unrolled and flattened out.]

√

(b) An organism’s evolutionary fitness should be better if it needs
less energy to operate its nervous system. Based on your answer to
part a, what would you expect evolution to do to the dimensions t
and r? What other constraints would keep these evolutionary trends
from going too far?

3 Consider two solenoids, one of which is smaller so that it can
be put inside the other. Assume they are long enough so that each
one only contributes significantly to the field inside itself, and the
interior fields are nearly uniform. Consider the configuration where
the small one is inside the big one with their currents circulating in
the same direction, and a second configuration in which the currents
circulate in opposite directions. Compare the energies of these con-
figurations with the energy when the solenoids are far apart. Based
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Problem 4.

on this reasoning, which configuration is stable, and in which con-
figuration will the little solenoid tend to get twisted around or spit
out? [Hint: A stable system has low energy; energy would have to
be added to change its configuration.]

4 The figure shows a nested pair of circular wire loops used
to create magnetic fields. (The twisting of the leads is a practical
trick for reducing the magnetic fields they contribute, so the fields
are very nearly what we would expect for an ideal circular current
loop.) The coordinate system below is to make it easier to discuss
directions in space. One loop is in the y − z plane, the other in the
x − y plane. Each of the loops has a radius of 1.0 cm, and carries
1.0 A in the direction indicated by the arrow.
(a) Using the equation in optional section 6.2, calculate the magnetic
field that would be produced by one such loop, at its center.

√

(b) Describe the direction of the magnetic field that would be pro-
duced, at its center, by the loop in the x− y plane alone.
(c) Do the same for the other loop.
(d) Calculate the magnitude of the magnetic field produced by the
two loops in combination, at their common center. Describe its
direction.

√

5 (a) Show that the quantity
√

4πk/µo has units of velocity.

(b) Calculate it numerically and show that it equals the speed of
light.

(c) Prove that in an electromagnetic wave, half the energy is in the
electric field and half in the magnetic field.

6 One model of the hydrogen atom has the electron circling
around the proton at a speed of 2.2 × 106 m/s, in an orbit with a
radius of 0.05 nm. (Although the electron and proton really orbit
around their common center of mass, the center of mass is very close
to the proton, since it is 2000 times more massive. For this problem,
assume the proton is stationary.) In homework problem 9 on page
103, you calculated the electric current created.
(a) Now estimate the magnetic field created at the center of the
atom by the electron. We are treating the circling electron as a cur-
rent loop, even though it’s only a single particle.

√

(b) Does the proton experience a nonzero force from the electron’s
magnetic field? Explain.
(c) Does the electron experience a magnetic field from the proton?
Explain.
(d) Does the electron experience a magnetic field created by its own
current? Explain.
(e) Is there an electric force acting between the proton and electron?
If so, calculate it.

√

(f) Is there a gravitational force acting between the proton and elec-
tron? If so, calculate it.
(g) An inward force is required to keep the electron in its orbit –
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otherwise it would obey Newton’s first law and go straight, leaving
the atom. Based on your answers to the previous parts, which force
or forces (electric, magnetic and gravitational) contributes signifi-
cantly to this inward force?

7 [You need to have read optional section 6.2 to do this prob-
lem.] Suppose a charged particle is moving through a region of space
in which there is an electric field perpendicular to its velocity vec-
tor, and also a magnetic field perpendicular to both the particle’s
velocity vector and the electric field. Show that there will be one
particular velocity at which the particle can be moving that results
in a total force of zero on it. Relate this velocity to the magnitudes
of the electric and magnetic fields. (Such an arrangement, called a
velocity filter, is one way of determining the speed of an unknown
particle.)

8 If you put four times more current through a solenoid, how
many times more energy is stored in its magnetic field?

√

9 Suppose we are given a permanent magnet with a complicated,
asymmetric shape. Describe how a series of measurements with
a magnetic compass could be used to determine the strength and
direction of its magnetic field at some point of interest. Assume that
you are only able to see the direction to which the compass needle
settles; you cannot measure the torque acting on it. ?

10 Consider two solenoids, one of which is smaller so that it
can be put inside the other. Assume they are long enough to act
like ideal solenoids, so that each one only contributes significantly
to the field inside itself, and the interior fields are nearly uniform.
Consider the configuration where the small one is partly inside and
partly hanging out of the big one, with their currents circulating in
the same direction. Their axes are constrained to coincide.

(a) Find the magnetic potential energy as a function of the length
x of the part of the small solenoid that is inside the big one. (Your
equation will include other relevant variables describing the two
solenoids.)

(b) Based on your answer to part (a), find the force acting between
the solenoids.
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Problem 11.

11 Four long wires are arranged, as shown, so that their cross-
section forms a square, with connections at the ends so that current
flows through all four before exiting. Note that the current is to the
right in the two back wires, but to the left in the front wires. If the
dimensions of the cross-sectional square (height and front-to-back)
are b, find the magnetic field (magnitude and direction) along the
long central axis.

√

12 To do this problem, you need to understand how to do
volume integrals in cylindrical and spherical coordinates. (a) Show
that if you try to integrate the energy stored in the field of a long,
straight wire, the resulting energy per unit length diverges both at
r → 0 and r → ∞. Taken at face value, this would imply that a
certain real-life process, the initiation of a current in a wire, would
be impossible, because it would require changing from a state of
zero magnetic energy to a state of infinite magnetic energy. (b)
Explain why the infinities at r → 0 and r →∞ don’t really happen
in a realistic situation. (c) Show that the electric energy of a point
charge diverges at r → 0, but not at r →∞.

A remark regarding part (c): Nature does seem to supply us with
particles that are charged and pointlike, e.g., the electron, but one
could argue that the infinite energy is not really a problem, because
an electron traveling around and doing things neither gains nor loses
infinite energy; only an infinite change in potential energy would be
physically troublesome. However, there are real-life processes that
create and destroy pointlike charged particles, e.g., the annihilation
of an electron and antielectron with the emission of two gamma
rays. Physicists have, in fact, been struggling with infinities like
this since about 1950, and the issue is far from resolved. Some
theorists propose that apparently pointlike particles are actually not
pointlike: close up, an electron might be like a little circular loop of
string.

∫
?

13 The purpose of this problem is to find the force experienced by
a straight, current-carrying wire running perpendicular to a uniform
magnetic field. (a) Let A be the cross-sectional area of the wire, n
the number of free charged particles per unit volume, q the charge
per particle, and v the average velocity of the particles. Show that
the current is I = Avnq. (b) Show that the magnetic force per unit
length is AvnqB. (c) Combining these results, show that the force
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Problem 15.

on the wire per unit length is equal to IB. . Solution, p. 208

14 Suppose two long, parallel wires are carrying current I1 and
I2. The currents may be either in the same direction or in op-
posite directions. (a) Using the information from section 6.2, de-
termine under what conditions the force is attractive, and under
what conditions it is repulsive. Note that, because of the difficul-
ties explored in problem 12, it’s possible to get yourself tied up in
knots if you use the energy approach of section 6.5. (b) Starting
from the result of problem 13, calculate the force per unit length.

. Solution, p. 208

15 The figure shows cross-sectional views of two cubical ca-
pacitors, and a cross-sectional view of the same two capacitors put
together so that their interiors coincide. A capacitor with the plates
close together has a nearly uniform electric field between the plates,
and almost zero field outside; these capacitors don’t have their plates
very close together compared to the dimensions of the plates, but
for the purposes of this problem, assume that they still have ap-
proximately the kind of idealized field pattern shown in the figure.
Each capacitor has an interior volume of 1.00 m3, and is charged up
to the point where its internal field is 1.00 V/m. (a) Calculate the
energy stored in the electric field of each capacitor when they are
separate. (b) Calculate the magnitude of the interior field when the
two capacitors are put together in the manner shown. Ignore effects
arising from the redistribution of each capacitor’s charge under the
influence of the other capacitor. (c) Calculate the energy of the
put-together configuration. Does assembling them like this release
energy, consume energy, or neither?

16 Section 6.2 states the following rule:

For a positively charged particle, the direction of the F vector is the
one such that if you sight along it, the B vector is clockwise from
the v vector.

Make a three-dimensional model of the three vectors using pencils
or rolled-up pieces of paper to represent the vectors assembled with
their tails together. Now write down every possible way in which
the rule could be rewritten by scrambling up the three symbols F ,
B, and v. Referring to your model, which are correct and which are
incorrect?

17 Prove that any two planar current loops with the same value
of IA will experience the same torque in a magnetic field, regardless
of their shapes. In other words, the dipole moment of a current loop
can be defined as IA, regardless of whether its shape is a square.

?
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Problem 18.

18 A Helmholtz coil is defined as a pair of identical circular
coils separated by a distance, h, equal to their radius, b. (Each coil
may have more than one turn of wire.) Current circulates in the
same direction in each coil, so the fields tend to reinforce each other
in the interior region. This configuration has the advantage of being
fairly open, so that other apparatus can be easily placed inside and
subjected to the field while remaining visible from the outside. The
choice of h = b results in the most uniform possible field near the
center. (a) Find the percentage drop in the field at the center of
one coil, compared to the full strength at the center of the whole
apparatus. (b) What value of h (not equal to b) would make this
percentage difference equal to zero?

19 (a) In the photo of the vacuum tube apparatus in section
6.2, infer the direction of the magnetic field from the motion of the
electron beam. (b) Based on your answer to a, find the direction of
the currents in the coils. (c) What direction are the electrons in the
coils going? (d) Are the currents in the coils repelling or attracting
the currents consisting of the beam inside the tube? Compare with
part a of problem 14.

20 In the photo of the vacuum tube apparatus in section 6.2,
an approximately uniform magnetic field caused circular motion. Is
there any other possibility besides a circle? What can happen in
general? ?

21 In problem 1, you estimated the energy released in a bolt
of lightning, based on the energy stored in the electric field imme-
diately before the lightning occurs. The assumption was that the
field would build up to a certain value, which is what is necessary
to ionize air. However, real-life measurements always seemed to
show electric fields strengths roughtly 10 times smaller than those
required in that model. For a long time, it wasn’t clear whether the
field measurements were wrong, or the model was wrong. Research
carried out in 2003 seems to show that the model was wrong. It is
now believed that the final triggering of the bolt of lightning comes
from cosmic rays that enter the atmosphere and ionize some of the
air. If the field is 10 times smaller than the value assumed in prob-
lem 1, what effect does this have on the final result of problem 1?

22 In section 6.2 I gave an equation for the magnetic field in
the interior of a solenoid, but that equation doesn’t give the right
answer near the mouths or on the outside. Although in general the
computation of the field in these other regions is complicated, it is
possible to find a precise, simple result for the field at the center of
one of the mouths, using only symmetry and vector addition. What
is it? . Solution, p. 209 ?
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Chapter A

Capacitance and
Inductance

This chapter is optional.

The long road leading from the light bulb to the computer started
with one very important step: the introduction of feedback into elec-
tronic circuits. Although the principle of feedback has been under-
stood and and applied to mechanical systems for centuries, and to
electrical ones since the early twentieth century, for most of us the
word evokes an image of Jimi Hendrix (or some more recent guitar
hero) intentionally creating earsplitting screeches, or of the school
principal doing the same inadvertently in the auditorium. In the
guitar example, the musician stands in front of the amp and turns
it up so high that the sound waves coming from the speaker come
back to the guitar string and make it shake harder. This is an exam-
ple of positive feedback: the harder the string vibrates, the stronger
the sound waves, and the stronger the sound waves, the harder the
string vibrates. The only limit is the power-handling ability of the
amplifier.

Negative feedback is equally important. Your thermostat, for
example, provides negative feedback by kicking the heater off when
the house gets warm enough, and by firing it up again when it
gets too cold. This causes the house’s temperature to oscillate back
and forth within a certain range. Just as out-of-control exponential
freak-outs are a characteristic behavior of positive-feedback systems,
oscillation is typical in cases of negative feedback. You have already
studied negative feedback extensively in Vibrations and Waves in
the case of a mechanical system, although we didn’t call it that.

A.1 Capacitance and Inductance
In a mechanical oscillation, energy is exchanged repetitively between
potential and kinetic forms, and may also be siphoned off in the
form of heat dissipated by friction. In an electrical circuit, resistors
are the circuit elements that dissipate heat. What are the electrical
analogs of storing and releasing the potential and kinetic energy of a
vibrating object? When you think of energy storage in an electrical
circuit, you are likely to imagine a battery, but even rechargeable
batteries can only go through 10 or 100 cycles before they wear out.
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a / The symbol for a capaci-
tor.

b / Some capacitors.

c / Two common geometries
for inductors. The cylindrical
shape on the left is called a
solenoid.

d / The symbol for an induc-
tor.

e / Some inductors.

In addition, batteries are not able to exchange energy on a short
enough time scale for most applications. The circuit in a musical
synthesizer may be called upon to oscillate thousands of times a
second, and your microwave oven operates at gigahertz frequencies.
Instead of batteries, we generally use capacitors and inductors to
store energy in oscillating circuits. Capacitors, which you’ve already
encountered, store energy in electric fields. An inductor does the
same with magnetic fields.

Capacitors

A capacitor’s energy exists in its surrounding electric fields. It is
proportional to the square of the field strength, which is proportional
to the charges on the plates. If we assume the plates carry charges
that are the same in magnitude, +q and −q, then the energy stored
in the capacitor must be proportional to q2. For historical reasons,
we write the constant of proportionality as 1/2C,

EC =
1

2C
q2 .

The constant C is a geometrical property of the capacitor, called its
capacitance.

Based on this definition, the units of capacitance must be coulombs
squared per joule, and this combination is more conveniently abbre-
viated as the farad, 1 F = 1 C2/J. “Condenser” is a less formal
term for a capacitor. Note that the labels printed on capacitors
often use MF to mean µF, even though MF should really be the
symbol for megafarads, not microfarads. Confusion doesn’t result
from this nonstandard notation, since picofarad and microfarad val-
ues are the most common, and it wasn’t until the 1990’s that even
millifarad and farad values became available in practical physical
sizes. Figure a shows the symbol used in schematics to represent a
capacitor.

Inductors

Any current will create a magnetic field, so in fact every current-
carrying wire in a circuit acts as an inductor! However, this type
of “stray” inductance is typically negligible, just as we can usually
ignore the stray resistance of our wires and only take into account
the actual resistors. To store any appreciable amount of magnetic
energy, one usually uses a coil of wire designed specifically to be
an inductor. All the loops’ contribution to the magnetic field add
together to make a stronger field. Unlike capacitors and resistors,
practical inductors are easy to make by hand. One can for instance
spool some wire around a short wooden dowel, put the spool inside
a plastic aspirin bottle with the leads hanging out, and fill the bottle
with epoxy to make the whole thing rugged. An inductor like this,
in the form cylindrical coil of wire, is called a solenoid, c, and a
stylized solenoid, d, is the symbol used to represent an inductor in
a circuit regardless of its actual geometry.
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f / Inductances in series add.

g / Capacitances in parallel
add.

h / A variable capacitor.

How much energy does an inductor store? The energy density is
proportional to the square of the magnetic field strength, which is
in turn proportional to the current flowing through the coiled wire,
so the energy stored in the inductor must be proportional to I2. We
write L/2 for the constant of proportionality, giving

EL =
L

2
I2 .

As in the definition of capacitance, we have a factor of 1/2,
which is purely a matter of definition. The quantity L is called the
inductance of the inductor, and we see that its units must be joules
per ampere squared. This clumsy combination of units is more
commonly abbreviated as the henry, 1 henry = 1 J/A2. Rather
than memorizing this definition, it makes more sense to derive it
when needed from the definition of inductance. Many people know
inductors simply as “coils,” or “chokes,” and will not understand
you if you refer to an “inductor,” but they will still refer to L as the
“inductance,” not the “coilance” or “chokeance!”

Identical inductances in series example 1
If two inductors are placed in series, any current that passes
through the combined double inductor must pass through both
its parts. Thus by the definition of inductance, the inductance is
doubled as well. In general, inductances in series add, just like
resistances. The same kind of reasoning also shows that the in-
ductance of a solenoid is approximately proportional to its length,
assuming the number of turns per unit length is kept constant.

Identical capacitances in parallel example 2
When two identical capacitances are placed in parallel, any charge
deposited at the terminals of the combined double capacitor will
divide itself evenly between the two parts. The electric fields sur-
rounding each capacitor will be half the intensity, and therefore
store one quarter the energy. Two capacitors, each storing one
quarter the energy, give half the total energy storage. Since ca-
pacitance is inversely related to energy storage, this implies that
identical capacitances in parallel give double the capacitance. In
general, capacitances in parallel add. This is unlike the behav-
ior of inductors and resistors, for which series configurations give
addition.

This is consistent with the fact that the capacitance of a single
parallel-plate capacitor proportional to the area of the plates. If
we have two parallel-plate capacitors, and we combine them in
parallel and bring them very close together side by side, we have
produced a single capacitor with plates of double the area, and it
has approximately double the capacitance.

Inductances in parallel and capacitances in series are explored
in homework problems 4 and 6.
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i / Discussion question B.

j / A series LRC circuit.

k / A mechanical analogy for
the LRC circuit.

A variable capacitor example 3
Figure h/1 shows the construction of a variable capacitor out of
two parallel semicircles of metal. One plate is fixed, while the
other can be rotated about their common axis with a knob. The
opposite charges on the two plates are attracted to one another,
and therefore tend to gather in the overlapping area. This over-
lapping area, then, is the only area that effectively contributes to
the capacitance, and turning the knob changes the capacitance.
The simple design can only provide very small capacitance val-
ues, so in practice one usually uses a bank of capacitors, wired
in parallel, with all the moving parts on the same shaft.

Discussion Questions

A Suppose that two parallel-plate capacitors are wired in parallel, and
are placed very close together, side by side, so that their fields overlap.
Will the resulting capacitance be too small, or too big? Could you twist
the circuit into a different shape and make the effect be the other way
around, or make the effect vanish? How about the case of two inductors
in series?
B Most practical capacitors do not have an air gap or vacuum gap
between the plates; instead, they have an insulating substance called a
dielectric. We can think of the molecules in this substance as dipoles that
are free to rotate (at least a little), but that are not free to move around,
since it is a solid. The figure shows a highly stylized and unrealistic way
of visualizing this. We imagine that all the dipoles are intially turned side-
ways, (1), and that as the capacitor is charged, they all respond by turning
through a certain angle, (2). (In reality, the scene might be much more
random, and the alignment effect much weaker.)

For simplicity, imagine inserting just one electric dipole into the vacuum
gap. For a given amount of charge on the plates, how does this affect
the amount of energy stored in the electric field? How does this affect the
capacitance?

Now redo the analysis in terms of the mechanical work needed in order
to charge up the plates.

A.2 Oscillations
Figure j shows the simplest possible oscillating circuit. For any use-
ful application it would actually need to include more components.
For example, if it was a radio tuner, it would need to be connected to
an antenna and an amplifier. Nevertheless, all the essential physics
is there.

We can analyze it without any sweat or tears whatsoever, sim-
ply by constructing an analogy with a mechanical system. In a
mechanical oscillator, k, we have two forms of stored energy,

Espring =
1

2
kx2 (1)

K =
1

2
mv2 . (2)
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In the case of a mechanical oscillator, we have usually assumed
a friction force of the form that turns out to give the nicest math-
ematical results, F = −bv. In the circuit, the dissipation of energy
into heat occurs via the resistor, with no mechanical force involved,
so in order to make the analogy, we need to restate the role of the
friction force in terms of energy. The power dissipated by friction
equals the mechanical work it does in a time interval ∆t, divided by
∆t, P = W/∆t = F∆x/∆t = Fv = −bv2, so

rate of heat dissipation = −bv2 . (3)

self-check A
Equation (1) has x squared, and equations (2) and (3) have v squared.
Because they’re squared, the results don’t depend on whether these
variables are positive or negative. Does this make physical sense? .

Answer, p. 206

In the circuit, the stored forms of energy are

EC =
1

2C
q2 (1′)

EL =
1

2
LI2 , (2′)

and the rate of heat dissipation in the resistor is

rate of heat dissipation = −RI2 . (3′)

Comparing the two sets of equations, we first form analogies between
quantities that represent the state of the system at some moment
in time:

x↔ q

v ↔ I

self-check B
How is v related mathematically to x? How is I connected to q? Are the
two relationships analogous? . Answer, p. 206

Next we relate the ones that describe the system’s permanent
characteristics:

k ↔ 1/C

m↔ L

b↔ R

Since the mechanical system naturally oscillates with a period
T = 2π

√
m/k , we can immediately solve the electrical version by

analogy, giving
T = 2π

√
LC .
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Rather than period, T , and frequency, f , it turns out to be more
convenient if we work with the quantity ω = 2πf , which can be
interpreted as the number of radians per second. Then

ω =
1√
LC

.

Since the resistance R is analogous to b in the mechanical case,
we find that the Q (quality factor, not charge) of the resonance
is inversely proportional to R, and the width of the resonance is
directly proportional to R.

Tuning a radio receiver example 4
A radio receiver uses this kind of circuit to pick out the desired
station. Since the receiver resonates at a particular frequency,
stations whose frequencies are far off will not excite any response
in the circuit. The value of R has to be small enough so that only
one station at a time is picked up, but big enough so that the
tuner isn’t too touchy. The resonant frequency can be tuned by
adjusting either L or C, but variable capacitors are easier to build
than variable inductors.

A numerical calculation example 5
The phone company sends more than one conversation at a time
over the same wire, which is accomplished by shifting each voice
signal into different range of frequencies during transmission. The
number of signals per wire can be maximized by making each
range of frequencies (known as a bandwidth) as small as possi-
ble. It turns out that only a relatively narrow range of frequencies
is necessary in order to make a human voice intelligible, so the
phone company filters out all the extreme highs and lows. (This is
why your phone voice sounds different from your normal voice.)

. If the filter consists of an LRC circuit with a broad resonance
centered around 1.0 kHz, and the capacitor is 1 µF (microfarad),
what inductance value must be used?

. Solving for L, we have

L =
1

Cω2

=
1

(10−6 F)(2π× 103 s−1)2

= 2.5× 10−3 F−1s2

Checking that these really are the same units as henries is a little
tedious, but it builds character:

F−1s2 = (C2/J)−1s2

= J · C−2s2

= J/A2

= H
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The result is 25 mH (millihenries).

This is actually quite a large inductance value, and would require
a big, heavy, expensive coil. In fact, there is a trick for making
this kind of circuit small and cheap. There is a kind of silicon
chip called an op-amp, which, among other things, can be used
to simulate the behavior of an inductor. The main limitation of the
op-amp is that it is restricted to low-power applications.

A.3 Voltage and Current
What is physically happening in one of these oscillating circuits?
Let’s first look at the mechanical case, and then draw the analogy
to the circuit. For simplicity, let’s ignore the existence of damping,
so there is no friction in the mechanical oscillator, and no resistance
in the electrical one.

Suppose we take the mechanical oscillator and pull the mass
away from equilibrium, then release it. Since friction tends to resist
the spring’s force, we might naively expect that having zero friction
would allow the mass to leap instantaneously to the equilibrium
position. This can’t happen, however, because the mass would have
to have infinite velocity in order to make such an instantaneous leap.
Infinite velocity would require infinite kinetic energy, but the only
kind of energy that is available for conversion to kinetic is the energy
stored in the spring, and that is finite, not infinite. At each step on
its way back to equilibrium, the mass’s velocity is controlled exactly
by the amount of the spring’s energy that has so far been converted
into kinetic energy. After the mass reaches equilibrium, it overshoots
due to its own momentum. It performs identical oscillations on both
sides of equilibrium, and it never loses amplitude because friction is
not available to convert mechanical energy into heat.

Now with the electrical oscillator, the analog of position is charge.
Pulling the mass away from equilibrium is like depositing charges
+q and −q on the plates of the capacitor. Since resistance tends
to resist the flow of charge, we might imagine that with no fric-
tion present, the charge would instantly flow through the inductor
(which is, after all, just a piece of wire), and the capacitor would
discharge instantly. However, such an instant discharge is impossi-
ble, because it would require infinite current for one instant. Infinite
current would create infinite magnetic fields surrounding the induc-
tor, and these fields would have infinite energy. Instead, the rate
of flow of current is controlled at each instant by the relationship
between the amount of energy stored in the magnetic field and the
amount of current that must exist in order to have that strong a
field. After the capacitor reaches q = 0, it overshoots. The circuit
has its own kind of electrical “inertia,” because if charge was to stop
flowing, there would have to be zero current through the inductor.
But the current in the inductor must be related to the amount of

Section A.3 Voltage and Current 177



l / The inductor releases en-
ergy and gives it to the black box.

energy stored in its magnetic fields. When the capacitor is at q = 0,
all the circuit’s energy is in the inductor, so it must therefore have
strong magnetic fields surrounding it and quite a bit of current going
through it.

The only thing that might seem spooky here is that we used to
speak as if the current in the inductor caused the magnetic field,
but now it sounds as if the field causes the current. Actually this is
symptomatic of the elusive nature of cause and effect in physics. It’s
equally valid to think of the cause and effect relationship in either
way. This may seem unsatisfying, however, and for example does not
really get at the question of what brings about a voltage difference
across the resistor (in the case where the resistance is finite); there
must be such a voltage difference, because without one, Ohm’s law
would predict zero current through the resistor.

Voltage, then, is what is really missing from our story so far.

Let’s start by studying the voltage across a capacitor. Voltage is
electrical potential energy per unit charge, so the voltage difference
between the two plates of the capacitor is related to the amount by
which its energy would increase if we increased the absolute values
of the charges on the plates from q to q + ∆q:

VC = (Eq+∆q − Eq)/∆q

=
∆EC
∆q

=
∆

∆q

(
1

2C
q2

)
=

q

C

Many books use this as the definition of capacitance. This equation,
by the way, probably explains the historical reason why C was de-
fined so that the energy was inversely proportional to C for a given
value of C: the people who invented the definition were thinking of a
capacitor as a device for storing charge rather than energy, and the
amount of charge stored for a fixed voltage (the charge “capacity”)
is proportional to C.

In the case of an inductor, we know that if there is a steady, con-
stant current flowing through it, then the magnetic field is constant,
and so is the amount of energy stored; no energy is being exchanged
between the inductor and any other circuit element. But what if
the current is changing? The magnetic field is proportional to the
current, so a change in one implies a change in the other. For con-
creteness, let’s imagine that the magnetic field and the current are
both decreasing. The energy stored in the magnetic field is there-
fore decreasing, and by conservation of energy, this energy can’t just
go away — some other circuit element must be taking energy from
the inductor. The simplest example, shown in figure l, is a series
circuit consisting of the inductor plus one other circuit element. It
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doesn’t matter what this other circuit element is, so we just call it a
black box, but if you like, we can think of it as a resistor, in which
case the energy lost by the inductor is being turned into heat by
the resistor. The junction rule tells us that both circuit elements
have the same current through them, so I could refer to either one,
and likewise the loop rule tells us Vinductor + Vblack box = 0, so the
two voltage drops have the same absolute value, which we can refer
to as V . Whatever the black box is, the rate at which it is taking
energy from the inductor is given by |P | = |IV |, so

|IV | =
∣∣∣∣∆EL∆t

∣∣∣∣
=

∣∣∣∣ ∆

∆t

(
1

2
LI2

)∣∣∣∣
=

∣∣∣∣LI∆I

∆t

∣∣∣∣ ,

or

|V | =
∣∣∣∣L∆I

∆t

∣∣∣∣ ,

which in many books is taken to be the definition of inductance.
The direction of the voltage drop (plus or minus sign) is such that
the inductor resists the change in current.

There’s one very intriguing thing about this result. Suppose,
for concreteness, that the black box in figure l is a resistor, and
that the inductor’s energy is decreasing, and being converted into
heat in the resistor. The voltage drop across the resistor indicates
that it has an electric field across it, which is driving the current.
But where is this electric field coming from? There are no charges
anywhere that could be creating it! What we’ve discovered is one
special case of a more general principle, the principle of induction: a
changing magnetic field creates an electric field, which is in addition
to any electric field created by charges. (The reverse is also true:
any electric field that changes over time creates a magnetic field.)
Induction forms the basis for such technologies as the generator and
the transformer, and ultimately it leads to the existence of light,
which is a wave pattern in the electric and magnetic fields. These
are all topics for chapter 6, but it’s truly remarkable that we could
come to this conclusion without yet having learned any details about
magnetism.

The cartoons in figure m compares electric fields made by charges,
1, to electric fields made by changing magnetic fields, 2-3. In m/1,
two physicists are in a room whose ceiling is positively charged and
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m / Electric fields made by charges, 1, and by changing magnetic fields, 2 and 3.

whose floor is negatively charged. The physicist on the bottom
throws a positively charged bowling ball into the curved pipe. The
physicist at the top uses a radar gun to measure the speed of the
ball as it comes out of the pipe. They find that the ball has slowed
down by the time it gets to the top. By measuring the change in the
ball’s kinetic energy, the two physicists are acting just like a volt-
meter. They conclude that the top of the tube is at a higher voltage
than the bottom of the pipe. A difference in voltage indicates an
electric field, and this field is clearly being caused by the charges in
the floor and ceiling.

In m/2, there are no charges anywhere in the room except for
the charged bowling ball. Moving charges make magnetic fields, so
there is a magnetic field surrounding the helical pipe while the ball
is moving through it. A magnetic field has been created where there
was none before, and that field has energy. Where could the energy
have come from? It can only have come from the ball itself, so
the ball must be losing kinetic energy. The two physicists working
together are again acting as a voltmeter, and again they conclude
that there is a voltage difference between the top and bottom of
the pipe. This indicates an electric field, but this electric field can’t
have been created by any charges, because there aren’t any in the
room. This electric field was created by the change in the magnetic
field.

The bottom physicist keeps on throwing balls into the pipe, until
the pipe is full of balls, m/3, and finally a steady current is estab-
lished. While the pipe was filling up with balls, the energy in the
magnetic field was steadily increasing, and that energy was being
stolen from the balls’ kinetic energy. But once a steady current is
established, the energy in the magnetic field is no longer changing.
The balls no longer have to give up energy in order to build up the
field, and the physicist at the top finds that the balls are exiting the
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n / An RC circuit.

pipe at full speed again. There is no voltage difference any more.
Although there is a current, ∆I/∆t is zero.

Discussion Questions

A What happens when the physicist at the bottom in figure m/3 starts
getting tired, and decreases the current?

A.4 Decay
Up until now I’ve soft-pedaled the fact that by changing the char-
acteristics of an oscillator, it is possible to produce non-oscillatory
behavior. For example, imagine taking the mass-on-a-spring system
and making the spring weaker and weaker. In the limit of small
k, it’s as though there was no spring whatsoever, and the behavior
of the system is that if you kick the mass, it simply starts slowing
down. For friction proportional to v, as we’ve been assuming, the re-
sult is that the velocity approaches zero, but never actually reaches
zero. This is unrealistic for the mechanical oscillator, which will not
have vanishing friction at low velocities, but it is quite realistic in
the case of an electrical circuit, for which the voltage drop across the
resistor really does approach zero as the current approaches zero.

Electrical circuits can exhibit all the same behavior. For sim-
plicity we will analyze only the cases of LRC circuits with L = 0 or
C = 0.

The rc circuit

We first analyze the RC circuit, n. In reality one would have
to “kick” the circuit, for example by briefly inserting a battery, in
order to get any interesting behavior. We start with Ohm’s law and
the equation for the voltage across a capacitor:

VR = IR

VC = q/C

The loop rule tells us

VR + VC = 0 ,

and combining the three equations results in a relationship between
q and I:

I = − 1

RC
q

The negative sign tells us that the current tends to reduce the charge
on the capacitor, i.e. to discharge it. It makes sense that the current
is proportional to q: if q is large, then the attractive forces between
the +q and −q charges on the plates of the capacitor are large,
and charges will flow more quickly through the resistor in order to
reunite. If there was zero charge on the capacitor plates, there would
be no reason for current to flow. Since amperes, the unit of current,
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o / Over a time interval RC,
the charge on the capacitor is
reduced by a factor of e.

p / An RL circuit.

are the same as coulombs per second, it appears that the quantity
RC must have units of seconds, and you can check for yourself that
this is correct. RC is therefore referred to as the time constant of
the circuit.

How exactly do I and q vary with time? Rewriting I as ∆q/∆t,
we have

∆q

∆t
= − 1

RC
q .

This equation describes a function q(t) that always gets smaller over
time, and whose rate of decrease is big at first, when q is big, but
gets smaller and smaller as q approaches zero. As an example of
this type of mathematical behavior, we could imagine a man who
has 1024 weeds in his backyard, and resolves to pull out half of
them every day. On the first day, he pulls out half, and has 512
left. The next day, he pulls out half of the remaining ones, leaving
256. The sequence continues exponentially: 128, 64, 32, 16, 8, 4, 2,
1. Returning to our electrical example, the function q(t) apparently
needs to be an exponential, which we can write in the form aebt,
where e = 2.718... is the base of natural logarithms. We could have
written it with base 2, as in the story of the weeds, rather than
base e, but the math later on turns out simpler if we use e. It
doesn’t make sense to plug a number that has units into a function
like an exponential, so bt must be unitless, and b must therefore
have units of inverse seconds. The number b quantifies how fast the
exponential decay is. The only physical parameters of the circuit
on which b could possibly depend are R and C, and the only way
to put units of ohms and farads together to make units of inverse
seconds is by computing 1/RC. Well, actually we could use 7/RC
or 3π/RC, or any other unitless number divided by RC, but this
is where the use of base e comes in handy: for base e, it turns out
that the correct unitless constant is 1. Thus our solution is

q = qo exp

(
− t

RC

)
.

The number RC, with units of seconds, is called the RC time con-
stant of the circuit, and it tells us how long we have to wait if we
want the charge to fall off by a factor of 1/e.

The rl circuit

The RL circuit, p, can be attacked by similar methods, and it
can easily be shown that it gives

I = Io exp

(
−R
L
t

)
.

The RL time constant equals L/R.
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Death by solenoid; spark plugs example 6
When we suddenly break an RL circuit, what will happen? It might
seem that we’re faced with a paradox, since we only have two
forms of energy, magnetic energy and heat, and if the current
stops suddenly, the magnetic field must collapse suddenly. But
where does the lost magnetic energy go? It can’t go into resistive
heating of the resistor, because the circuit has now been broken,
and current can’t flow!

The way out of this conundrum is to recognize that the open gap
in the circuit has a resistance which is large, but not infinite. This
large resistance causes the RL time constant L/R to be very
small. The current thus continues to flow for a very brief time,
and flows straight across the air gap where the circuit has been
opened. In other words, there is a spark!

We can determine based on several different lines of reasoning
that the voltage drop from one end of the spark to the other must
be very large. First, the air’s resistance is large, so V = IR re-
quires a large voltage. We can also reason that all the energy
in the magnetic field is being dissipated in a short time, so the
power dissipated in the spark, P = IV , is large, and this requires
a large value of V . (I isn’t large — it is decreasing from its initial
value.) Yet a third way to reach the same result is to consider the
equation VL = ∆I/∆t : since the time constant is short, the time
derivative ∆I/∆t is large.

This is exactly how a car’s spark plugs work. Another application
is to electrical safety: it can be dangerous to break an inductive
circuit suddenly, because so much energy is released in a short
time. There is also no guarantee that the spark will discharge
across the air gap; it might go through your body instead, since
your body might have a lower resistance.

Discussion Questions

A A gopher gnaws through one of the wires in the DC lighting system
in your front yard, and the lights turn off. At the instant when the circuit
becomes open, we can consider the bare ends of the wire to be like the
plates of a capacitor, with an air gap (or gopher gap) between them. What
kind of capacitance value are we talking about here? What would this tell
you about the RC time constant?
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q / In a capacitor, the current
is 90 ◦ ahead of the voltage in
phase.

A.5 Impedance
So far we have been thinking in terms of the free oscillations of a
circuit. This is like a mechanical oscillator that has been kicked but
then left to oscillate on its own without any external force to keep
the vibrations from dying out. Suppose an LRC circuit is driven
with a sinusoidally varying voltage, such as will occur when a radio
tuner is hooked up to a receiving antenna. We know that a current
will flow in the circuit, and we know that there will be resonant
behavior, but it is not necessarily simple to relate current to voltage
in the most general case. Let’s start instead with the special cases
of LRC circuits consisting of only a resistance, only a capacitance,
or only an inductance. We are interested only in the steady-state
response.

The purely resistive case is easy. Ohm’s law gives

I =
V

R
.

In the purely capacitive case, the relation V = q/C lets us cal-
culate

I =
∆q

∆t

= C
∆V

∆t
.

If the voltage varies as, for example, V (t) = Ṽ sin(ωt), then the
current will be I(t) = ωCṼ cos(ωt), so the maximum current is
Ĩ = ωCṼ . By analogy with Ohm’s law, we can then write

Ĩ =
Ṽ

ZC
,

where the quantity

ZC =
1

ωC
, [impedance of a capacitor]

having units of ohms, is called the impedance of the capacitor at
this frequency. Note that it is only the maximum current, Ĩ, that
is proportional to the maximum voltage, Ṽ , so the capacitor is not
behaving like a resistor. The maxima of V and I occur at differ-
ent times, as shown in figure q. It makes sense that the impedance
becomes infinite at zero frequency. Zero frequency means that it
would take an infinite time before the voltage would change by any
amount. In other words, this is like a situation where the capaci-
tor has been connected across the terminals of a battery and been
allowed to settle down to a state where there is constant charge
on both terminals. Since the electric fields between the plates are
constant, there is no energy being added to or taken out of the
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r / The current through an in-
ductor lags behind the voltage by
a phase angle of 90 ◦.

field. A capacitor that can’t exchange energy with any other circuit
component is nothing more than a broken (open) circuit.

self-check C
Why can’t a capacitor have its impedance printed on it along with its
capacitance? . Answer, p. 206

Similar math gives

ZL = ωL [impedance of an inductor]

for an inductor. It makes sense that the inductor has lower impedance
at lower frequencies, since at zero frequency there is no change in
the magnetic field over time. No energy is added to or released
from the magnetic field, so there are no induction effects, and the
inductor acts just like a piece of wire with negligible resistance. The
term “choke” for an inductor refers to its ability to “choke out” high
frequencies.

The phase relationships shown in figures q and r can be remem-
bered using my own mnemonic, “eVIL,” which shows that the volt-
age (V) leads the current (I) in an inductive circuit, while the op-
posite is true in a capacitive one. A more traditional mnemonic is
“ELI the ICE man,” which uses the notation E for emf, a concept
closely related to voltage.

Low-pass and high-pass filters example 7
An LRC circuit only responds to a certain range (band) of fre-
quencies centered around its resonant frequency. As a filter, this
is known as a bandpass filter. If you turn down both the bass and
the treble on your stereo, you have created a bandpass filter.

To create a high-pass or low-pass filter, we only need to insert
a capacitor or inductor, respectively, in series. For instance, a
very basic surge protector for a computer could be constructed
by inserting an inductor in series with the computer. The desired
60 Hz power from the wall is relatively low in frequency, while the
surges that can damage your computer show much more rapid
time variation. Even if the surges are not sinusoidal signals, we
can think of a rapid “spike” qualitatively as if it was very high in
frequency — like a high-frequency sine wave, it changes very
rapidly.

Inductors tend to be big, heavy, expensive circuit elements, so a
simple surge protector would be more likely to consist of a capac-
itor in parallel with the computer. (In fact one would normally just
connect one side of the power circuit to ground via a capacitor.)
The capacitor has a very high impedance at the low frequency of
the desired 60 Hz signal, so it siphons off very little of the current.
But for a high-frequency signal, the capacitor’s impedance is very
small, and it acts like a zero-impedance, easy path into which the
current is diverted.
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The main things to be careful about with impedance are that
(1) the concept only applies to a circuit that is being driven sinu-
soidally, (2) the impedance of an inductor or capacitor is frequency-
dependent, and (3) impedances in parallel and series don’t combine
according to the same rules as resistances. It is possible, however,
to get get around the third limitation, as discussed in subsection .

Discussion Question

A Figure q on page 184 shows the voltage and current for a capacitor.
Sketch the q-t graph, and use it to give a physical explanation of the
phase relationship between the voltage and current. For example, why is
the current zero when the voltage is at a maximum or minimum?

B Relate the features of the graph in figure r on page 185 to the story
told in cartoons in figure m/2-3 on page 180.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 If an FM radio tuner consisting of an LRC circuit contains
a 1.0 µH inductor, what range of capacitances should the variable
capacitor be able to provide?

√

2 (a) Show that the equation VL = L∆I/∆t has the right units.
(b) Verify that RC has units of time.
(c) Verify that L/R has units of time.

3 Find the energy stored in a capacitor in terms of its capacitance
and the voltage difference across it.

√

4 Find the inductance of two identical inductors in parallel.

5 The wires themselves in a circuit can have resistance, induc-
tance, and capacitance. Would “stray” inductance and capacitance
be most important for low-frequency or for high-frequency circuits?
For simplicity, assume that the wires act like they’re in series with
an inductor or capacitor.

6 (a) Find the capacitance of two identical capacitors in series.
(b) Based on this, how would you expect the capacitance of a
parallel-plate capacitor to depend on the distance between the plates?

7 Find the capacitance of the surface of the earth, assuming
there is an outer spherical “plate” at infinity. (In reality, this outer
plate would just represent some distant part of the universe to which
we carried away some of the earth’s charge in order to charge up the
earth.)

√

8 Starting from the relation V = L∆I/∆t for the voltage dif-
ference across an inductor, show that an inductor has an impedance
equal to Lω.
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Appendix 1: Exercises

Exercise 1A: Electric and Magnetic Forces

Apparatus:

In this exercise, you are going to investigate the forces that can occur among the following
objects:

nails

magnets

small bits of paper

specially prepared pieces of scotch tape

To make the specially prepared pieces of tape, take a piece of tape, bend one end over to form a
handle that won’t stick to your hand, and stick it on a desk. Make a handle on a second piece,
and lay it right on top of the first one. Now pull the two pieces off the desk and separate them.

Your goal is to address the following questions experimentally:

1. Do the forces get weaker with distance? Do they have some maximum range? Is there some
range at which they abruptly cut off?

2. Can the forces be blocked or shielded against by putting your hand or your calculator in the
way? Try this with both electric and magnetic forces, and with both repulsion and attraction.

3. Are the forces among these objects gravitational?

4. Of the many forces that can be observed between different pairs of objects, is there any
natural way to classify them into general types of forces?

5. Do the forces obey Newton’s third law?

6. Do ordinary materials like wood or paper participate in these forces?



Exercise 3A: Voltage and Current

1. How many different currents could you measure in this circuit? Make a prediction, and then
try it.

What do you notice? How does this make sense in terms of the roller coaster metaphor intro-
duced in discussion question 3.3A?

What is being used up in the resistor?

2. By connecting probes to these points, how many ways could you measure a voltage? How
many of them would be different numbers? Make a prediction, and then do it.

What do you notice? Interpret this using the roller coaster metaphor, and color in parts of the
circuit that represent constant voltages.

3. The resistors are unequal. How many different voltages and currents can you measure? Make
a prediction, and then try it.

What do you notice? Interpret this using the roller coaster metaphor, and color in parts of the
circuit that represent constant voltages.
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Exercise 3B: Analyzing Voltage and Current
This exercise is based on one created by Vir-
ginia Roundy.

Apparatus:

DC power supply

1.5 volt batteries

lightbulbs and holders

wire

highlighting pens, 3 colors

When you first glance at this exercise, it may
look scary and intimidating — all those cir-
cuits! However, all those wild-looking circuits
can be analyzed using the following four guides
to thinking:

1. A circuit has to be complete, i.e., it must
be possible for charge to get recycled as it goes
around the circuit. If it’s not complete, then
charge will build up at a dead end. This built-
up charge will repel any other charge that tries
to get in, and everything will rapidly grind to
a stop.

2. There is constant voltage everywhere along
a piece of wire. To apply this rule during this
lab, I suggest you use the colored highlight-
ing pens to mark the circuit. For instance, if
there’s one whole piece of the circuit that’s all
at the same voltage, you could highlight it in
yellow. A second piece of the circuit, at some
other voltage, could be highlighted in blue.

3. Charge is conserved, so charge can’t “get
used up.”

4. You can draw a rollercoaster diagram, like
the one shown below. On this kind of diagram,
height corresponds to voltage — that’s why
the wires are drawn as horizontal tracks.

A Bulb and a Switch

Look at circuit 1, and try to predict what will
happen when the switch is open, and what will
happen when it’s closed. Write both your pre-
dictions in the table on the following page be-
fore you build the circuit. When you build the
circuit, you don’t need an actual switch like a
light switch; just connect and disconnect the
banana plugs. Use one of the 1.5 volt batteries
as your voltage source.

Circuit 1
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switch open

prediction

explanation

observation

explanation
(if differ-
ent)

switch closed

prediction

explanation

observation

explanation
(if differ-
ent)

Did it work the way you expected? If not, try
to figure it out with the benefit of hindsight,
and write your explanation in the table above.

Circuit 2 (Don’t leave the switch closed for a
long time!)

switch open

prediction

explanation

observation

explanation
(if differ-
ent)

switch closed

prediction

explanation

observation

explanation
(if differ-
ent)
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Circuit 3
switch open

prediction

explanation

observation

explanation
(if differ-
ent)

switch closed

prediction

explanation

observation

explanation
(if differ-
ent)

Circuit 4
switch open

prediction

explanation

observation

explanation
(if differ-
ent)

switch closed

prediction

explanation

observation

explanation
(if differ-
ent)
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Two Bulbs

Analyze this one both by highlighting and by
drawing a rollercoaster diagram. Instead of a
battery, use the DC power supply, set to 2.4
volts.

Circuit 5
bulb a

prediction

explanation

observation

explanation
(if differ-
ent)

bulb b

prediction

explanation

observation

explanation
(if differ-
ent)

Circuit 6
bulb a

prediction

explanation

observation

explanation
(if differ-
ent)

bulb b

prediction

explanation

observation

explanation
(if differ-
ent)
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Two Batteries

Circuits 7 and 8 are both good candidates for
rollercoaster diagrams.

Circuit 7
prediction

explanation

observation

explanation
(if different)

Circuit 8
prediction

explanation

observation

explanation
(if different)

A Final Challenge

Circuit 9
bulb a

prediction

explanation

observation

explanation
(if differ-
ent)

bulb b

prediction

explanation

observation

explanation
(if differ-
ent)
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Exercise 4A: The Loop and Junction Rules

Apparatus:

DC power supply

multimeter

resistors

1. The junction rule

Construct a circuit like this one, using the power supply as your voltage source. To make things
more interesting, don’t use equal resistors. Use nice big resistors (say 100 kΩ to 1 MΩ) —
this will ensure that you don’t burn up the resistors, and that the multimeter’s small internal
resistance when used as an ammeter is negligible in comparison.

Insert your multimeter in the circuit to measure all three currents that you need in order to test
the junction rule.

2. The loop rule

Now come up with a circuit to test the loop rule. Since the loop rule is always supposed to be
true, it’s hard to go wrong here! Make sure you have at least three resistors in a loop, and make
sure you hook in the power supply in a way that creates non-zero voltage differences across all
the resistors. Measure the voltage differences you need to measure to test the loop rule. Here
it is best to use fairly small resistances, so that the multimeter’s large internal resistance when
used in parallel as a voltmeter will not significantly reduce the resistance of the circuit. Do not
use resistances of less than about 100 Ω, however, or you may blow a fuse or burn up a resistor.
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Exercise 4B: Reasoning About Circuits

The questions in this exercise can all be solved using some combination of the following ap-
proaches:

a) There is constant voltage throughout any conductor.

b) Ohm’s law can be applied to any part of a circuit.

c) Apply the loop rule.

d) Apply the junction rule.

In each case, discuss the question, decide what you think is the right answer, and then try the
experiment.

1. A wire is added in parallel with one bulb.

Which reasoning is correct?

• Each bulb still has 1.2 V across it, so both bulbs are still lit up.

• All parts of a wire are at the same voltage, and there is now a wire connection from one
side of the right-hand bulb to the other. The right-hand bulb has no voltage difference
across it, so it goes out.

2. The series circuit is changed as shown.

Which reasoning is correct?

• Each bulb now has its sides connected to the two terminals of the battery, so each now has
2.4 V across it instead of 1.2 V. They get brighter.

• Just as in the original circuit, the current goes through one bulb, then the other. It’s just
that now the current goes in a figure-8 pattern. The bulbs glow the same as before.
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3. A wire is added as shown to the original circuit.

What is wrong with the following reasoning?

The top right bulb will go out, because its two sides are now connected with wire, so there will
be no voltage difference across it. The other three bulbs will not be affected.

4. A wire is added as shown to the original circuit.

What is wrong with the following reasoning?

The current flows out of the right side of the battery. When it hits the first junction, some of
it will go left and some will keep going up The part that goes up lights the top right bulb. The
part that turns left then follows the path of least resistance, going through the new wire instead
of the bottom bulb. The top bulb stays lit, the bottom one goes out, and others stay the same.

5. What happens when one bulb is unscrewed, leaving an air gap?

197



Exercise 5A - Field Vectors

Apparatus:

3 solenoids

DC power supply

compass

ruler

cut-off plastic cup

At this point you’ve studied the gravitational field, g, and the electric field, E, but not the
magnetic field, B. However, they all have some of the same mathematical behavior: they act
like vectors. Furthermore, magnetic fields are the easiest to manipulate in the lab. Manipulating
gravitational fields directly would require futuristic technology capable of moving planet-sized
masses around! Playing with electric fields is not as ridiculously difficult, but static electric
charges tend to leak off through your body to ground, and static electricity effects are hard to
measure numerically. Magnetic fields, on the other hand, are easy to make and control. Any
moving charge, i.e. any current, makes a magnetic field.

A practical device for making a strong magnetic field is simply a coil of wire, formally known
as a solenoid. The field pattern surrounding the solenoid gets stronger or weaker in proportion
to the amount of current passing through the wire.

1. With a single solenoid connected to the power supply and laid with its axis horizontal, use a
magnetic compass to explore the field pattern inside and outside it. The compass shows you the
field vector’s direction, but not its magnitude, at any point you choose. Note that the field the
compass experiences is a combination (vector sum) of the solenoid’s field and the earth’s field.

2. What happens when you bring the compass extremely far away from the solenoid?

What does this tell you about the way the solenoid’s field varies with distance?

Thus although the compass doesn’t tell you the field vector’s magnitude numerically, you can
get at least some general feel for how it depends on distance.
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3. The figure below is a cross-section of the solenoid in the plane containing its axis. Make a
sea-of-arrows sketch of the magnetic field in this plane. The length of each arrow should at least
approximately reflect the strength of the magnetic field at that point.

Does the field seem to have sources or sinks?

4. What do you think would happen to your sketch if you reversed the wires?

Try it.
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5. Now hook up the two solenoids in parallel. You are going to measure what happens when
their two fields combine in the at a certain point in space. As you’ve seen already, the solenoids’
nearby fields are much stronger than the earth’s field; so although we now theoretically have
three fields involved (the earth’s plus the two solenoids’), it will be safe to ignore the earth’s
field. The basic idea here is to place the solenoids with their axes at some angle to each other,
and put the compass at the intersection of their axes, so that it is the same distance from each
solenoid. Since the geometry doesn’t favor either solenoid, the only factor that would make one
solenoid influence the compass more than the other is current. You can use the cut-off plastic
cup as a little platform to bring the compass up to the same level as the solenoids’ axes.

a)What do you think will happen with the solenoids’ axes at 90 degrees to each other, and equal
currents? Try it. Now represent the vector addition of the two magnetic fields with a diagram.
Check your diagram with your instructor to make sure you’re on the right track.

b) Now try to make a similar diagram of what would happen if you switched the wires on one
of the solenoids.

After predicting what the compass will do, try it and see if you were right.

c)Now suppose you were to go back to the arrangement you had in part a, but you changed one
of the currents to half its former value. Make a vector addition diagram, and use trig to predict
the angle.

Try it. To cut the current to one of the solenoids in half, an easy and accurate method is
simply to put the third solenoid in series with it, and put that third solenoid so far away that
its magnetic field doesn’t have any significant effect on the compass.
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Exercise 6A - Polarization

Apparatus:

calcite (Iceland spar) crystal

polaroid film

1. Lay the crystal on a piece of paper that has print on it. You will observe a double image.
See what happens if you rotate the crystal.

Evidently the crystal does something to the light that passes through it on the way from the
page to your eye. One beam of light enters the crystal from underneath, but two emerge from
the top; by conservation of energy the energy of the original beam must be shared between
them. Consider the following three possible interpretations of what you have observed:

(a) The two new beams differ from each other, and from the original beam, only in energy.
Their other properties are the same.

(b) The crystal adds to the light some mysterious new property (not energy), which comes in
two flavors, X and Y. Ordinary light doesn’t have any of either. One beam that emerges from
the crystal has some X added to it, and the other beam has Y.

(c) There is some mysterious new property that is possessed by all light. It comes in two flavors,
X and Y, and most ordinary light sources make an equal mixture of type X and type Y light.
The original beam is an even mixture of both types, and this mixture is then split up by the
crystal into the two purified forms.

In parts 2 and 3 you’ll make observations that will allow you to figure out which of these is
correct.

2. Now place a polaroid film over the crystal and see what you observe. What happens when
you rotate the film in the horizontal plane? Does this observation allow you to rule out any of
the three interpretations?

3. Now put the polaroid film under the crystal and try the same thing. Putting together all
your observations, which interpretation do you think is correct?

4. Look at an overhead light fixture through the polaroid, and try rotating it. What do you
observe? What does this tell you about the light emitted by the lightbulb?

5. Now position yourself with your head under a light fixture and directly over a shiny surface,
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such as a glossy tabletop. You’ll see the lamp’s reflection, and the light coming from the lamp
to your eye will have undergone a reflection through roughly a 180-degree angle (i.e. it very
nearly reversed its direction). Observe this reflection through the polaroid, and try rotating it.
Finally, position yourself so that you are seeing glancing reflections, and try the same thing.
Summarize what happens to light with properties X and Y when it is reflected. (This is the
principle behind polarizing sunglasses.)
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Appendix 3: Hints and Solutions

Answers to Self-Checks

Answers to Self-Checks for Chapter 1

Page 17, self-check A: Either type can be involved in either an attraction or a repulsion. A
positive charge could be involved in either an attraction (with a negative charge) or a repulsion
(with another positive), and a negative could participate in either an attraction (with a positive)
or a repulsion (with a negative).

Page 18, self-check B: It wouldn’t make any difference. The roles of the positive and negative
charges in the paper would be reversed, but there would still be a net attraction.

Page 28, self-check C: Yes. In U.S. currency, the quantum of money is the penny.

Page 55, self-check A: Thomson was accelerating electrons, which are negatively charged.
This apparatus is supposed to accelerated atoms with one electron stripped off, which have
positive net charge. In both cases, a particle that is between the plates should be attracted by
the forward plate and repelled by the plate behind it.

Page 65, self-check B: The hydrogen-1 nucleus is simple a proton. The binding energy is the
energy required to tear a nucleus apart, but for a nucleus this simple there is nothing to tear
apart.

Answers to Self-Checks for Chapter 3

Page 91, self-check A: The large amount of power means a high rate of conversion of the
battery’s chemical energy into heat. The battery will quickly use up all its energy, i.e., “burn
out.”

Answers to Self-Checks for Chapter 5

Page 131, self-check A: The reasoning is exactly analogous to that used in example 1 on
page 128 to derive an equation for the gravitational field of the earth. The field is F/qt =
(kQqt/r

2)/qt = kQ/r2.

Page 137, self-check B:



Ex = −dV

dx

= − d

dx

(
kQ

r

)
=
kQ

r2

Page 139, self-check C: (a) The voltage (height) increases as you move to the east or north.
If we let the positive x direction be east, and choose positive y to be north, then dV/dx and
dV/dy are both positive. This means that Ex and Ey are both negative, which makes sense,
since the water is flowing in the negative x and y directions (south and west).
(b) The electric fields are all pointing away from the higher ground. If this was an electrical
map, there would have to be a large concentration of charge all along the top of the ridge, and
especially at the mountain peak near the south end.

Answers to Self-Checks for Chapter 6

Page 154, self-check A: An induced electric field can only be created by a changing magnetic
field. Nothing is changing if your car is just sitting there. A point on the coil won’t experience
a changing magnetic field unless the coil is already spinning, i.e., the engine has already turned
over.

Answers to Self-Checks for Chapter A

Page 175, self-check A: Yes. The mass has the same kinetic energy regardless of which
direction it’s moving. Friction coverts mechanical energy into heat at the same rate whether the
mass is sliding to the right or to the left. The spring has an equilibrium length, and energy can
be stored in it either by compressing it (x < 0) or stretching it (x > 0).

Page 175, self-check B: Velocity, v, is the rate of change of position, x, with respect to time.
This is exactly analogous to I = ∆q/∆t.

Page 185, self-check C: The impedance depends on the frequency at which the capacitor is
being driven. It isn’t just a single value for a particular capacitor.

Solutions to Selected Homework Problems

Solutions for Chapter 2

Page 75, problem 6: (a) In the reaction p+e− → n+ν, the charges on the left are e+(−e) = 0,
and both charges on the right are zero. (b) The neutrino has negligible mass. The masses on
the left add up to less than the mass of the neutrino on the right, so energy would be required
from an external source in order to make this reaction happen.

Solutions for Chapter 3

Page 104, problem 12: ∆t= Dq/ I = e/I = 0.160 µs.
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Page 104, problem 13: (a) The change in PE is e∆V, so the KE gained is (1/2)mv2 = eV .
Solving for v and plugging in numbers, we get 5.9 × 107 m/s. This is about 20% of the speed
of light. (Since it’s not that close to the speed of light, we’ll get a reasonably accurate answer
without taking into account Einstein’s theory of relativity.)

Page 105, problem 16: It’s much more practical to measure voltage differences. To measure
a current, you have to break the circuit somewhere and insert the meter there, but it’s not
possible to disconnect the circuits sealed inside the board.

Solutions for Chapter 4

Page 122, problem 11: In series, they give 11 kΩ. In parallel, they give (1/1 kΩ+1/10 kΩ)−1 =
0.9 kΩ.

Page 123, problem 12: The actual shape is irrelevant; all we care about it what’s connected to
what. Therefore, we can draw the circuit flattened into a plane. Every vertex of the tetrahedron
is adjacent to every other vertex, so any two vertices to which we connect will give the same
resistance. Picking two arbitrarily, we have this:

This is unfortunately a circuit that cannot be converted into parallel and series parts, and that’s
what makes this a hard problem! However, we can recognize that by symmetry, there is zero
current in the resistor marked with an asterisk. Eliminating this one, we recognize the whole
arrangement as a triple parallel circuit consisting of resistances R, 2R, and 2R. The resulting
resistance is R/2.

Solutions for Chapter 5

Page 144, problem 9: Proceeding as suggested in the hint, we form concentric rings, each
one extending from radius b to radius b + db.The area of such a ring equals its circumference
multipled by db, which is (2πb)db. Its charge is thus 2πσbdb. Plugging this in to the expression
from problem 8 gives a contribution to the field dE = 2πσbka(a2 + b2)−3/2db. The total field is
found by integrating this expression. The relevant integral can be found in a table.

E =

∫ ∞
0

dE = 2πσbka(a2 + b2)−3/2db

= 2πσka

∫ ∞
0

b(a2 + b2)−3/2db

= 2πσka
[
−
(
a2 + b2

)−1/2
]∞
b=0

= 2πσk

Page 144, problem 11: Let the square’s sides be of length a. The field at the center is the
vector sum of the fields that would have been produced individually by the three charges. Each
of these individual fields is kq/r2, where r1 = a/

√
2 for the two charges q1, and r2 = a/2 for q2.

Vector addition can be done by adding components. Let x be horizontal and y vertical. The y
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components cancel by symmetry. The sum of the x components is

Ex =
kq1

r2
1

cos 45 ◦ +
kq1

r2
1

cos 45 ◦ − kq2

r2
2

.

Substituting cos 45 ◦ = 1/
√

2 and setting this whole expression equal to zero, we find q2/q1 =
1/
√

2.

Solutions for Chapter 6

Page 168, problem 13: (a) Current means how much charge passes by a given point per unit
time. During a time interval ∆t, all the charge carriers in a certain region behind the point will
pass by. This region has length v∆t and cross-sectional area A, so its volume is Av∆t, and the
amount of charge in it is Avnq∆t. To find the current, we divide this amount of charge by ∆t,
giving I = Avnq. (b) A segment of the wire of length L has a force QvB acting on it, where
Q = ALnq is the total charge of the moving charge carriers in that part of the wire. The force
per unit length is ALnqvB/L = AnqvB. (c) Dividing the two results gives F/L = IB.

Page 169, problem 14: (a) The figure shows the case where the currents are in opposite
directions.

The field vector shown is one made by wire 1, which causes an effect on wire 2. It points up
because wire 1’s field pattern is clockwise as view from along the direction of current I1. For
simplicity, let’s assume that the current I2 is made by positively charged particles moving in
the direction of the current. (You can check that the final result would be the same if they were
negatively charged, as would actually be the case in a metal wire.) The force on one of these
positively charged particles in wire 2 is supposed to have a direction such that when you sight
along it, the B vector is clockwise from the v vector. This can only be accomplished if the force
on the particle in wire 2 is in the direction shown. Wire 2 is repelled by wire 1.

To verify that wire 1 is also repelled by wire 2, we can either go through the same type of
argument again, or we can simply apply Newton’s third law.

Simialar arguments show that the force is attractive if the currents are in the same direction.

(b) The force on wire 2 is F/L = I2B, where B = µoI1/2πr is the field made by wire 1 and r is
the distance between the wires. The result is

F/L = µoI1I2/2πr .

Page 170, problem 19: (a) Based on our knowledge of the field pattern of a current-carrying
loop, we know that the magnetic field must be either into or out of the page. This makes sense,
since that would mean the field is always perpendicular to the plane of the electrons’ motion; if
it was in their plane of motion, then the angle between the v and B vectors would be changing
all the time, but we see no evidence of such behavior. With the field turned on, the force vector
is apparently toward the center of the circle. Let’s analyze the force at the moment when the
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electrons have started moving, which is at the right side of the circle. The force is to the left.
Since the electrons are negatively charged particles, we know that if we sight along the force
vector, the B vector must be counterclockwise from the v vector. The magnetic field must
be out of the page. (b) Looking at figure i on page 149, we can tell that the current in the
coils must be counterclockwise as viewed from the perspective of the camera. (c) Electrons are
negatively charged, so to produce a counterclockwise current, the electrons in the coils must
be going clockwise. (d) The current in the coils is keep the electrons in the beam from going
straight, i.e. the force is a repulsion. This makes sense by comparison with problem 14: the coil
currents and vacuum tube currents are counterrotating, which causes a repulsion.

Page 170, problem 20: Yes. For example, the force vanishes if the particle’s velocity is
parallel to the field, so if the beam had been launched parallel to the field, it would have gone
in a straight line rather than a circle. In general, any component of the velocity vector that is
out of the plane perpendicular to the field will remain constant, so the motion can be helical.

Page 170, problem 22: The trick is to imagine putting together two identical solenoids to
make one double-length solenoid. The field of the doubled solenoid is given by the vector sum
of the two solenoids’ individual fields. At points on the axis, symmetry guarantees that the
individual fields lie along the axis, and similarly for the total field. At the center of one of the
mouths, we thus have two parallel field vectors of equal strength, whose sum equals the interior
field. But the interior field of the doubled solenoid is the same as that of the individual ones,
since the equation for the field only depends on the number of turns per unit length. Therefore
the field at the center of a solenoid’s mouth equals exactly half the interior field.
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Index
alchemy, 14
alpha decay, 57
alpha particle, 44
ammeter, 82
ampere (unit), 79
antielectron, 60
antimatter, 60
atom, 20

raisin-cookie model of, 34
atomic number

defined, 48
Atomism, 20

beta decay, 60
beta particle, 44
binding energy

nuclear, 65
Brownian motion, 25

capacitor, 161, 171
capacitance, 171

cathode rays, 30
chain reaction, 58
charge, 15

conservation of, 17
quantization of, 26

Chernobyl, 68
circuit, 81

complete, 81
open, 81
parallel, 93
series, 93
short, 91

complete circuit, 81
conductor

defined, 88
conservation of mass, 20
coulomb (unit), 16
Coulomb’s law, 17
Crookes, William, 24
current

defined, 79

dipole
electric, 132

dipole moment, 133
DNA, 68

Einstein, Albert
and Brownian motion, 26

electric current
defined, 79

electric dipole, 132
electric field, 131

related to voltage, 134
electric forces, 15
electrolytes, 96
electromagnetic spectrum, 157
electromagnetic waves, 156
electron, 33
electron capture, 60
electron decay, 60
elements, chemical, 23
energy

stored in fields, 158
equivalent resistance

of resistors in parallel, 110

farad
defined, 172

Faraday, Michael, 77, 151, 153
types of electricity, 78

Feynman, Richard, 162
field

electric, 131
gravitational, 127
magnetic, 146

fields
superposition of, 129

fields of force, 125
force

fields of, 125
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definition of signs of charge, 16

Galileo, 151
gamma ray, 44
generator, 154, 179
gravitational field, 127
gravitational waves, 130



handedness, 162
Hertz, Heinrich, 157
Hiroshima, 69
Hooke, 14
hormeses, 69
Hugo, Victor, 13
Hulse, R.A., 130

impedance, 184
of an inductor, 185

inductance
defined, 173

induction, 151, 179
inductor, 171

inductance, 171
insulator

defined, 88
isotopes, 55

junction rule, 109

Keynes, John Maynard, 14

light
defined, 23

LIGO, 130
linear no-threshold, 70
LNT, 70
loop rule, 115

magnetic field, 146
defined, 148

magnetostatics, 148, 149
mass

conservation of, 20
matter

defined, 22
Maxwell, James Clerk, 145, 153
Mendeleev, Dmitri, 24
Millikan, Robert, 26
moment

dipole, 133
monopoles

magnetic, 146

neutral (electrically), 17
Newton, 151
Newton, Isaac, 13
nuclear forces, 56, 163
nucleus

discovery, 46

Ohm’s law, 88
ohmic

defined, 88
op-amp, 177
open circuit, 81
operational amplifier (op-amp), 177

parallel circuit
defined, 93

periodic table, 24, 48
plasma, 96
polarization, 156
positron, 60
positron decay, 60

quantization, 26

radiation hormesis, 69
raisin cookie model, 34
RC circuit, 181
RC time constant, 182
resistance

defined, 87
in parallel, 109
in series, 114

resistivity
defined, 116

resistor, 91
resistors

in parallel, 110
RL circuit, 182

schematic, 108
schematics, 108
sea-of-arrows representation, 129
series circuit

defined, 93
short circuit

defined, 91
Sievert (unit), 68
sinks in fields, 129
solenoid, 172
sources of fields, 129
spark plug, 183
special relativity, 66
spectrum

electromagnetic, 157
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strong nuclear force, 56
strong nuclear force, 56
superposition of fields, 129
symmetry, 162

Taylor, J.H., 130
tesla (unit), 148
Thomson, J.J.

cathode ray experiments, 31
time constant

RC, 182
transformer, 154, 179
transistor, 88

volt (unit)
defined, 83

voltage
defined, 84
related to electric field, 134

voltmeter, 93

waves
electromagnetic, 156
gravitational, 130

weak nuclear force, 59, 163
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Useful Data

Metric Prefixes

M- mega- 106

k- kilo- 103

m- milli- 10−3

µ- (Greek mu) micro- 10−6

n- nano- 10−9

p- pico- 10−12

f- femto- 10−15

(Centi-, 10−2, is used only in the centimeter.)

Notation and Units

quantity unit symbol
distance meter, m x, ∆x
time second, s t, ∆t
mass kilogram, kg m
density kg/m3 ρ
velocity m/s v
acceleration m/s2 a
force N = kg·m/s2 F
pressure Pa=1 N/m2 P
energy J = kg·m2/s2 E
power W = 1 J/s P
momentum kg·m/s p
period s T
wavelength m λ
frequency s−1 or Hz f
charge coulomb, C q
voltage volt, 1 V = 1 J/C V
current ampere, 1 A = 1 C/s I
resistance ohm, 1 Ω = 1 V/A R
capacitance farad, 1 F = 1 C/V C
inductance henry, 1 H = 1 V·s/A L
electric field V/m or N/C E
magnetic field tesla, 1 T = 1 N·s/C·m B

Fundamental Constants

gravitational constant G = 6.67 × 10−11 N·m2/kg2

Coulomb constant k = 8.99 × 109 N·m2/C2

quantum of charge e = 1.60 × 10−19 C
speed of light c = 3.00 × 108 m/s
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Conversions

Nonmetric units in terms of metric ones:

1 inch = 25.4 mm (by definition)
1 pound-force = 4.5 newtons of force
(1 kg) · g = 2.2 pounds-force
1 scientific calorie = 4.18 J
1 kcal = 4.18 × 103 J
1 gallon = 3.78 × 103 cm3

1 horsepower = 746 W

When speaking of food energy, the word “Calorie” is used

to mean 1 kcal, i.e., 1000 calories. In writing, the capital C

may be used to indicate 1 Calorie=1000 calories.

Relationships among U.S. units:
1 foot (ft) = 12 inches
1 yard (yd) = 3 feet
1 mile (mi) = 5280 feet

Earth, Moon, and Sun

body mass (kg) radius (km) radius of orbit (km)
earth 5.97 × 1024 6.4 × 103 1.49 × 108

moon 7.35 × 1022 1.7 × 103 3.84 × 105

sun 1.99 × 1030 7.0 × 105 —

Subatomic Particles

particle mass (kg) radius (fm)
electron 9.109 × 10−31 . 0.01
proton 1.673 × 10−27 ∼ 1.1
neutron 1.675 × 10−27 ∼ 1.1

The radii of protons and neutrons can only be given approx-

imately, since they have fuzzy surfaces. For comparison, a

typical atom is about a million fm in radius.
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