Boolean Algebra

Boolean Algebra

> A Boolean algebra

- = A set of operators (e.g. the binary operators: +, •, INV)
- = A set of axioms or postulates

Postulates

- > Commutative
- > Distributive
- > Identities
- Complement
 Closure
 Associative

x+y = y+xx•y=y•x $x+(y\bullet z)=(x+y)\bullet(x+z)$ x•(y+z)=x•y+x•z x + 0 = x**x**•1=x x+x'=1 x•x'=0 <u>x+y</u> x•y (x+y)+z=x+(y+z) $(x \bullet y) \bullet z = x \bullet (y \bullet z)$

Properties of Boolean Algebra

- > Complement of a variable is unique.
- > (x')' = x -- involution
- > x+x = x x•x=x --idempotent
- > x+1=1 x•0=0
- > x+x•y=x x•(x+y)=x
- > (x+y)'=x'•y' (x•y)'=x'+y' -- DeMorgan's Law
- > xy+x'z+yz = xy + x'z (x+y) •(x'+z) •(y+z) = (x+y) •(x'+z) -- consensus

Duality: $+ \leftrightarrow \bullet$ and $0 \leftrightarrow 1$

-- absorption

Proof of Consensus

> a <= b essentially implies that if a =1 then b =1 and if a = 0 then b could be anything

Theorem: In Consensus xy + x'z + yz = xy + x'z (How?) We Prove that xy + x'z + yz >= xy + x'z and xy + x'z + yz <= xy + x'z (This would imply equality and prove the theorem)

- Proof: First: xy + x'z + yz >= xy + x'z. Let xy + x'z = a and yz = b; So we want to prove that a + b >= a which is true by definition of the inequality
- Second: xy + x'z + yz <= xy + x'z. This inequality could be split into xy + x'z <= xy + x'z and yz <= xy + x'z All we need to do is to prove yz <= xy + x'z

Proof of Consensus

yz <= xy + x'z
We know that a <= b iff ab' = 0 (How?)
So if the above inequality is true yz(xy + x'z)' = 0
must be true. Which is always true.
Hence Proved.</pre>

Boolean Functions

> A Boolean function is a mapping $f(x): B^n \rightarrow B$.

= Constant function: $f(x_1, ..., x_n) = b$.

= Projection (to the *i*-th axis): $f(x_1, ..., x_n) = x_i$.

- > A Boolean function is complete if f(x) is defined for all x∈Bⁿ. Otherwise the point x that f(x) is not defined is called a don't care condition.
- > Operations on Boolean functions:
 - = Sum:
 - = Product:
 - = Complement:

(f+g)(x) = f(x) + g(x) $(f \cdot g)(x) = f(x) \cdot g(x)$ (f')(x) = (f(x))'

Representations of Boolean Functions

- > Algebraic expressions
 - = f(x,y,z) = xy+z
- > Tabular forms
- > Venn diagrams
- > Cubical representations
- > Binary decision diagrams (BDD)

Representations of Boolean Functions

- > Algebraic expressions
 - = f(x,y,z) = xy+z
- > Tabular forms
- > Venn diagrams
- > Cubical representations
- > Binary decision diagrams (BDD)

Boole's Expansion Theorem

> The cofactor of $f(x_1, ..., x_n)$ w.r.t. x_i (or x'_i) is a Boolean function $f_{x_i}(or f_{x_i}) : B^{n-1} \to B$, s.t.

$$f_{x_{i}/x_{i}^{'}}(x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n})$$

= $f(x_{1}, \dots, x_{i-1}, 1/0, x_{i+1}, \dots, x_{n})$

> Boole's Expansion Theorem:

$$f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$$

= $x_i \bullet f_{x_i} + x_i^{,*} \bullet f_{x_i^{,*}} = (x_i + f_{x_i^{,*}}) \bullet (x_i^{,*} + f_{x_i^{,*}})$

Boole's Expansion: Examples

 $> f(x) = x \cdot f(1) + x' \cdot f(0)$ for single-variable x $= (x + f(0)) \cdot (x' + f(1))$ (from duality) $> f(x+y) \cdot f(x'+y) = f(1) \cdot f(y)$ = Define g(x,y) = f(x+y)f(x'+y)g(x,y) = xg(1,y) + x'g(0,y)= xf(1)f(y) + x'f(y)f(1)= f(1)f(y)= What if expand w.r.t variable y? $f(x+y) \bullet f(x'+y) = yf(1)f(1) + y'f(x)f(x')$ = yf(1)+y'f(1)f(0) = f(1)(yf(1) + y'f(0)) $=f(1)f(\gamma)$

Boole's Expansion: Examples

ENEE 644

Complete Expansion

$$f(x_{1}, \dots, x_{n-1}, x_{n}) = f(0, \dots, 0, 0) x_{1}' \cdots x_{n-1}' x_{n}'$$

$$\xrightarrow{\text{discriminants}} + f(0, \dots, 0, 1) x_{1}' \cdots x_{n-1}' x_{n}' + \dots$$

$$+ f(1, \dots, 1, 1) x_{1} \cdots x_{n-1} x_{n}$$

minterme

Canonical Forms

> A form is called canonical if the representation of the function in that form is unique.

> Minterm Canonical Form

= AND-OR circuits

- > Pro and Cons of Canonical Forms
 - = Unique up to permutation
 - = Inefficient

Normal (Standard) Forms

- > SOP (Disjunctive Normal Form)
 - = A disjunction of product terms
 - = A product term
 - = 0

> The Primary Objective During Logic Minimization is to Remove the Redundancy in the Representation.

Implicants

- > An implicant of a function is a product term that is included in the function.
- > An implicant is prime if it cannot be included in any other implicants.
- > A prime implicant is essential if it is the only one that includes a minterm.

Example: f(x,y,z) = xy' + yz xy(not I),xyz(I, not PI), xz(PI,not EPI), yz(EPI)

Specification for Incompleteness

- > A Boolean function is incomplete if f(x) is NOT defined for some x∈Bⁿ. Such point x is called a don't care condition.
- > Tabular representation
 > {1-set, 0-set, don't care set}
 = 1-set = {xy}
 = 0-set = {x'y'}
 = Don't care set = {x'y, xy'}

Х	у	f
0	0	0
0	1	-
1	0	-
1	1	1

Don't Care Conditions

- > Satisfiability don't cares of a subcircuit consist of all input patterns that will never occur.
- > Observability don't cares of a subcircuit are the input patterns that represent situations when an output is not observed.
- **Example:**

