
DTMF Tone Generation. An
Implementation using the

TMS320C2xx

Literature Number: BPRA068
Texas Instruments Europe

October 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing
and other quality control techniques are utilized to the extent TI deems necessary to support
this warranty. Specific testing of all parameters of each device is not necessarily performed,
except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the
customer. Use of TI products in such applications requires the written approval of an
appropriate TI officer. Questions concerning potential risk applications should be directed to TI
through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used.

Copyright 1997, Texas Instruments Incorporated

DTMF Tone Generation. An Implementation using the TMS320C2xx iii

Contents

1. Introduction ..1

2. DTMF generation recommendation ..2
2.1 Coding...2
2.2 DTMF Transmitter ...3

2.2.1 2.1 Frequency errors ..3
2.2.2 Power levels ...3
2.2.3 Timing ..3

3. Data Format ...3
3.1 Number representation ..3
3.2 Data sent to the D/A converter (AIC) ...4
3.3 Conclusion...5

4. Generator algorithm ...5
4.1 Background on harmonic resonator ...5
4.2 Coefficient computations ...6
4.3 Process overview ..7
4.4 DTMF generation procedure..8

4.4.1 General overview..8
4.4.2 Enhanced scheme..9

5. Data Memory Organization...10
5.1 Requirements ..10
5.2 Global variables...10
5.3 Local variables ..10
5.4 Conclusion...11
5.5 Tables ...11

6. Program Organization ..12
6.1 ‘_INIT_CHAN’..12
6.2 ‘_DTMF_GEN’ ...15
6.3 About amainC2xx and amainC5x files16

6.3.1 amainC2xx ...16
6.3.2 mainC5x -transmission of a single tone17

7. Memory space and MIPS required ...18
7.1 Memory requirements..18
7.2 Cycle & Mips Requirements ..18

8. Conclusion ...19

iv Literature Number: BPRA068

Appendix A: Calling the routines from C environment ... 20

Appendix B: A multichannel management example .. 22

References .. 25

DTMF Tone Generation. An Implementation using the TMS320C2xx v

DTMF Tone Generation. An Implementation using the TMS320C2xx 1

DTMF Tone Generation.

An implementation using the TMS320C2xx
ABSTRACT

This application report deals with the implementation of a dual-tone multiple
frequency (DTMF) tone generator on a TMS320C2xx DSP. It describes, in
detail, the algorithm, the way of using the routines which have been made
for a multi-channel environment. Users can also find information on the
process performance and its speed and memory requirements.

1. Introduction
A DTMF transmitter (encoder) generates a composite audio tone burst which comprises
two frequencies fl and fh that are not harmonically related. Furthermore, the choice of
DTMF frequencies has been guided by the need to avoid between a dialling tone and a
conversation flow. For this reason, the probability of finding one of the possible
combinations of frequencies and their levels in a conversation (or a room noise) is
statistically extremely weak. The telephone keypad may be used to illustrate the sixteen
possible DTMF frequency combinations representing sixteen separate digits.

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

697 Hz

770 Hz

852 Hz

941 Hz

1209 Hz 1336 Hz 1477Hz 1633 Hz

high-frequency group

low-frequency group

The signal generated by a DTMF encoder is a direct algebraic summation, in real-time of
the amplitudes of two sine (or cosine) waves of different frequencies.

x t A f t A f tl l h h() sin() sin()= ⋅ + ⋅2 2π π .

2 Literature Number: BPRA068

2. DTMF generation recommendation
The CCITT Q.23 has defined the requirements for a central office DTMF receiver to
ensure reliable operations. For example, the receiver must tolerate slight variations
(frequency bandwidths) in the eight frequencies and the relative signal amplitudes (twist)
of the two frequencies comprising a valid digit. Also, the tone bursts must meet certain
timing criteria such as on-off duration etc. The receiver must also reject speech signals
and operate in the presence of certain noise levels, without incorrectly decoding the tone
pairs.

2.1 Coding

Signalling frequencies are chosen in two groups of distinct frequencies in the range
from 300 Hz to 3400 Hz. A signal is made up of one, and only one, frequency from each
group which are simultaneously transmitted on the line.

Low
Group

High
Group

697 Hz 1209 Hz
770 Hz 1336 Hz
852 Hz 1477 Hz
941 Hz 1633 Hz

We can notice that they are, indeed, not harmonically related.

The tones are assigned as follows:

Keypad Low frequency (Hz) High frequency (Hz)
0 941 1336
1 697 1209
2 697 1336
3 697 1477
4 770 1209
5 770 1336
6 770 1477
7 852 1209
8 852 1336
9 852 1477
* 941 1209
941 1477
A 697 1633
B 770 1633
C 852 1633
D 941 1633

DTMF Tone Generation. An Implementation using the TMS320C2xx 3

A typical DTMF receiver uses a special-purpose decoder chip (or chip set) to perform the
decode function. Besides performing the main task of DTMF decoding, the TMS320C2xx
can also perform a host of other telecom functions.

2.2 DTMF Transmitter

2.2.1 2.1 Frequency errors

Transmitted frequencies are in the range of ± 1.5 % of their nominal value.

2.2.2 Power levels

Transmission levels at a resistance of 600 Ω

1st option -9 dBm ± 2 dB for the high tone
-11dBm ± 2 dB for the low tone

2nd option -6 dBm ± 2 dB for the high tone
-8 dBm ± 2 dB for the low tone

The high-frequency has to be 2 ± 1dB above the low one. This ‘offset’ makes it possible
to anticipate the attenuation undergone by the high frequencies in comparison with the
low-tones on the telephone lines. The generator will transmit DTMF signal with a 3 dB
twist, and with -6dBm for the high tone and -9dBm for low (2nd option).

Parasitic signals must be 20 dB less energetic than the low-tone.

Furthermore, noise must fall within limits in relation to where it lies in the band. In
particular, we ensure the specification in the band from 300 Hz to 4300 Hz, where it has
to be less than -33 dBm.

2.2.3 Timing

Tone duration specified by the Q.23 recommendation is at least 65 ms. Pause duration
(a pause is a -80dBm level signal, encountered between two digit) must be of at least 65
ms.

3. Data Format

3.1 Number representation

The fixed point mode consists of fixing the position of the binary comma in the binary
word. The first bit of the word is dedicated to the sign expression. The addition of two
fixed-point numbers on N bits is not erroneous but it requires an (N+1)th bit. By contrast,
the multiplication of these words involves a rounding or a truncation error.

4 Literature Number: BPRA068

• The sign-magnitude representation divides the word into two fields: the sign field on
one bit and the absolute value field on the (N-1) other bits.

 For instance, on 5 bits 0.375 becomes 0.0110
-0.375 becomes 1.0110

Thus, an N-bit word can take 2N-1 different values. The zero is twice (0.0000 or 1.0000
on 5 bits). Furthermore, the sign-magnitude method is not really suitable for
computations (particularly for additions).

• The individual inversion of all bits in the word can provide a number inversion. It is
known as the 1’s-complement method. Here, on N bits, 2N-1 values are free. Keeping
the last example, we have :

 0.0110 for 0.375 and
1.1001 for - 0.375

• Using this method, one value is lost because of the double representation of zero
(0.0000 and 1.1111 on 5 bits). To avoid this, another representation is generally used
: the 2’s complement method. To change the sign of a number, all bits are inverted
and a 1 is added. And, so, 2N combinations of an N-bit word become usable.

 Example: 0.375 is given by 0.0110 and
-0.375 is given by 1.1010

3.2 Data sent to the D/A converter (AIC)

The AIC (TLC32046), which carries out the A/D and D/A conversions, receives input
voltages between -3V and +3V. It quantifies those data on 16 bits at an 8kHz sampling
rate. Therefore, the 2 LSB are reserved for dialogue between the DSP and the AIC.

{
 x

x

V
Dq

an

max
max= ×

The MSB contains sign information. That format is usually called Q.15 format.

 xq :quantified data on a 16 bits length word with the 2’s complement method.

xan : corresponding analog input/output

with, according to DSP
feature,

{ Dmax = 32767 = 215-1

Vmax = 3V > xan

DTMF Tone Generation. An Implementation using the TMS320C2xx 5

xan / Vmax =

S 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15

xq

S 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

3.3 Conclusion

If Vmax from your converter is different, you would have to modify - by a multiply inside
the routine, for example - values of transmitted samples.

4. Generator algorithm
The sinusoidal function, required by the recommendation, may be created by means of
an oscillator.

4.1 Background on harmonic resonator

This is a direct implementation of the Z-transform of a direct sine function, sin(n.w.T),
where T = sample rate and w= frequency to be generated in radians.

Let h(n)=A.sin(n.w.T) and x(n)=δ(n), delta function.

Y(z)= H(z).X(z)

()
Y z

z A T

z z T
z()

. .sin .

. .cos(.)
. ()=

− +
ω
ω

δ δ2 2 1
 with (z) = {1,0,0...}

=

Dmax = 32767

Vmax = 3V

Analog signal (Volt) Relative figure
≤ 1

Power
&

Impedance

Þ Vmax

× Vmax

Digital sample
(Q.15)

× Dmax

Þ Dmax

Converter

6 Literature Number: BPRA068

which leads to the equation:

y(1) = 0
y(2) = A.sin(wT)
∀ n ∈ [3 , +∞ [y(n) = 2.cos(w.T).y(n-1) - y(n-2) because x(n)=0

4.2 Coefficient computations

Each coefficient is fractional, so the Q.15 format is useful to quantify it. “A” is the
maximum value of the sine function:

• if frequency = 697, 770, 852, 941
 -9 dBm => V=0.3887 on 600Ω
 Vmax (from the A/D converter) = 3V

=> A= 0.3887/ 3

• if frequency = 1209, 1336, 1477, 1633
-6 dBm => V=0.5490 on 600Ω
Vmax (from the A/D converter) = 3V
=> A= 0.5490/ 3

P
U

ZdB
eff=
×

10

1000

2

0
log with Z0 = 600 Ω

U
U

eff
2

2

2
= max

Binary amplitude of each sine.

DTMF Tone Generation. An Implementation using the TMS320C2xx 7

frequency cos(2 π f / fs) . 2^15 A . sin(2 π f / fs) . 2^15

697 27980 2210

770 26956 2414

852 25701 2634

941 24219 2860

1209 19073 4876

1336 16325 5200

1477 13085 5498

1633 9315 5749

4.3 Process overview

This description is suitable for a single channel evaluation.

The following routines depend on your application, your way to manage a multi-channel
environment:
• MAIN

Channel initializations

MAIN

DTMF generation routine

call rate: 8kHz

Input parameter initialization

Result management

Input parameter initialization

every time a new
digit

8 Literature Number: BPRA068

• Input parameter initialization
• Result management

The other ones are given in _DTMF_GEN.asm file.

4.4 DTMF generation procedure

4.4.1 General overview

The channel initialization routine is described in “Program Organization” chapter. Flag
definitions:
• T ⇔ Tone flag; if T=1 the process must compute a tone sample.
 else it must create a pause sample (0V)
• J.O ⇔ Job Over flag; by setting J.O, the process announces that the DTMF signal

was totally transmitted and could then be initialized to
transmit another digit.

TONE ALGORITHM PAUSE ALGORITHM

Compute a new value & load
VALUE word

Increment Counter

Does
 the process

have to transmit
a pause ?

YESNO

T flag =? 0

Load zeros into VALUE

Increment Counter

Counter <
Tone_Time ?

Counter <
Pause_Time ?

RETURN FROM CALL

N NY Y

Reset Counter

Set T flag

Reset Counter & T flag

Set J.O flag

DTMF Tone Generation. An Implementation using the TMS320C2xx 9

What will happen if the result manager does not, “in time”, re-initialize the channel for a
new digit transmission ?

It will transmit the same digit. As a result, the general scheme had been enhanced to
avoid this trouble.

4.4.2 Enhanced scheme

After a digit transmission, if the channel is not re-initialized in time – which can happen
when the new digit to transmit is unknown by the system manager– the process will
transmit an unlimited pause, until J.O flag clears. Here is the new flow chart:

TONE ALGORITHM PAUSE ALGORITHM

Compute a new value &
load VALUE word

Increment Counter

Does
 the process

have to transmit
a pause ?

YESNO

T flag = 0T flag = 1

Load zeros into VALUE word

Increment Counter

Counter <
Tone_Time ?

Counter <
Pause_Time ?

RETURN FROM CALL

N NY Y

Reset

Set T flag

Reset Counter & T flag

Set J.O flag

Test
J.O flag

Load zeros
 into VALUE word

J.O = 0 : Job is not OverJ.O =1: Job is already Over

HURRY UP ALGORITHM

10 Literature Number: BPRA068

IMPORTANT NOTICE: The process always load VALUE with (y_low + y_high)(n), so
(y_low + y_high)(1) and (y_low + y_high)(2) won’t be transmitted.

5. Data Memory Organization

5.1 Requirements

The process needs two kinds of variables: the ‘global’ ones and the ‘local’ ones.

The ‘global’ variables are variables which do not depend on the channel under
investigation: it could be resonator coefficients, or initial values, for example. These are
shared between all the channels.

The ‘local’ variables are the variables specific to a channel: their values vary from one
channel to another. They are useful to store an individual channel state, its filter nodes.

5.2 Global variables

These are allocated via a section called ‘const’.Some of them are constants such as
resonator coefficients, while others are temporary variables such as TEMP, DIGIT.

Temporary variables are unitialized but users need not initialize them:

TEMP, DIGIT, _VALUE, CHANNEL_add are always overwritten during the process.

Why constants have not been declared as ‘.set’ ?
In fact, you can change ‘const’ section by declaring SOME constants as ‘.set’ and allow
only temporary variables in this section. But if you decide to modify constant values,
during algorithm evaluation for example, you will have to assemble and link again:
actually, you will do it every time you wish to perform a change. To allow constants as
.word xxxx permits you to change their figures by filling the right memory space in
debugger tools, without having to assemble and link at every change.

If you decide to declare ALL constants as .set, you will have to adapt ‘MPY’ instructions,
because they have 13-bits operands !

This section must be declared in your linker file and cannot be removed from
‘DTMF_gen’ file: the ‘DTMF_gen’ routine used both indirect and direct addressing modes
when it calls variables from ‘const’ section.

This section cannot cross pages. It must be loaded in a page but in any one you
choose.

5.3 Local variables

They are used to store individual channel variables such as COUNTER, coefficients
currently used.

DTMF Tone Generation. An Implementation using the TMS320C2xx 11

They do not need to be explicitly declared. It depends only on your channel
management!

It was decided to create the ‘chan’ section and to declare it in mainC2xx.cmd and
_DTMF_GEN.asm because these made for easier initialization of ‘_DTMF_GEN’ and
‘_INIT_CHAN’ input parameters.

The ‘chan’ section is used in a single channel environment, it would be tedious and
unnecessary to create sections for each channel in a multi-channel environment.

The individual channel variables must be INITIALIZED before every DTMF digit
transmission. A routine called ‘_INIT_CHAN’ had been created to do it easily (see
program organization chapter for more information).

Space for a channel can cross pages: DP during ‘_DTMF_GEN’ does not depend on the
channel under investigation.

5.4 Conclusion

Memory requirement for ‘const’ and for each channel is specified in another
chapter.There is no constraint about where individual channel parameters must be
saved: it can cross pages and begin anywhere: it depends on your free memory space.
You only have to:
• declare in your files ‘const’ section and be sure that it does not cross pages.
• initialize a channel variables before DTMF digit generation.

5.5 Tables

base+...
=

address

length Data name Access type Description

0h 1 STATUS indirect via AR2 Contains channel state (its
format is described below)

1h 1 coef_low “ Is the lowband resonator
coefficient currently used.

2h 2 Y1_low
Y2_low

“ Is the lowband resonator delayed
nodes y(n-1) and y(n-2).

1h 1 coef_high “ Is the highband resonator
 coefficient currently used.

2h 2 Y1_high
Y2_high

“ Is the highband resonator
delayed nodes y(n-1) and y(n-2).

12 Literature Number: BPRA068

STATUS format:

BIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COUNTER J.O T

COUNTER counts the number of transmitted tone or pause samples. J.O & T flags are
described in the previous chapter.

base+...
=

address

length Data name Access type Description

0h 8*2 tab indirect via AR3 Contains resonator
coefficients and initial
values for each DTMF

 frequency.

10h 1 CHANNEL_
add

DMA Is used to store complete
16 bits address of channel

base.

11h 1 DIGIT DMA Contains temporarily the
digit to transmit.

12h 1 _VALUE DMA The process will load this
word with the sample

generated.

13h 1 TEMP DMA This is a temporary useful
word.

6. Program Organization
Two routines are given into ‘_DTMF_GEN.asm’ file:
• ‘_INIT_CHAN’
• ‘_DTMF_GEN’

The following description explains what these programs are supposed to do and what
their input parameters and outputs are. At the end of this chapter is a brief explanation of
how the packages –mainC2xx (.asm&.cmd), and mainC5x (.asm& .cmd)– work.

6.1 ‘_INIT_CHAN’

Before generating a digit, the channel memory space must be initialized.
• Its STATUS must be loaded with 0000h. (the job is not yet over as a Pause must first

be sent and COUNTER filled with zeros)

DTMF Tone Generation. An Implementation using the TMS320C2xx 13

• coef_low and coef_high from the lowband and highband resonators respectively must
be found in the “KEY” table which had been loaded in program memory space.

• initial values of delayed nodes must also be found.
‘_INIT_CHAN’ has been created to facilitate this.

You have to specify the channel you want initialize by loading the start address of that
space into AR2 and loading the digit to transmit into DIGIT word from the “const” section.
Then you can call _INIT_CHAN.

Example:
I have to manage 2 channels.
I know that each channel requires 7 words and I’d like to use:
• 0x0100 to 0x0106h for the first channel.
• 0x087d to 0x0882h for the second one.

I would use ‘_INIT_CHAN’ like this:

.ref _INIT_CHAN

.

.

.
LAR AR2,#0100h
LDP #DIGIT
LACL #1 :to transmit digit 1 from the keypad
CALL _INIT_CHAN
LAR AR2,#087dh
LDP #DIGIT
LACL #2
CALL _INIT_CHAN
.
.
RETE

You can see that memory space reserved for channel 2 crosses page 18. As ‘Data
memory’ organization explains, this is not forbidden

You have to call ‘_INIT_CHAN’ , before ‘_DTMF_CHAN’, every time a new digit is
sent.

14 Literature Number: BPRA068

_INIT_CHAN synoptic

Clear channel STATUS word

1. Find the key corresponding to the digit
to be generated. The key is loaded in
program memory space.

2. Store coordinates into DIGIT

From this key:

1. extract X
 find lowband resonator parameters

 and fill y(n-2) with zero

2. extract Y
 find highband resonator parameters
 and fill y(n-2) with zero

STATUS = 0
coef_low
Y1_low
Y2_low

coef_high
Y1_high
Y2_high

Channel section

DIGIT

DIGIT = X 0 0 Y

“const” section

(X 0 0 Y) coordinates

Key table

1

2

deepth
=
DIGIT
value

DIGIT = X 0 0 Y

1- TEMP = 0 0 0 X
2- TEMP = 0 0 0 Y

“const” section

 ... X
coef of xxxHz resonator

initial value of xxxHz
 Y ...
 coef of yyyyHz resonator

initial value of yyyyHz

“const” section

STATUS

coef_low

Y1_low

Y2_low = 0

coef_high

Y1_high

Y2_high = 0

Channel
section

DTMF Tone Generation. An Implementation using the TMS320C2xx 15

6.2 ‘_DTMF_GEN’

This is the DTMF generator routine. Its outline is given in previous chapter. It has a
single input parameter: the channel to evaluate.

You have to:
• save the processor state (ST0, ST1) and save the contents of AR2.
• load AR2 with the lowest address of channel space location you want to work with.

Then you can call it.

For example:
if 0x0100 to 0x0106 of data memory space is reserved for the channel we want to
evaluate we’ll do:

; save AR2
; save ST0,ST1
.
.
LAR AR2,#0100h
CALL_DTMF_GEN

How does one read the result of ‘_DTMF_GEN’?
Results are stored into accumulator and _VALUE from ‘const’ section.
If Acc==0, the new value has been loaded into _VALUE word.
If Acc!=0, the whole of necessary samples have been generated and _VALUE contains
the last DIGIT sample to transmit.
If Acc!=0, and if the channel is not immediately RE-INITIALIZED, the process will
generate a pause (0 into _VALUE) and still return (via accumulator) a figure not equal to
zero, until the process re-initialization.

Example:
.global _DTMF_GEN

LAR AR2, #channel
CALL _DTMF_GEN

;Transmit _VALUE
;send the computed sample to serial port
;DP is still equal to #_VALUE
LAR AR2,_VALUE
LDP #DXR
NOP
SAR AR2,DXR
BCND other_digit,NEQ
...

other_digit
;this section depends on your system management.

16 Literature Number: BPRA068

6.3 About amainC2xx and amainC5x files ...

‘_DTMF_GEN.asm’ can be linked with amainC2xx.asm via amainC2xx.cmd, or with
amainC5x.asm via amainC5x.cmd.

By using amainC2xx(.asm .cmd), ‘_DTMF_GEN.asm’ code can be implemented in the
’C2xx Simulator while amainC5x(.asm .cmd) allows users to use and test
‘_DTMF_GEN.asm’ code with the ’C50 EVM.

6.3.1 amainC2xx

_DTMF_GEN
.
.
RET

0001
0005
...

‘comm1.dat’

_INIT_CHAN
.
.RET

RINT
;extract the digit
;to transmit
;from comm1.dat file
 IN DIGIT,0000h

 CALL _INIT_CHAN
 RET

IN

RESET

START
.

;processor initialisation
.

.

 b MAIN

MAIN
;wait for a RINT(a trap)
 TRAP

;unconditional loop
again
 LAR AR2,...
 CALL _DTMF_GEN
 OUT _VALUE,0002h
 BCND MAIN,NEQ
 B again

0000
...
0000
...
094a

‘value1.dat’

OUT

DTMF Tone Generation. An Implementation using the TMS320C2xx 17

6.3.2 mainC5x -transmission of a single tone

RESET

START .
;initialize the processor

;initialize the ADC.
 call aicinit

.
;initialize the channel.
 ...
 call _INIT_CHAN

b

aicinit

RET
A.I.C

(8kHz, 14bit)

send
control
word

_INIT_CHAN

RET

MAIN
wait

is xready ?
no => branch wait
else branch xready

xready

 CALL _DTMF_GEN

LACL VALUE
;16 bits → 14bits
AND #0fffch
LDP #0
SACL DXR
b MAIN

_DTMF_GEN

RET

Send a new DTMF sample
to the D/A converter

18 Literature Number: BPRA068

7. Memory space and MIPS required

7.1 Memory requirements

Section name Type Length (in words)

‘init_chan’ routine 52

‘dtmf_gen’ routine 71

‘const’ variables & constants 20

key table variables 16

for channels variables 7 per channel

TOTAL = 159 + 7.n

7.2 Cycle & Mips Requirements

Routine name cycles averaged call
number

MIPS

_INIT_CHAN 52 1/1040 0.0004

_DTMF_CHAN
Pause Algorithm: 1→519th

 520th

Tone Algorithm:
521→1039th

 1040th

Hurry up :
1041→+∞

+∞ = until you start
transmitting a new digit

41
42
56
60

26

519/1040
1/1040

519/1040
1/1040

xxxx

[(41+56).519+(42+60)]*
8000
1040

= 0.388

TOTAL = 0.39 MIPS

DTMF Tone Generation. An Implementation using the TMS320C2xx 19

8. Conclusion
Powers of accepted frequency components were theoretically set as if they were a pure
sine function. Actually, the generated signals contain noise: as a result, DTMF
components would be less powerful.

Added noise seems to meet the Q.23 recommendation: its relative level is -20dB less
than the accepted components.

The following figure is the fft of the signal generated by the 697Hz cell (notice: this cell
contains more noise than the others, due to MATLAB).

number of computed samples: 8000
x: frequency
y: relative power
computation performed with MATLAB:
• % signal = generated by a cell (with Q.15 format)
• power = abs(fft(signal)); % | fft(signal)|
• relative_power = power/max(power)

650 660 670 680 690 700 710 720 730 740
-40

-30

-20

-10

0

Of course for each cell, the most powerful component is the theoretical one (697Hz
component for the 697Hz cell ...).

20 Literature Number: BPRA068

Appendix A: Calling the routines from C environment
The routine names have been underscored in order to be easily identified from the C
environment.
In the same way, VALUE has also been underscored, becoming_VALUE.

A.1 How activate the C compatibility of these routines?

This is done by setting the assembly constant “C_compatibility” low or high. This
constant is declared before variable and routine declarations, at the top of detect.asm
file.
• activate C environment => C_compatibility .set YES
• disable C environment => C_compatibility .set NO

Some sections are conditionally assembled: this condition is a function of
“C_compatibility” setting.

A.2 Routine C prototypes

A.2.1 _DTMF_GEN

prototype: int DTMF_GEN (int)
input: this must contain the channel memory space base address.
output: if 0, it means the digit is not totaly transmitted..

otherwise it means another digit can be generated.
The generated sample is always stored into _VALUE word.

declaration into C files:
extern int DTMF_GEN(int); /* (WITHOUT UNDERSCORE) */
extern int VALUE;

A.2.2 _INIT_CHAN

prototype: void INIT_CHAN (int,int)
input: int from the left side: this must contain the channel memory space

base address.
int from the right: this must contain the digit to transmit.

output: none.
declaration into C files:

extern void INIT_CHAN(int,int); /* (WITHOUT UNDERSCORE) */

A.3 Conventions performed by the called routines

_DTMF_GEN and _INIT_CHAN respect conventions of C called functions;
• do not modify AR0,AR1,AR6,AR7
• return value in the accumulator.

For information: PMST is modified

AR2,AR3 are used as local pointers, so their contents are modified but not restored.

DTMF Tone Generation. An Implementation using the TMS320C2xx 21

A.4 MIPS modification

_INIT_CHAN needs 6 cycles more.

_DTMF_GEN needs 3 cycles more.

As a consequence, required MIPS remain the same.

22 Literature Number: BPRA068

Appendix B: A multichannel management example

B.1 Context

The DSP is used only to perform generation on 2 channels (for example): another
system would provide channel management. The DSP and the ‘manager’ would
communicate via the serial port.

}

Interface

DAC
@ 8kHz

Interface

DAC
@ 8kHz

DEMUX

Analog
line

Analog
line

chan2
chan1

...
chan2
chan1

TMS320C2xx
DSP

SDTR

Interface

DAC
@ 8kHz

Interface

DAC
@ 8kHz

DEMUX

Analog
line

Analog
line

chan2
chan1

...
chan2
chan1

TMS320C2xx
DSP

SDTR

...................

...................

MUX

c c

c

⇐ COMMAND

SDTR SDTR

FRAME @
128kbps

command protocol

DTMF Tone Generation. An Implementation using the TMS320C2xx 23

B.2 DSP code example for simulator in C language

Two memory space locations are first defined: 0x0200h for channel 1
0x0200h+7 for channel 2

Reset routine: 1- Initialization of C environment.

main routine: 1- Initialization of channels(via RINT routine).
2- Then the process, indefinitely:

calls , DTMF_GEN.
analyzes the result (if result ≠ 0, another digit can be transmitted,
call RINT).

RINT routine: 1- Extraction of a digit from comm0.dat or comm1.dat file.
2- Call of _INIT_CHAN for channel 0 or 1.

Here is cmain2xx.c:

#include "ioports.h"

extern void INIT_CHAN (int,int);
extern int VALUE;
extern int DTMF_GEN (int);
#define chan_nb 2
int channel[chan_nb]={0x200,0x200+7};
int current=0; /*it can also be called current channel number */

main(){
int out;
int i;
/* Initialize channels for digit transmissions */
for(i=0;i<chan_nb;i++){

RINT();
current++;

}
current=0;
/* Now the main process can start */
while(1){ /* unconditional loop */

out=DTMF_GEN(channel[current]);
outport(current+chan_nb,VALUE); /* transmit the computed value */
if (out != 0)
 RINT(); /* the current channel must be reinitialized */
current++;
if (current == chan_nb)

current=0; /* current={0,1,...,chan_nb-1}
}

}

RINT(){
unsigned int digit;
inport(current,&digit);
INIT_CHAN(channel[current],digit);

24 Literature Number: BPRA068

B.3 Block diagram

2 channels are managed.

START
;processor initialization

;C initialization
 call _c_int0
 ...

;channel initializations
 ...
 current channel=X;
 RINT()

;unlimited loop
 while(1){
 ...

DTMF_GEN(channelX)
...

;transmit value
 OUT(...,_VALUE)
...

;if current tone is totally
;transmitted
 RINT();
...
}

main ()

_INIT_CHAN

;extract the new
; DIGIT to transmit
;this depends
;on the channel to treat
...
 inport (X , &digit)

...

 _INIT_CHAN(X, digit)
 RET

RINT ()

comm0.d
t

comm1.d
t

port 0 or
1

value0.dat

value1.dat

port 2 or
3

_DTMF_GEN

DTMF Tone Generation. An Implementation using the TMS320C2xx 25

References

1. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing,
Published by Prentice-All, Inc. A Division of Simon & Schuster, Englewood Cliffs,
New Jersey, 1989

2. Tim Massey and Ramesh Iyer, DSP Solutions for Telephony and Data/Facsimile
Modems, Application Book, Texas Instruments Inc., 1997

3. Pascal DORSTER (TI), Sine, Cosine on the TMS320C2xx, Application Report,
Texas Instruments Inc., 1996

