The PC Parallel Ports Chapter 21

The original IBM PC design provided support for three parallel printer ports that IBM designated
LPTL;, LPT2:, and LPT3:L. IBM probably envisioned machines that could support a standard dot matrix
printer, a daisy wheel printer, and maybe some other auxiliary type of printer for different purposes, all on
the same machine (laser printers were still a few years in the future at that time). Surely IBM did not antic-
ipate the general use that parallel ports have received or they would probably have designed them differ-
ently. Today, the PC's parallel port controls keyboards, disk drives, tape drives, SCSI adapters, ethernet
(and other network) adapters, joystick adapters, auxiliary keypad devices, other miscellaneous devices,
and, oh yes, printers. This chapter will not attempt to describe how to use the parallel port for all these var-
ious purposes - this book is long enough already. However, a thorough discussion of how the parallel
interface controls a printer and one other application of the parallel port (cross machine communication)
should provide you with enough ideas to implement the next great parallel device.

21.1 Basic

Parallel Port Information

There are two basic data transmission methods modern computes employ: parallel data transmission
and serial data transmission. In a serial data transmission scheme (see “The PC Serial Ports” on page 1223)
one device sends data to another a single bit at a time across one wire. In a parallel transmission scheme,
one device sends data to another several bits at a time (in parallel) on several different wires. For example,
the PC's parallel port provides eight data lines compared to the serial port's single data line. Therefore, it
would seem that the parallel port would be able to transmit data eight times as fast since there are eight
times as many wires in the cable. Likewise, it would seem that a serial cable, for the same price as a paral-
lel cable, would be able to go eight times as far since there are fewer wires in the cable. And these are the
common trade-offs typically given for parallel vs. serial communication methods: speed vs. cost.

In practice, parallel communications is not eight times faster than serial communications, nor do par-
allel cables cost eight times as much. In generally, those who design serial cables (.e.g, ethernet cables)
use higher materials and shielding. This raises the cost of the cable, but allows devices to transmit data, still
a bit at a time, much faster. Furthermore, the better cable design allows greater distances between devices.
Parallel cables, on the other hand, are generally quite inexpensive and designed for very short connec-
tions (generally no more than about six to ten feet). The real world problems of electrical noise and
cross-talk create problems when using long parallel cables and limit how fast the system can transmit data.
In fact the original Centronics printer port specification called for no more than 1,000 characters/second
data transmission rate, so many printers were designed to handle data at this transmission rate. Most paral-
lel ports can easily outperform this value; however, the limiting factor is still the cable, not any intrinsic
limitation in @ modern computer.

Although a parallel communication system could use any number of wires to transmit data, most par-
allel systems use eight data lines to transmit a byte at a time. There are a few notable exceptions. For
example, the SCSI interface is a parallel interface, yet newer versions of the SCSI standard allow eight, six-
teen, and even thirty-two bit data transfers. In this chapter we will concentrate on byte-sized transfers
since the parallel port on the PC provides for eight-bit data.

A typical parallel communication system can be one way (or unidirectional) or two way
(bidirectional). The PC's parallel port generally supports unidirectional communications (from the PC to
the printer), so we will consider this simpler case first.

In a unidirectional parallel communication system there are two distinguished sites: the transmitting
site and the receiving site. The transmitting site places its data on the data lines and informs the receiving
site that data is available; the receiving site then reads the data lines and informs the transmitting site that it

1. In theory, the BIOS allows for a fourth parallel printer port, LPT4:, but few (if any) adapter cards have ever been built that claim to work as LPT4:.

Page 1199

Chapter 21

Page 1200

has taken the data. Note how the two sites synchronize their access to the data lines - the receiving site
does not read the data lines until the transmitting site tells it to, the transmitting site does not place a new
value on the data lines until the receiving site removes the data and tells the transmitting site that it has the
data. Handshaking is the term that describes how these two sites coordinate the data transfer.

To properly implement handshaking requires two additional lines. The strobe (or data strobe) line is
what the transmitting site uses to tell the receiving site that data is available. The acknowledge line is what
the receiving site uses to tell the transmitting site that it has taken the data and is ready for more. The PC's
parallel port actually provides a third handshaking line, busy, that the receiving site can use to tell the
transmitting site that it is busy and the transmitting site should not attempt to send data. A typical data
transmission session looks something like the following:

Transmitting site:

1) The transmitting site checks the busy line to see if the receiving is busy. If the busy line is active,
the transmitter waits in a loop until the busy line becomes inactive.

2) The transmitting site places its data on the data lines.

3) The transmitting site activates the strobe line.

4) The transmitting site waits in a loop for the acknowledge line to become active.
5) The transmitting site sets the strobe inactive.

6) The transmitting site waits in a loop for the acknowledge line to become inactive.
7 The transmitting site repeats steps one through six for each byte it must transmit.

Receiving site:

1) The receiving site sets the busy line inactive (assuming it is ready to accept data).

2) The receiving site waits in a loop until the strobe line becomes active.

3) The receiving site reads the data from the data lines (and processes the data, if necessary).
4) The receiving site activates the acknowledge line.

5) The receiving site waits in a loop until the strobe line goes inactive.

6) The receiving site sets the acknowledge line inactive.

7 The receiving site repeats steps one through six for each additional byte it must receive.

By carefully following these steps, the receiving and transmitting sites carefully coordinate their actions so
the transmitting site doesn't attempt to put several bytes on the data lines before the receiving site con-
sumes them and the receiving site doesn't attempt to read data that the transmitting site has not sent.

Bidirectional data transmission is often nothing more than two unidirectional data transfers with the
roles of the transmitting and receiving sites reversed for the second communication channel. Some PC par-
allel ports (particularly on PS/2 systems and many notebooks) provide a bidirectional parallel port. Bidi-
rectional data transmission on such hardware is slightly more complex than on systems that implement
bidirectional communication with two unidirectional ports. Bidirectional communication on a bidirec-
tional parallel port requires an extra set of control lines so the two sites can determine who is writing to the
common data lines at any one time.

The PC Parallel Ports

21.2 The Parallel Port Hardware

The standard unidirectional parallel port on the PC provides more than the 11 lines described in the
previous section (eight data, three handshake). The PC's parallel port provides the following signals:

Table 79: Parallel Port Signals

Pin Number on I/0 Active | Signal
Connector Direction | Polarity | Description

1 output 0 Strobe (data available signal).

29 output - Data lines (bit 0 is pin 2, bit 7 is pin 9).

10 input 0 Acknowledge line (active when remote system has taken data).

1 input 0 Busy line (when active, remote system is busy and cannot accept data).

12 input 1 Out of paper (when active, printer is out of paper).

13 input 1 Select. When active, the printer is selected.

14 output 0 Autofeed. When active, the printer automatically inserts a line feed after
every carriage return it receives.

15 input 0 Error. When active, there is a printer error.

16 output 0 Init. When held active for at least 50 psec, this signal causes the printer to
initialize itself.

17 output 0 Select input. This signal, when inactive, forces the printer off-line

18-25 Signal ground.

Note that the parallel port provides 12 output lines (eight data lines, strobe, autofeed, init, and select
input) and five input lines (acknowledge, busy, out of paper, select, and error). Even though the port is
unidirectional, there is a good mixture of input and output lines available on the port. Many devices (like
disk and tape drives) that require bidirectional data transfer use these extra lines to perform bidirectional
data transfer.

On bidirectional parallel ports (found on PS/2 and laptop systems), the strobe and data lines are both
input and output lines. There is a bit in a control register associated with the parallel port that selects the
transfer direction at any one given instant (you cannot transfer data in both direction simultaneously).

There are three 1/0 addresses associated with a typical PC compatible parallel port. These addresses
belong to the data register, the status register, and the control register. The data register is an eight-bit
read/write port. Reading the data register (in a unidirectional mode) returns the value last written to the
data register. The control and status registers provide the interface to the other 1/0 lines. The organization
of these ports is as follows:

7654321

‘ Unused
Printer ackon PS/2 systems (active if zero)

Device error (active if zero)

Device selected (selected if one)

Device out of paper (out of paper if one)
Printer acknowledge (ack if zero)

Printer busy (busy if zero)

Parallel Port Status Register (read only)

Page 1201

Chapter 21

Bit two (printer acknowledge) is available only on PS/2 and other systems that support a bidirectional
printer port. Other systems do not use this bit.

7 6 5 4 3 2 1 O

Strobe (data available = 1)

Autofeed (add linefeed = 1)

Init (initialize printer = 0)

Select input (On-line = 1)

Enable parallel port IRQ (active if 1)

PS/2 Data direction (output = 0, input = 1)
Unused

Parallel Port Control Register

The parallel port control register is an output register. Reading this location returns the last value written to
the control register except for bit five that is write only. Bit five, the data direction bit, is available only on
PS/2 and other systems that support a bidirectional parallel port. If you write a zero to this bit, the strobe
and data lines are output bits, just like on the unidirectional parallel port. If you write a one to this bit, then
the data and strobe lines are inputs. Note that in the input mode (bit 5 = 1), bit zero of the control register
is actually an input. Note: writing a one to bit four of the control register enables the printer IRQ (IRQ 7).
However, this feature does not work on all systems so very few programs attempt to use interrupts with
the parallel port. When active, the parallel port will generate an int O0Fh whenever the printer acknowl-
edges a data transmission.

Since the PC supports up to three separate parallel ports, there could be as many as three sets of these
parallel port registers in the system at any one time. There are three parallel port base addresses associ-
ated with the three possible parallel ports: 3BCh, 378h, and 278h. We will refer to these as the base
addresses for LPT1:, LPT2:, and LPT3;, respectively. The parallel port data register is always located at the
base address for a parallel port, the status register appears at the base address plus one, and the control
register appears at the base address plus two. For example, for LPT1:, the data register is at I/O address
3BCh, the status register is at I/O address 3BDh, and the control register is at I/0 address 3BEh.

There is one minor glitch. The I/O addresses for LPT1:, LPT2:, and LPT3: given above are the physical
addresses for the parallel ports. The BIOS provides logical addresses for these parallel ports as well. This
lets users remap their printers (since most software only writes to LPT1:). To accomplish this, the BIOS
reserves eight bytes in the BIOS variable space (40:8, 40:0A, 40:0C, and 40:0E). Location 40:8 contains the
base address for logical LPT1:, location 40:0A contains the base address for logical LPT2;, etc. When soft-
ware accesses LPT1:, LPT2:, etc., it generally accesses the parallel port whose base address appears in one
of these locations.

21.3 Controlling a Printer Through the Parallel Port

Although there are many devices that connect to the PC's parallel port, printers still make up the vast
number of such connections. Therefore, describing how to control a printer from the PC's parallel port is
probably the best first example to present. As with the keyboard, your software can operate at three differ-
ent levels: it can print data using DOS, using BIOS, or by writing directly to the parallel port hardware. As
with the keyboard interface, using DOS or BIOS is the best approach if you want to maintain compatibility
with other devices that plug into the parallel portz. Of course, if you are controlling some other type of

2. Many devices connect to the parallel port with a pass-through plug allowing you to use that device and still use the parallel port for your printer.
However, if you talk directly to the parallel port with your software, it may conflict with that device’s operation.

Page 1202

The PC Parallel Ports

device, going directly to the hardware is your only choice. However, the BIOS provides good printer sup-
port, so going directly to the hardware is rarely necessary if you simply want to send data to the printer.

21.3.1 Printing via DOS

MS-DOS provides two calls you can use to send data to the printer. DOS function 05h writes the char-
acter in the dl register directly to the printer. Function 40h, with a file handle of 04h, also sends data to the
printer. Since the chapter on DOS and BIOS fully describes these functions, we will not discuss them any
further here. For more information, see “MS-DOS, PC-BIOS, and File I/0” on page 699 .

21.3.2 Printing via BIOS

Although DOS provides a reasonable set of functions to send characters to the printer, it does not pro-
vide functions to let you initialize the printer or obtain the current printer status. Furthermore, DOS only
prints to LPT1:. The PC's int 17h BIOS routine provides three functions, print, initialize, and status. You
can apply these functions to any supported parallel port on the system. The print function is roughly
equivalent to DOS’ print character function. The initialize function initializes the printer using system
dependent timing information. The printer status returns the information from the printer status port along
with time-out information. For more information on these routines, see “MS-DOS, PC-BIOS, and File I/0”
on page 699.

21.3.3 An INT 17h Interrupt Service Routine

Perhaps the best way to see how the BIOS functions operate is to write a replacement int 17h ISR for
a printer. This section explains the handshaking protocol and variables the printer driver uses. It also
describes the operation and return results associated with each machine.

There are eight variables in the BIOS variable space (segment 40h) the printer driver uses. The fol-
lowing table describes each of these variables:

Table 80: BIOS Parallel Port Variables

Address | Description
40:08 Base address of LPT1: device.
40:0A Base address of LPT2: device.
40:0C Base address of LPT3: device.
40:.0E Base address of LPT4: device.

40:78 LPT1: time-out value. The printer port driver software should return an
error if the printer device does not respond in a reasonable amount of
time. This variable (if non-zero) determines how many loops of 65,536
iterations each a driver will wait for a printer acknowledge. If zero, the
driver will wait forever.

40:79 LPT2: time-out value. See description above.

40:7A LPT3: time-out value. See description above.

40.7B LPT4: time-out value. See description above.

You will notice a slight deviation in the handshake protocol in the following code. This printer driver
does not wait for an acknowledge from the printer after sending a character. Instead, it checks to see if

Page 1203

Chapter 21

Page 1204

the printer has sent an acknowledge to the previous character before sending a character. This saves a
small amount of time because the program printer then characters can continue to operating in parallel
with the receipt of the acknowledge from the printer. You will also notice that this particular driver does
not monitor the busy lines. Almost every printer in existence leaves this line inactive (not busy), so there is
no need to check it. If you encounter a printer than does manipulate the busy line, the modification to this
code is trivial. The following code implements the int 17h service:

I NT17. ASM

A short passive TSR that replaces the BIOS int 17h handl er.
This routine demonstrates the function of each of the int 17h
functions that a standard Bl G5 woul d provi de.

; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you renove this code frommenory except by rebooting.

; If you want to be able to do these two things (as well as check for

; a previous installation), see the chapter on resident prograns. Such
; code was omtted fromthis program because of |length constraints.

cseg and EndResi dent nust occur before the standard |ibrary segnents!

cseg segment para public ‘code’
cseg ends

; Marker segnent, to find the end of the resident section.

EndResi dent segment para public ‘Resident’
EndResi dent ends

.xli st
i ncl ude stdlib.a
includelib stdlib.lib

st

byp equ <byte ptr>

cseg segment para public ‘code’
assume cs:cseg, ds:cseg

adint17 dwor d ?

; BICS vari abl es:

PrtrBase equ 8

PrtrTi meQut equ 78h

This code handl es the INT 17H operation. INT 17His the BI C5 routine
to send data to the printer and report on the printer’s status. There
are three different calls to this routine, depending on the contents
of the AH register. The DX register contains the printer port nunber.

DX=0 -- Use LPTIL:
DX=1 -- UWse LPT2:
DX=2 -- UWse LPT3:
DX=3 -- UWse LPT4:

AH=0 -- Print the character in AL to the printer. Printer status is
returned in AH If bit #0 = 1 then a tineout error occurred.

AHL - - Initialize printer. Status is returned in AH

AHE2 - - Return printer status in AH

The status bits returned in AH are as fol | ows:

The PC Parallel Ports

o

Functi on Non-error val ues
1=time out error 0
unused X
unused X
1=I/Oerror 0
1
0
X
X

1=sel ect ed, O=desel ect ed.
1=out of paper

1=acknow edge

1=not busy

~NOoO U WNRFRO

Note that the hardware returns bit 3 with zero if an error has occurred,
with one if there is no error. The software normally inverts this bit
before returning it to the caller.

Printer port hardware |ocations:

There are three ports used by the printer hardware:

PrtrPort Adrs --- Qutput port where data is sent to printer (8 bits).

PrtrPort Adrs+1 --- I nput port where printer status can be read (8 bhits).

PrtrPort Adrs+2 --- Qutput port where control information is sent to the
printer.

Data output port- 8-bit data is transmtted to the printer via this port.

I nput status port:

bit O: unused.
bit 1: unused.
bit 2: unused.

bit 3: -Error, normally this bit means that the
printer has encountered an error. However,
with the P101 installed this is a data
return line for the keyboard scan.

bit 4: +SLCT, normally this bit is used to determne
if the printer is selected or not. Wth the
P101 installed this is a data return
line for the keyboard scan.

bit 5: +PE, a1l inthis bit |location neans that the
printer has detected the end of paper. On
many printer ports, this bit has been found
to be inoperative.

bit 6: -ACK, A zero in this bit position neans that
the printer has accepted the |ast character
and is ready to accept another. This bit
is not normally used by the BICS as bit 7
al so provides this function (and nore).

bit 7: -Busy, Wen this signal is active (0) the
printer is busy and cannot accept data.
When this bit is set to one, the printer
can accept another character.

Qut put control port:

Bit O: +Strobe, A 0.5 us (mnimn) active high pul se
on this bit clocks the data | atched into the
printer data output port to the printer.

Bit 1: +Auto FD XT - A 1 stored at this bit causes
the printer to line feed after alineis
printed. On sorme printer interfaces (e.g.,
the Hercules Graphics Card) this bit is
i noperative.

Bit 2: -INT, a zero on this bit (for a m nimum of
50 us) will cause the printer to (re)init-

Page 1205

Chapter 21

Page 1206

’
’
)
i
i
)
)
1
)
’
’
’
’
)

M/l nt 17

)
’

’

Bit 3:

Bit 4:

cnp
ja
cnp
jz
cnp
ib
je

ialize itself.

+SLCT IN, a one in this bit selects the

printer.
go off-line.

A zero will

cause the printer to

+I RQ ENABLE, a one in this bit position
allows an interrupt to occur when - ACK
changes fromone to zero.

Direction control

1=i nput .

on BI-DIR port. O=output,

reserved, nust be zero.
reserved, nust be zero.

far

ds: not hi ng
ds

bx

cX

dx

bx, 40h
ds, bx

dx, 3
InvalidPrtr
ah, 0

Prt Char

ah, 2
Prirlnit
PrtrStatus

;Point DS at Bl G5 vars.

; Must be LPT1..LPTA4.

; Branch to the appropriate code for
; the printer function

If they passed us an opcode we don’t know about, just return.

nvalidPrtr:

jp

| SR17Done

Initialize the printer by pulsing the init Iine for at |east 50 us.

The del ay | oop bel ow will

nmachi nes.

Pritrinit:

PI Del ay:

nov
shl
nov
test
je
add
in
and
out
nov

| oop
or
out

jmp

del ay wel |
bx, dx
bx, 1
dx, PrtrBase[bx]
dx, dx
InvalidPrtr
dx, 2
al, dx
al, 11011011b
dx, al
cx, O
Pl Del ay
al, 100b
dx, al
| SR17Done

beyond 50 usec even on the fastest

;Get printer port val ue.

; Convert to byte index.

; Get printer base address.
;Does this printer exist?
;Quit if no such printer.
; Point dx at control reg.
; Read current status.
;dear INT/BIDR bits.

; Reset printer.

;This will produce at |east
; a 50 usec del ay.

;Stop resetting printer.

Return the current printer status. This code reads the printer status
port and formats the bits for return to the calling code.

PrtrStatus:

nov
shl

nov
nov
t est
je

inc
in

and
Jnp

bx, dx
bx, 1

dx, PrtrBase[bx]
al, 00101001b

dx, dx
InvalidPrtr
dx

al, dx

al, 11111000b

| SR17Done

;Get printer port val ue.

; Convert to byte index.

; Base address of printer port.
;DfIt: every possible error.
;Does this printer exist?
;Quit if no such printer.
;Point at status port.

; Read status port.

; dear unused/timeout bits.

The PC Parallel Ports

; Print the character in the accumul ator!

Prt Char: nov bx, dx
nmov cl, PrtrTimeQut[bx] ;Cet time out val ue.
shl bx, 1 ; Convert to byte index.
nmov dx, PrtrBase[bx] ;Get Printer port address
or dx, dx ; Non-ni | pointer?
jz NoPrtr2 ; Branch if anil ptr

The foll owi ng code checks to see if an acknow ege was recei ved from
the printer. If this code waits too long, a time-out error is returned.
Acknowl ege is supplied in bit #7 of the printer status port (which is
the next address after the printer data port).

push ax
inc dx ;Point at status port
nov bl, cl ; Put tineout value in bl
nov bh, cl ; and bh.
Wi t Lpl: Xor CX, CX ;lnit count to 65536.
Wi t Lp2: in al, dx ; Read status port
nmov ah, al ; Save status for now
t est al, 80h ; Printer acknow edge?
jnz Got Ack ; Branch if acknow edge.
| oop Wi t Lp2 ; Repeat 65536 ti nes.
dec bl ;Decrenent time out val ue.
jnz Wit Lpl ; Repeat 65536* Ti meQut times.

; See if the user has selected no tineout:

cnp bh, 0
je Wit Lpl

TI MEQUT ERRCR HAS OCOURRED!

Either we fall through to this point fromabove (time out error) or

Atineout - I/Oerror is returned to the systemat this point.
; the referenced printer port doesn't exist. In any case, return an error.

NoPrtr2: or ah, 9 ;Set tineout-1/Oerror flags
and ah, OF9h ; Turn of f unused fl ags.
Xxor ah, 40h ;Flip busy bit.

; Ckay, restore registers and return to caller.

pop CX ; Renove ol d ax.
nov al, cl ;Restore old al.
jnp | SR17Done

; If the printer port exists and we’ve recei ved an acknow ege, then it’s
; okay to transnit data to the printer. That job is handl ed down here.

Cot Ack: nov cx, 16 ;Short delay if crazy prtr
GALp: | oop GALp ; needs hold tine after ack.
pop ax ; Get char to output and
push ax ; save again.
dec dx ;Point DX at printer port.
pushf ;Turn of f interrupts for now
cli
out dx, al ;Qutput data to the printer.

The followi ng short delay gives the data time to travel through the
parallel lines. This makes sure the data arrives at the printer before
the strobe (the times can vary dependi ng upon the capacitance of the
parallel cable’s lines).

nmov cx, 16 ;Ave data tinme to settle
DataSettl eLp: |oop Dat aSettl eLp ; before sending strobe.

; Now that the data has been | atched on the printer data output port, a
; strobe rmust be sent to the printer. The strobe line is connected to

Page 1207

Chapter 21

inc dx ;Point DX at the printer
inc dx ; control output port.
in al, dx ;Get current control bits.
and al, Oleh ; Force strobe line to zero and
out dx, al ; make sure it’s an output port.
nmov cx, 16 ;Short delay to all ow data
Del ayO: | oop Del ay0 ; to becone good.
or al, 1 ; Send out the (+) strobe.
out dx, al ;Qutput (+) strobe to bit O
nmov cx, 16 ; Short delay to | engthen strobe
StrobeDel ay: | oop St r obeDel ay
and al, OFEh :Cear the strobe bit.
out dx, al ;Qutput to control port.
popf ;Restore interrupts.
pop dx ; Get old AX val ue
nov al, d ; Restore ol d AL val ue
| SR17Done: pop dx
pop cX
pop bx
pop ds
iret
M/l nt 17 endp
Mai n proc
nov ax, cseg
nov ds, ax
print
byt e “INT 17h Repl acenent”, cr, | f
byte “Installing....”,cr,1f,0

Page 1208

bit zero of the control port. Also note that this clears bit 5 of the
control port. This ensures that the port continues to operate as an
output port if it is a bidirectional device. This code also clears bits
six and seven which I BMclai ms should be left zero.

Patch into the INT 17 interrupt vector. Note that the
statenents above have nade cseg the current data segment,
so we can store the old INT 17 value directly into

the A dint17 variabl e.

cli ; Turn of f interrupts!
mv ax, O

nov es, ax

nmov ax, es:[17h*4]

nmov word ptr Adintl7, ax

nmv ax, es:[17h*4 + 2]

nmov word ptr Adlntl7+2, ax

nmov es:[17h*4], offset M/Int17

nmov es: [17h*4+2], cs

sti ; Ckay, ints back on.

VW' re hooked up, the only thing that remains is to terninate and
stay resident.

print

byte “Installed.”,cr,If,0

nov ah, 62h ;Get this progranis PSP
i nt 21h ; val ue.

nmov dx, EndResi dent; Conpute size of program
sub dx, bx

nmov ax, 3100h ; DC8 TSR conmand.

The PC Parallel Ports

i nt 21h
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk byt e 1024 dup (“stack “)
sseg ends
zz77277S€g segment para public ‘zzzzzz’
Last Byt es byt e 16 dup (?)
z777277s€eg ends

end Mai n

21.4 Inter-Computer Communications on the Parallel Port

Although printing is, by far, the most popular use for the parallel port on a PC, many devices use the
parallel port for other purposes, as mentioned earlier. It would not be fitting to close this chapter without
at least one example of a non-printer application for the parallel port. This section will describe how to get
two computers to transmit files from one to the other across the parallel port.

The LaplinkJ program from Travelling Software is a good example of a commercial product that can
transfer data across the PC's parallel port; although the following software is not as robust or feature laden
as Laplink, it does demonstrate the basic principles behind such software.

Note that you cannot connect two computer's parallel ports with a simple cable that has DB25 con-
nectors at each end. In fact, doing so could damage the computers' parallel ports because you'd be con-
necting digital outputs to digital outputs (a real no-no). However, you purchase “Laplink compatible”
cables (or buy real Laplink cables for that matter) the provide proper connections between the parallel
ports of two computers. As you may recall from the section on the parallel port hardware, the unidirec-
tional parallel port provides five input signals. A Laplink cable routes four of the data lines to four of these
input lines in both directions. The connections on a Laplink compatible cable are as follows:

Transmitting Site Receiving Site

Data hit 4 i i Busy (inverted)
Data hit 3 i i Acknowledge
Data bit 2 i i Paper Empty

Data bit 1 i i Select

Data bit 0 i i Error

Connections on a Laplink Compatible Cable

yvyevy

\/

Data written on bits zero through three of the data register at the transmitting site appear, unchanged,
on bits three through six of the status port on the receiving site. Bit four of the transmitting site appears,
inverted, at bit seven of the receiving site. Note that Laplink compatible cables are bidirectional. That is,
you can transmit data from either site to the other using the connections above. However, since there are
only five input bits on the parallel port, you must transfer the data four bits at a time (we need one bit for
the data strobe). Since the receiving site needs to acknowledge data transmissions, we cannot simulta-
neously transmit data in both directions. We must use one of the output lines at the site receiving data to
acknowledge the incoming data.

Page 1209

Chapter 21

Page 1210

Since the two sites cooperating in a data transfer across the parallel cable must take turns transmitting
and receiving data, we must develop a protocol so each participant in the data transfer knows when it is
okay to transmit and receive. Our protocol will be very simple - a site is either a transmitter or a receiver,
the roles will never switch. Designing a more complex protocol is not difficult, but this simple protocol
will suffice for the example you are about to see. Later in this section we will discuss ways to develop a
protocol that allows two-way transmissions.

The following example programs will transmit and receive a single file across the parallel port. To use
this software, you run the transmit program on the transmitting site and the receive program on the
receiving site. The transmission program fetches a file name from the DOS command line and opens that
file for reading (generating an error, and quitting, if the file does not exist). Assuming the file exists, the
transmit program then queries the receiving site to see if it is available. The transmitter checks for the pres-
ence of the receiving site by alternately writing zeros and ones to all output bits then reading its input bits.
The receiving site will invert these values and write them back when it comes on-line. Note that the order
of execution (transmitter first or receiver first) does not matter. The two programs will attempt to hand-
shake until the other comes on line.When both sites cycle through the inverting values three times, they
write the value 05h to their output ports to tell the other site they are ready to proceed. A time-out function
aborts either program if the other site does not respond in a reasonable amount of time.

Once the two sites are synchronized, the transmitting site determines the size of the file and then
transmits the file name and size to the receiving site. The receiving site then begins waiting for the receipt
of data.

The transmitting site sends the data 512 bytes at a time to the receiving site. After the transmission of
512 bytes, the receiving site delays sending an acknowledgment and writes the 512 bytes of data to the
disk. Then the receiving site sends the acknowledge and the transmitting site begins sending the next 512
bytes. This process repeats until the receiving site has accepted all the bytes from the file.

Here is the code for the transmitter:
TRANSM T. ASM

This programis the transnitter portion of the programs that transmt files
across a Laplink conpatible parallel cable.

; This program assunes that the user want to use LPT1l: for transm ssion.
; Adjust the equates, or read the port fromthe command line if this
; 1s inappropriate.

. 286

.Xxli st

i ncl ude stdlib.a
includelib stdlib.lib

list
dseg segnent para public ‘data’
Ti neQut Const equ 4000 ;About 1 min on 66Mhz 486.
PrtrBase equ 10 ; OFfset to LPT1: adrs.
MyPor t Adr s wor d ? ;Hol ds printer port address.
Fi | eHandl e wor d ? ;Handl e for output file.
Fi | eBuf fer byt e 512 dup (?) ;Buffer for incoming data.
Fi | eSi ze dword ? ;Size of incomng file.
Fi | eNarrePt r dword ? ;Holds ptr to filenane
dseg ends
cseg segment para public ‘code’

assume cs: cseg, ds:dseg

; TestAbort- Check to see if the user has pressed ctrl-C and wants to
; abort this program This routine calls BIOSto see if the

Test Abort

NoKeyPr ess:

Test Abort

; SendByt e-

’

SendByt e

The PC Parallel Ports

user has pressed a key. If so, it calls DOSto read the
key (function AH=8, read a key wo echo and with ctrl-C

checki ng) .

proc
push
push
push
nmov
int
je
nov
int
pop
pop
pop
ret
endp

near

ax

cX

dx

ah, 1

16h ; See if keypress.
NoKeyPr ess ;Return if no keypress.
ah, 8 :Read char, chk for ctrl-C
21h ;DCS aborts if ctrl-C
dx

cX

ax

Transmt the byte in AL to the receiving site four bits

at atine

proc
push
push
nov

nov

near

cX

dx

ah, al ; Save byte to xnit.

dx, M/PortAdrs ; Base address of LPT1: port.

; First, just to be sure, wite a zero to bit #4. This reads as a one
; in the busy bit of the receiver

Vit until

WINBLp:
i t 4Not Busy:

nov
out

inc
nov
in
test

| oopne

je
paH
Jnp

al, 0
dx, al ;Data not ready yet.

the receiver is not busy. The receiver will wite a zero
to bit #4 of its data register while it is busy. This cones out as a
one in our busy bit (bit 7 of the status register). This | oop waits
until the receiver tells us its ready to receive data by witing a
one to bit #4 (which we read as a zero). Note that we check for a
ctrl-C every so often in the event the user wants to abort the

t ransm ssi on

dx ;Point at status register

cx, 10000

al, dx ; Read status register val ue.

al, 80h ;Bit 7 =1 if busy.

Wi t 4Not Busy ; Repeat whi | e busy, 10000 times
I t sNot busy ; Leave loop if not busy.

Test Abort ; Check for Qrl-C

WINBLp

; Ckay, put the data on the data |ines:

I t sNot Busy:

dec
nov
and
out
or

out

dx ;Point at data register.

al, ah ; Get a copy of the data

al, OFh ;Strip out HQ nibble

dx, al ;"Prime” data lines, data not avail
al, 10h ; Turn data avail abl e on

dx, al ; Send data w data avail abl e strobe

; Wit for the acknow edge fromthe receiving site. Every now and then
; check for a ctrl-C so the user can abort the transm ssion program from
; Within this |oop

WAL p:
Wi t 4Ack

inc
nov
in
test

| oope
j ne

cal |

dx ;Point at status register

cx, 10000 ;Times to | oop between ctrl-C checks.
al, dx ; Read status port.

al, 80h ; Ack = 1 when rcvr acknow edges.

Vi t 4Ack ; Repeat 10000 tines or until ack

Got Ack ;Branch if we got an ack

Test Abor t ; Every 10000 calls, check for a

Page 1211

Chapter 21

jnp WIALp ; ctrl-Cfromthe user.

; Send the data not available signal to the receiver:

Got Ack: dec dx ;Point at data register.
nmov al, 0 ;Wite a zero to bit 4, this appears
out dx, al ; as aoneinthe rcvr's busy bit.

; Ckay, on to the HQ nibble:

inc dx ;Point at status register.
WENB2: nov cx, 10000 ;10000 cal |l s between ctrl-C checks.
Wi t 4Not Bsy2: in al, dx ; Read status register.

t est al, 80h ;Bit 7 =1if busy.

| oopne Wi t 4Not Bsy2 ; Loop 10000 times whil e busy.

je Not Busy?2 ;HQ bit clear (not busy)?

call Test Abor t ; Check for ctrl-C

jp VNB2

; Ckay, put the data on the data |ines:

Not Busy2: dec dx ;Point at data register.
nmov al, ah ;Retrieve data to get HQ nibble.
shr al, 4 ;Mve HQ nibble to L.Q nibble.
out dx, al ;"Prime” data |ines.
or al, 10h ;Data + data avail abl e strobe.
out dx, al ; Send data w data avail abl e strobe.

; Wit for the acknow edge fromthe receiving site:

inc dx ;Point at status register.
WAA2L p: mov cx, 10000
Wi t 4Ack2: in al, dx ; Read status port.

t est al, 80h cAck = 1

| oope Wi t 4Ack?2 ; Wi 1 e whil e no acknow edge

j ne Got Ack2 ;HQ bit =1 (ack)?

call Test Abort ; Check for ctrl-C

jnp WA2Lp

; Send the data not avail able signal to the receiver:

Got Ack2: dec dx ;Point at data register.
nmov al, 0 ;Qutput a zero to bit #4 (that
out dx, al ; becones busy=1 at rcvr).
nmov al, ah ;Restore original data in AL.
pop dx
pop cX
ret

SendByt e endp

Synchroni zati on routi nes:

SendOs- Transmts a zero to the receiver site and then waits to
see if it gets a set of ones back. Returns carry set if
this works, returns carry clear if we do not get a set of
ones back in a reasonabl e anount of time.

SendOs proc near

push cX

push dx

nmov dx, M/PortAdrs

nmov al, 0 :Wite the initial zero

out dx, al ; value to our output port.

xor CX, CX ; Checks for ones 10000 tines.
Wi t 41s: inc dx ;Point at status port.

in al, dx ; Read status port.

dec dx ; Point back at data port.

Page 1212

ot 1s:

SendOs

Sendls-

Sendls

i t 40s:

ot Os:

Sendls

Synchr oni ze-

)
)
)
’
’
)
)
i

Synchr oni ze
SyncLoop:
;o If we didn't

;i f we're out

The PC Parallel Ports

and al, 78h ; Mask input bits.
cnp al, 78h Al ones yet?

| oopne Wit 41s

je CGot 1s ; Branch if success.
clc ;Return failure.
pop dx

pop cX

ret

stc ; Return success.
pop dx

pop cX

ret

endp

Transmts all ones to the receiver site and then waits to
see if it gets a set of zeros back. Returns carry set if

this works, returns carry clear if we do not get a set of
zeros back in a reasonabl e anount of tine.

proc near
push cX

push dx

nmv dx, M/PortAdrs ; LPT1: base address.

nov al, OFh ;Wite the “all ones”

out dx, al ; value to our output port.
nmov cx, O

inc dx ; Point at input port.

in al, dx ; Read the status port.

dec dx ; Point back at data port.
and al, 78h ; Mask input bits.

| oopne Wi t 40s ;Loop until we get zero back.
je Got Os Al zeros? If so, branch.
clc ;Return failure.

pop dx

pop cX

ret

stc ; Return success.

pop dx

pop cX

ret

endp

This procedure slowy wites all zeros and all ones to its
output port and checks the input status port to see if the
recei ver site has synchronized. Wen the receiver site

is synchronized, it will wite the value 05h to its output
port. So when this site sees the value 05h on its input
port, both sites are synchronized. Returns with the

carry flag set if this operation is successful, clear if
unsuccessf ul .

proc near

print

byt e “Synchroni zi ng w th receiver progrant

byte cr,If,0

nmov dx, M/PortAdrs

nov cx, TimeQutConst ;Tine out del ay.

call SendOs ;Send zero bits, wait for
jc Got 1s ; ones (carry set=got ones).

get what we wanted, wite sone ones at this point and see
of phase with the receiving site.

Page 1213

Chapter 21

Ret ry0: cal | Send1s :Send ones, wait for zeros.
jc SyncLoop ;Carry set = got zeros.

; Vll, we didn't get any response yet, see if the user has pressed ctrl-C
; to abort this program

DoRet ry: call Test Abor t
; Ckay, the receiving site has yet to respond. Go back and try this again.
| oop SyncLoop

; If we've timed out, print an error message and return with the carry
; flag clear (to denote a tineout error).

print

byt e “Transnit: Timeout error waiting for receiver”
byt e cr,If,0

clc

ret

; Ckay, we wote sone zeros and we got sone ones. Let’'s wite sonme ones
; and see if we get sonme zeros. If not, retry the | oop.

Cot 1s:
call Send1s ;Send one bits, wait for
jnc DoRet ry ; zeros (carry set=got zeros).

; Wll, we seemto be synchronized. Just to be sure, let’'s play this out
; one nore time.

call SendOs :Send zeros, wait for ones.
jnc Retry0
cal | Sendls ;Send ones, wait for zeros.
jnc DoRet ry

; W're syncronized. Let’s send out the 05h value to the receiving
; sitetolet it know everything is cool:

nmov al, 05h ;Send signal to receiver to

out dx, al ; tell it we're sync’d.

xor CX, CX ;Long del ay to give the rcvr
Fi nal Del ay: | oop Fi nal Del ay ; time to prepare.

print

byt e “Synchroni zed with receiving site”

byt e cr,If,0

stc

ret

Synchr oni ze endp

File I/Oroutines:

nane and file size to the receiving site. Returns the
carry flag set if this operation is successful, clear if

GetFil el nfo- Qpens the user specified file and passes along the file
: unsuccessf ul .

GetFilelnfo proc near

; Get the filenanme fromthe DOS command i ne:

nmov ax, 1

ar gv

nmov word ptr FileNamePtr, di
nov word ptr FileNanePtr+2, es
printf

byt e “Qpeni ng %'s\n”, 0

dwor d Fi | eNarrePt r

Page 1214

The PC Parallel Ports

; Qpen the file:
push ds
nov ax, 3D00h ; Qpen for reading.
| ds dx, FileNanePtr
int 21h
pop ds
jc BadFi | e
nmov Fil eHandl e, ax

Conpute the size of the file (do this by seeking to the last position
inthe file and using the return position as the file length):

mv bx, ax ; Need handl e in BX
nov ax, 4202h :Seek to end of file.
xor CX, CX ; Seek to position zero
xor dx, dx ; fromthe end of file.
int 21h

jc BadFi | e

; Save final position as file length:

nmov word ptr FileSize, ax
nmov word ptr FileSize+2, dx

; Need to rewind file back to the begi nning (seek to position zero):

nov bx, FileHandl e ;Need handle in BX

nov ax, 4200h ; Seek to beginning of file.
xor CX, CX ; Seek to position zero

xor dx, dx

i nt 21h

jc BadFi | e

; Ckay, transmt the good stuff over to the receiving site:

nov al, byte ptr FileS ze ;Send the file
call SendByt e ; size over.
nov al, byte ptr FileSi ze+l
call SendByt e
nmov al, byte ptr FileSize+2
call SendByt e
nov al, byte ptr FileSize+3
call SendByt e
| es bx, Fil eNamePtr ; Send the characters
SendNarre: nov al, es:[bx] ; inthe filenane to
call SendByt e ; the receiver until
inc bx ; we hit a zero byte.
cnp al, 0
j ne SendNane
stc ; Return success.
ret
BadFi | e: print
byt e “Error transmtting file infornmation:”,0
put i
put cr
clc
ret

GetFilelnfo endp

CGetFil eData- This procedure reads the data fromthe file and transmts
it tothe receiver a byte at a tine.

’

’

GetFil eData proc near
nmv ah, 3Fh ; DCS read opcode.
nov cx, 512 ; Read 512 bytes at a tine.
nov bx, FileHandl e ;File to read from
| ea dx, FileBuffer ;Buffer to hold data.
int 21h ;Read the data

Page 1215

Chapter 21

Page 1216

Xm t Loop:

G-DError

G-DDone

jc

nov
j cXz
| ea
nov
call
inc
| oop
Jmp
print
byt e
put i
print
byt e
ret

GetFileData endp

G-DError

cX, ax
G-DDone

bx, FileBuffer
al, [bx]
SendByt e

bx

Xm t Loop

Get Fi | eDat a

“DCS error #,0

;Quit if error reading data.

; Save # of bytes actually read.
;oquit if at ECF.

;Send the bytes in the file

; buffer over to the rcvr

; one at a tine.

;Read rest of file.

“ while reading file”,cr,If,0

; Ckay, here’s the main programthat controls everything

Mai n

. First,

proc
nov
nov
mem ni t

ax, dseg
ds, ax

get the address of LPT1: fromthe Bl G5 variabl es area

nov
nmov
nov
nov

ax, 40h

es, ax

ax, es:[PrtrBase]
M/Port Adrs, ax

; See if we have a filenane paraneter

Cot Narre:

Quit:
Mai n

cseg
sseg

stk
sseg

zz7777S€g
Last Byt es
z77727S€eqQ

argc
cnp
je
print
byte
Jmp

cal
jnc
call
jnc
call

Exi t Pgm
endp

ends

segnent
byt e
ends

segmrent
byt e
ends
end

cx, 1
Cot Nane

“Usage: transmt <filename>",cr,|f,0

Qi t

Synchr oni ze

Qi t

Wit for the transmtter program

GetFilelnfo ;CGet file name and si ze.

Qit

GetFi | eDat a ;CGet the file' s data.

; DCB macro to quit program

para stack ‘stack’

1024 dup (“stack “)

para public ‘zzzzzz’

16 dup (?)

Mai n

The PC Parallel Ports

Here is the receiver program that accepts and stores away the data sent by the program above:

RECEI VE. ASM

This programis the receiver portion of the prograns that transnt files
across a Laplink conpatible parallel cable.

Thi s program assunes that the user want to use LPT1: for transm ssion.
Adj ust the equates, or read the port fromthe command line if this
i's inappropriate.

. 286

.xli st

i ncl ude stdlib.a
includelib stdlib.lib

st
dseg segment para public ‘data’
Ti meCut Const equ 100 ;About 1 min on 66Mz 486.
PrtrBase equ 8 ; OFfset to LPT1: adrs.
My/Por t Adr s wor d ? ;Hol ds printer port address.
Fi | eHandl e wor d ? ;Handl e for output file.
Fi | eBuffer byt e 512 dup (?) ;Buffer for inconing data.
FileS ze dwor d ? ;Size of incomng file.
Fi | eNarre byt e 128 dup (0) ; Hol ds fil enamre
dseg ends
cseg segment para public ‘code’

assurre cs: cseg, ds:dseg

; TestAbort- Reads the keyboard and gives the user the opportunity to
; hit the ctrl-C key.

Test Abor t proc near
push ax
nmov ah, 1
int 16h ;See if keypress.
je NoKeypr ess
nmov ah, 8 ; Read char, chk for ctrl-C
i nt 21h
NoKeyPr ess: pop ax
ret
Test Abort endp
; CGetByte- Reads a single byte fromthe parallel port (four bits at
; at time). Returns the byte in AL.
CGetByte proc near
push cX
push dx

; Receive the L.Q N bble.

nov dx, M/PortAdrs
nov al, 10h ; Signal not busy.
out dx, al
inc dx ;Point at status port
WADLp: mov cX, 10000
Wi t 4Dat a: in al, dx ;See if data avail abl e.
t est al, 80h ; (bit 7=0 if data available).
| oopne Wi t 4Dat a
je Dat al sAvai | ;I's data avail abl e?
call Test Abor t ;1f not, check for ctrl-C

Page 1217

Chapter 21

Jmp WIDLp
Dat al sAvai |l : shr al, 3 ; Save this four bit package
and al, OFh ; (This is the L.Q nibble
nov ah, al ; for our byte).
dec dx ;Point at data register.
nmov al, 0 ; Signal data taken.
out dx, al
inc dx ;Point at status register.
WALp: mov cX, 10000
Wi t 4Ack: in al, dx Wit for transmtter to
t est al, 80h ; retract data avail able.
| oope Wi t 4Ack ;Loop until data not avail.
j ne Next N bbl e ;Branch if data not avail.
call Test Abor t ;Let user hit ctrl-C
Jm WALp

; Receive the HQ nibble:

Next N bbl e: dec dx ;Point at data register.
nmov al, 10h ; Signal not busy
out dx, al
inc dx ;Point at status port
WAD2Lp: nov cx, 10000
Wi t 4Dat a2; in al, dx ;See if data avail abl e.
test al, 80h ; (bit 7=0 if data avail able).
| oopne Vi t 4Dat a2 ;Loop until data avail abl e.
je Dat aAvai | 2 ;Branch if data avail abl e.
call Test Abor t ; Check for ctrl-C
jnp WD2Lp
Dat aAvai | 2: shl al, 1 ;Merge this HQ nibble
and al, OFOh ; wWith the existing L.O
or ah, al ; nibble.
dec dx ;Point at data register.
nov al, 0 ; Signal data taken.
out dx, al
inc dx ;Point at status register.
WIAZL p: nov cx, 10000
Wi t 4Ack2: in al, dx Wit for transmtter to
t est al, 80h ; retract data avail abl e.
| oope Wai t 4Ack?2 Wit for data not avail abl e.
j ne Ret ur nDat a ;Branch if ack.
call Test Abor t ; Check for ctrl-C
jmp WIA2Lp
Ret ur nDat a: nov al, ah ;Put data in al.
pop dx
pop cX
ret
CGetByte endp
Synchroni ze- This procedure waits until it sees all zeros on the input

; bits we receive fromthe transmtting site. Ohce it receives
; all zeros, it wites all ones to the output port. Wen

; all ones cone back, it wites all zeros. It repeats this

; process until the transmtting site wites the val ue 05h.

Synchr oni ze proc near
print
byte “Synchroni zing with transmtter progranf
byt e cr,lf,0
nov dx, M/PortAdrs
nov al, 0 ;lnitialize our output port
out dx, al ; to prevent confusion.
nmov bx, TimeQut Const ; Time out condition.

Page 1218

The PC Parallel Ports

SynclLoop: nmov cx, O ; For time out purposes.
SyncLoopO: inc dx ;Point at input port.

in al, dx ; Read our input bits.

dec dx

and al, 78h ; Keep only the data bits.

cnp al, 78h ; Check for all ones.

je Got 1s ;Branch if all ones.

cnp al, 0 ;See if all zeros.

’

| oopne SyncLoop0

Since we just saw a zero, wite all ones to the output port.

nmov al, OFFh Wite all ones
out dx, al

Now wait for all ones to arrive fromthe transnmtting site.

SyncLoopl: i nc dx ;Point at status register.
in al, dx ; Read status port.
dec dx ;Point back at data register.
and al, 78h ; Keep only the data bits.
cnp al, 78h ;Are they all ones?
| oopne SyncLoopl ; Repeat whil e not ones.
je CGot 1s ;Branch if got ones.

)

If we’ve tinmed out, check to see if the user has pressed ctrl-Cto

abort.

call Test Abor t ; Check for ctrl-C

dec bx ;See if we've tined out.

j ne SyncLoop ; Repeat if time-out.

print

byte “Recei ve: connection tined out during synchronization”
byt e cr,lf,0

clc ;Signal tine-out.

ret

Junp down here once we’ve seen both a zero and a one. Send the two
in conbinations until we get a 05h fromthe transmtting site or the
user presses Qrl-C

ot 1s:

’

Ckay,

i nc dx ;Point at status register.
in al, dx ; Just copy what ever appears
dec dx ; inour input port to the
shr al, 3 ; output port until the
and al, OFh ; transmtting site sends
cnp al, 05h ; us the val ue 05h

je Synchr oni zed

not al ; Keep inverting what we get
out dx, al ; and send it to xmtter.
call Test Abor t ; Check for CTRL-C here.

jp CGot 1s

we' re synchroni zed. Return to the caller.

Synchr oni zed:

and al, OFh ; Make sure busy bit is one
out dx, al ; (bit 4=0 for busy=1).
print

byt e “Synchroni zed with transmtting site”

byt e cr,If,0

stc

ret

Synchr oni ze endp

GetFilelnfo- The transmtting programsends us the file Iength and a

zero ternmnated filename. Get that data here.

GetFilelnfo proc near
nmov dx, M/PortAdrs
nmov al, 10h ; Set busy bit to zero.

Page 1219

Chapter 21

Page 1220

out dx, al

; First four bytes contain the filesize:

call GetByte

nov byte ptr FileS ze, al
call GetByte

nmov byte ptr FileS ze+l, al
call GetByte

nmov byte ptr FileS ze+2, al
call GetByte

nov byte ptr FileS ze+3, al

;Tell xmit pgm we're ready.

; The next n bytes (up to a zero termnating byte) contain the fil enane:

nov bx, 0
GetFil eNane: cal l GetByte
nmov Fi l eNarme[bx], al
call Test Abor t
inc bx
cnp al, 0
j ne Get Fi | eNane

ret
GetFilelnfo endp

; CetFileData- Receives the file data fromthe transnitting site

; and wites it to the output file.

GetFi |l eDat a pr oc near

; First, see if we have nore than 512 bytes left to go

cnp word ptr FileSize+2, 0
j ne Mor eThan512

cnp word ptr FileSize, 512
j be Last Bl ock

1f HQ word is not

; zero, nore than 512.
;If HO is zero, just

; check L.Q word.

; W’ ve got nore than 512 bytes left to gointhis file, read 512 bytes

; at this point.

MoreThan512: nov cx, 512

| ea bx, FileBuffer
ReadLoop: call Get Byte

nov [bx], al

inc bx

| oop ReadLoop

; kay, wite the data to the file:

mov ah, 40h

mov bx, FileHandl e
nmov cx, 512

| ea dx, Filebuffer
int 21h

jc BadWite

; Decrenment the file size by 512 bytes:

sub word ptr FileSize, 512
sbb word ptr FileSize, O
jp GetFil eData

; Process the last block, that contains 1..511 bytes,

Last Bl ock:
nov cx, word ptr FileS ze
| ea bx, FileBuffer
ReadLB: call GetByte
nov [bx], al
inc bx
| oop ReadlLB

; Recei ve 512 bytes

; fromthe xmtter.
; Read a byte.

; Save the byte away.
; Move on to next

. buffer elenent.

; DCB write opcode.
iWite to this file.
; Wite 512 bytes.
;Fromthis address.

;Quit if error.

;32-bit subtraction
. of 512.

here.

; Recei ve the | ast
; 1..511 bytes from
; the transmtter.

BadWite:

; Qose t

doseFil e

nov
nov
nov
| ea
int
jnc

print
byte
put i

print
byte

he file here

: nmov
nmov
int
ret

GetFileData endp

The PC Parallel Ports

ah, 40h :Wite the last bl ock
bx, FileHandl e ; of bytes to the

cx, word ptr FileSize ; file.

dx, Filebuffer

21h

A osefile

“DCs error #,0

“ while witing data.”,cr,If,0

bx, FileHandl e ;dose this file.
ah, 3Eh ; DB cl ose opcode.
21h

; Here’'s the main programthat gets the whole ball rolling

Mai n

; First,

Good(pen

Qit:
Mai n

cseg

sseg
stk
sseg

z2z7777s€g
Last Byt es
2z7777s€g

proc
nov
nov
mem ni t

ax, dseg
ds, ax

get the address of LPT1: fromthe Bl G5 variabl es area.

nmov
nov
nov
nov

call
jnc

cal |

printf
byte
dwor d

nov
nov
| ea
int
jnc
print
byte
Jmp

nov
cal |

Exi t Pgm
endp

ends

segment
byt e
ends

segment
byt e
ends
end

ax, 40h ; Point at Bl CS variabl e segment.
es, ax

ax, es:[PrtrBase]

M/Port Adrs, ax

Synchr oni ze ;Wait for the transmitter program
Qui t
GetFilelnfo ;CGet file nane and si ze.

“Filename: %\nFile size: %d\n”,0
Fil enane, FileSize

ah, 3Ch ;Oreate file.

cx, 0 ;Standard attributes
dx, Filenane

21h

Good(pen

“Error opening file”,cr,If,0

Qi t

Fi | eHandl e, ax

GetFi | eDat a ;CGet the file' s data.

; DCB macro to quit program
para stack ‘stack’
1024 dup (“stack “)
para public ‘zzzzzz’

16 dup (?)

Mai n

Page 1221

Chapter 21

21.5 Summary

Page 1222

The PC’s parallel port, though originally designed for controlling parallel printers, is a general pur-
pose eight bit output port with several handshaking lines you can use to control many other devices in
addition to printers.

In theory, parallel communications should be many times faster than serial communications. In prac-
tice, however, real world constraints and economics prevent this from being the case. Nevertheless, you
can still connect high performance devices to the PC's parallel port.

The PC's parallel ports come in two varieties: unidirectional and bidirectional. The bidirectional ver-
sions are available only on PS/2s, certain laptops, and a few other machines. Whereas the eight data lines
are output only on the unidirectional ports, you can program them as inputs or outputs on the bidirec-
tional port. While this bidirectional operation is of little value to a printer, it can improve the performance
of other devices that connect to the parallel port, such as disk and tape drives, network adapters, SCSI
adapters, and so on.

When the system communicates with some other device over the parallel port, it needs some way to
tell that device that data is available on the data lines. Likewise, the devices needs some way to tell the sys-
tem that it is not busy and it has accepted the data. This requires some additional signals on the parallel
port known as handshaking lines. A typical PC parallel port provides three handshaking signals: the data
available strobe, the data taken acknowledge signal, and the device busy line. These lines easily control
the flow of data between the PC and some external device.

In addition to the handshaking lines, the PC's parallel port provides several other auxiliary I/0 lines
as well. In total, there are 12 output lines and five input lines on the PC’s parallel port. There are three I/O
ports in the PC's address space associated with each 1/0 port. The first of these (at the port’s base address)
is the data register. This is an eight bit output register on unidirectional ports, it is an input/output register
on bidirectional ports. The second register, at the base address plus one, is the status register. The status
register is an input port. Five of those bits correspond to the five input lines on the PC’s parallel port. The
third register (at base address plus two) is the control register. Four of these bits correspond to the addi-
tional four output bits on the PC, one of the bits controls the IRQ line on the parallel port, and a sixth bit
controls the data direction on the birdirectional ports.

For more information on the parallel port’s hardware configuration, see:

* “Basic Parallel Port Information” on page 1199
e “The Parallel Port Hardware” on page 1201

Although many vendors use the parallel port to control lots of different devices, a parallel printer is
still the device most often connected to the parallel port. There are three ways application programs com-
monly send data to the printer: by calling DOS to print a character, by calling BIOS' int 17h ISR to print a
character, or by talking directly to the parallel port. You should avoid this last technique because of possi-
ble software incompatibilities with other devices that connect to the parallel port. For more information on
printing data, including how to write your own int 17h ISR/printer driver, see:

e “Controlling a Printer Through the Parallel Port” on page 1202
e “Printing via DOS” on page 1203

e “Printing via BIOS” on page 1203

e “AnINT 17h Interrupt Service Routine” on page 1203

One popular use of the parallel port is to transfer data between two computers; for example, transfer-
ring data between a desktop and a laptop machine. To demonstrate how to use the parallel port to control
other devices besides printers, this chapter presents a program to transfer data between computers on the
unidirectional parallel ports (it also works on bidirectional ports). For all the details, see

* “Inter-Computer Communications on the Parallel Port” on page 1209

