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Introduction

« Hardware consists of a few simple building blocks

* These are called logic gates
» AND, OR, NOT, ...
» NAND, NOR, XOR, ...

 Logic gates are built using transistors

» NOT gate can be implemented by a single transistor
» AND gate requires 3 transistors

 Transistors are the fundamental devices
» Pentium consists of 3 million transistors
» Compag Alpha consists of 9 million transistors
» Now we can build chips with more than 100 million transistors
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Basic Concepts

Simple gates
+ AND

+ OR

* NOT

Functionality can be
expressed by a truth table

* A truth table lists output for
each possible input
combination

Other methods
% Logic expressions
* Logic diagrams

}
B

AND gate

NOT gate

Logic symbol

A B F
0 O 0
0 1 0
1 0 0
1 1 1
A B F
0 O 0
0 1 1
1 0 1
1 1 1
Al E
0 1
1 0
Truth table

2003

© S. Dandamudi

Chapter 2: Page 4

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.



Basic Concepts (cont’d)

« Additional useful gates A
* NAND A 0 1| 1
+ NOR B ‘}F 10| 1
x XOR NAND gate 1 1] 0
 NAND = AND + NOT A B| F
_ 0 0| 1
e« NOR=0OR +NOT ADF o 11 o
« XOR implements ? Lol o
exclusive-OR function NOR gate —
« NAND and NOR gates A B|F
require only 2 transistors A S
F

* AND and OR need 3 B 1o 1
transistors! XOR gate 1 1] 0
Logic symbol Truth table
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Basic Concepts (cont’d)

e Number of functions

% With N logical variables, we can define
22" functions

* Some of them are useful

» AND, NAND, NOR, XOR, ...
* Some are not useful:

» Output is always 1

» Output is always 0

* “Number of functions” definition is useful in proving
completeness property
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Basic Concepts (cont’d)

o Complete sets

* A set of gates Is complete

» If we can implement any logical function using only the type of
gates in the set

— YOu can uses as many gates as you want
% Some example complete sets
» {AND, OR, NOT} «——— Nota minimal complete set
» {AND, NOT}
» {OR, NOT}
» {NAND}
» {NOR}

# Minimal complete set
— A complete set with no redundant elements.

2003 © S. Dandamudi Chapter 2: Page 7
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.



Basic Concepts (cont’d)

* Proving NAND gate is universal

AND gate A _+:

|
A4 v B4 | P

NOT gate OR gate

B
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Basic Concepts (cont’d)

* Proving NOR gate Is universal

OR gate
g ) O
) o
NOT gate AND gate
2003 © S. Dandamudi Chapter 2: Page 9

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.



Logic Chips

 Basic building block:

» Transistor

« Three connection points
* Base
*  Emitter
* Collector Base

e Transistor can operate
* Linear mode
» Used in amplifiers
% Switching mode

» Used to implement digital
circuits

Collector

Emitter
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Logic Chips (cont’d)

VCC
? Ve Vout 2 Ve
Vini
VOllt VOll'(
Vin Vin2 Vini Vin2
(a) (b) ©)
NOT NAND NOR
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Logic Chips (cont’d)

e Low voltage level: < 0.4V
« High voltage level: > 2.4V
 Positive logic:

Volts
% Low voltage represents 0 5 -
* High voltage represents 1 4-
« Negative logic: 5 Highlevel
* High voltage represents 0 2 | Undefined range
* Low voltage represents 1 1 (forbidden)
i Low level
* Propagation delay
% Delay from input to output
% Typical value: 5-10 ns
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Logic Chips (cont’d)

* Integration levels

% SSI (small scale integration)

» Introduced in late 1960s
» 1-10 gates (previous examples)

* MSI (medium scale integration)
» Introduced in late 1960s
» 10-100 gates

* LSI (large scale integration)

» Introduced in early 1970s
» 100-10,000 gates

% VLSI (very large scale integration)

» Introduced in late 1970s
» More than 10,000 gates
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Logic Functions

 Logical functions can be expressed in several
ways:
% Truth table
% Logical expressions
* Graphical form

e Example:

* Majority function
» Qutput is one whenever majority of inputs is 1
» We use 3-input majority function
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Logic Functions (cont’d)

3-input majority function » Logical expression form
A B C E F=AB+BC+AC
0 0 0 0 A B C
0 0 1 0 ¢
0 1 0 0 ¢ }
0 1 1 1
=)
1 0 0 | o ) :Z} F
1 0 1 1 |
1 1 0 1 }
1 1 1 1 ™
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Logical Equivalence

 All three circuits implement F = A B function

B A >c F
Su DI D
(b)

(a)

.

Ba
o) O By
an

(¢)
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Logical Equivalence (cont’d)

 Proving logical equivalence of two circuits

% Derive the logical expression for the output of each
circuit
% Show that these two expressions are equivalent
» Two ways:

— You can use the truth table method

~For every combination of inputs, if both expressions
yield the same output, they are equivalent

=-Good for logical expressions with small number of
variables

— You can also use algebraic manipulation
=-Need Boolean identities
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Logical Equivalence (cont’d)

« Derivation of logical expression from a circuit

% Trace from the input to output
» Write down intermediate logical expressions along the path

A —* ® DﬁB
D&+B)(A+§)
A+
A

vy
®

(A +B)(A+B)(A +B)

B
+B

mnl
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Logical Equivalence (cont’d)

« Proving logical equivalence: Truth table method

A B |F1=AB | F3=(A+B)(A+B)(A+B)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1
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Boolean Algebra

Boolean i1dentities

Name AND version OR version

|dentity X1l=x X+0=X

Complement X-X=0 X+Xx=1

Commutative XYy =YX X+y=y+X

Distribution X-(Y+Z) = Xy+Xz | X+ (y-2) =
(x+y) (X+2)

|dempotent XX = X X+ X=X

Null x0=0 X+1=1

2003 © S. Dandamudi Chapter 2: Page 21

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.



Boolean Algebra (cont’d)

* Boolean identities (cont’d)

Name AND version OR version
Involution X = X
Absorption X: (X+Yy) = X X + (Xy) = X
Associative X(-z)=(xy)z | x+(y+2)=
(X+y)+z
de Morgan Xy=X+Yy X+y=XYy
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Boolean Algebra (cont’d)

« Proving logical equivalence: Boolean algebra
method

% To prove that two logical functions F1 and F2 are
equivalent

» Start with one function and apply Boolean laws to derive the
other function

» Needs intuition as to which laws should be applied and when
— Practice helps
» Sometimes it may be convenient to reduce both functions to
the same expression

% Example: F1= A B and F3 are equivalent
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Logic Circuit Design Process

« A simple logic design process involves
» Problem specification

Truth table derivation

Derivation of logical expression

Simplification of logical expression

Implementation

>,

v

>,

v

>,

v

>

v

Problem Derive Derive logical Simplify logical Derive final
specification ~| truth table “| expression “|  expression ~| logic circuit
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Deriving Logical Expressions

 Derivation of logical expressions from truth tables
% sum-of-products (SOP) form
* product-of-sums (POS) form

e SOP form

# Write an AND term for each input combination that
produces a 1 output
» Write the variable if its value is 1; complement otherwise

* OR the AND terms to get the final expression

e POS form
* Dual of the SOP form

2003 © S. Dandamudi Chapter 2: Page 25
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.



Deriving Logical Expressions (cont’d)

 3-input majority function  « SOP logical expression

A B C F  Four product terms
* Because there are 4 rows
0 0 0 0 with a 1 output
0 0 1 0
0 1 0| 0 B B
0 1 1 1 F=ABC+ABCH+
1 0 0 0 ABC+ABC
1 0 1 1
1 1 0 1 » Sigma notation
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Deriving Logical Expressions (cont’d)

 3-input majority function  « POS logical expression

B C E e Four sum terms
+* Because there are 4 rows

A

0 0 0 0 with a 0 output

0 0 1 0

0 1 0 | O B
0 1 1 1 F=(A+B+C)(A+B+C)
1 0 0 0 (A+B+C)(A+B+C)
1 0 1 1

1 1 0 1 » Pi notation

S [(0,1,2,4)
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Brute Force Method of Implementation

3-input even-parity function ~ « SOP implementation

A B C F j: B C ABC
0 0 0 0 >t

® >)——O
0 0 1 1 o l
0 1 0 1 .
o 1 1| o 1 )
1 0 0 1 : M
1 0o 1] 0 | | }i}f‘
1 1 0 0 -
1 1 1 1 T ——

!
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Brute Force Method of Implementation

3-input even-parity function  « POS implementation

A B C F A B C A B C
! ot
0 0 0 0 >0t
0 0 1 1 oo+t s
0 1 0 1 1 RN
l ]

0 1 1 0 —
1 0o o0 | 1 =D -~

F
1 O 1 O . ® T\
1 1 0 0 =
1 1 1 1 - } >
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Logical Expression Simplification

 Three basic methods

% Algebraic manipulation

» Use Boolean laws to simplify the expression
— Difficult to use
— Don’t know if you have the simplified form

% Karnaugh map method
» Graphical method

» Easy to use

— Can be used to simplify logical expressions with a few
variables

% Quine-McCluskey method
» Tabular method
» Can be automated

2003 © S. Dandamudi Chapter 2: Page 30
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.



Algebraic Manipulation

« Majority function example

Added extra

ABC+ABC+ABC+ABC = 7\
ABC+ABC+ABC+ABC+ABC+ABC

e We cdn n 1S _expression as

BC+AC+AB

A difficult method to use for complex expressions
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Karnaugh Map Method

Note the order \
CD

A\ 00 01 11 10

00
B BC /\ 01
AN 0 1 AN 00 01 11 10
0 0 11
1 1 10
(a) Two-variable K-map (b) Three-variable K-map (¢) Four-variable K-map
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Karnaugh Map Method (cont’d)

Simplification examples

BC BC ABC
BC BC
A 00 01 11 10 A 00 01 11 10
/4 V 4
)
o o | o |[1]] o 0| o 0
AB
v
iloo | (1 [||1) 1}“ 1 0 0
/- / \
AC ABC ABC
(a) Majority function (b) Even-parity function
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Karnaugh Map Method (cont’d)

First and last columns/rows are adjacent
AB
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Karnaugh Map Method (cont’d)

Minimal expression depends on groupings

CD CD
AR . 00 O 11, 10 AR . 00 O 11, 10
00 J 0 0 L 00 J 0 0 L
01| 0 0 0 0 01| o0 0 0 0
| o ||[(x || 1) o | o | (1 | 1)| o
A A
10 | 1 I 0 ﬁ 10 { 1 1] o 1
| ! |
7N 7o\
BD ACD ABD BD ABC ABD
(a) (b)
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Karnaugh Ma

0 Method (cont’d)

No redundant groupings
CD CD

ABN 00 01 11 10 ABN 00 01 11 10
00 0 0 /? 0 00 0 0 T 0
or [ (1 | 1) || o o | (1 | 1) )] o
1| oo ||[1) (1 1] | oo [[1) (1 1]
10 0 1 0 0 10 0 1 0 0

— —

(a) Nonminimal simplification (b) Minimal simplification
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Karnaugh Map Method (cont’d)

e Example
% Seven-segment display
* Need to select the right LEDs to display a digit
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Karnaugh Map Method (cont’d)

Truth table for segment d

No|A B C D |Seg. No|A B C D | Seg.
o (0 O O O |1 81 0 0 0| 1
110 0 0 110 911 0 0 1 1
2 |0 0 1 0 |1 1011 0 1 0] ?
3 /|0 0 1 1 1 111 0 1 1| ?
4 {0 1 0 0 |O 1211 1 0 0] ?
510 1 0 1 1 1311 1 0 1] ?
6 ([0 1 1 0|1 1411 1 1 0] ?
/(0 1 1 1 |0 511 1 1 1| ?

2003

© S. Dandamudi

Chapter 2: Page 38

To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.



Karnaugh Map Method (cont’d)

Don’t cares simplify the expression a lot

CD CD
ABN. 00 01 11 10 AR\ 00 0L 11 10

00:3 o | (1 {\})* OO_J 0 h 1

)
01 0 0 1 01 0 1 0 1
~—

4 N
11 0 0 0 0 11 d 4 d d
10| (1 1) 0 0 10 | (1 1 ( d
(a) Simplification with no don’t cares (b) Simplification with don’t cares
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Karnaugh Map Method (cont’d)

Example 7-segment display driver chip

5

6

7

8

9

10 11 12

(a) Display designations

, 10 114 Vee
A, 2] 113
B 30 — 112 ¢
A g 4[| 111 a

7449
A, 50 — 110 b
e 6| 19 ¢
GND 7 [ ] 18 d

(b) Connection diagram

13 14 15

f—
pgO 0 - 0

(c) Logic symbol
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Quine-McCluskey Method

« Simplification involves two steps:

% Obtain a simplified expression
» Essentially uses the following rule

XY +XY=X
» This expression need not be minimal
— Next step eliminates any redundant terms

* Eliminate redundant terms from the simplified
expression in the last step
» This step Is needed even in the Karnaugh map method
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Generalized Gates

e Multiple input
gates can be built
using smaller gates

e Some gates like
AND are easy to
build

e Other gates like
NAND are more
Involved

oo,

(a)

os)

—D Dcli} F=ABC

(b)
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Generalized Gates (cont’d)

e Various ways to build
higher-input gates

% Series g
*  Series-parallel C
F=A+B+C+D
 Propagation delay P
depen dS on the (a) Series implementation
Implementation A
*  Series implementation i FeA+B+C+D
» 3-gate delay D
* Series-parallel
i mp lementation (b) Series-parallel implemetation
» 2-gate delay
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Multiple Outputs

Two-output function e F1 and F2 are

B C = = familiar functions

» F1 = Even-parity
function

» F2 = Majority
function

e Another
Interpretation

* Full adder

» F1=3Sum
» F2 = Carry

P PP P OOOo o>
R P O ORrR EFEFR OO
R O, OFr OFr O
R OO FR OFR KLk O
R PR OFR OO O
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Implementation Using Other Gates

e Using NAND gates
% Get an equivalent expression

AB+CD=AB+CD
% Using de Morgan’s law

AB+CD=AB-CD

* Can be generalized
» Majority function

AB+BC+AC=AB -BC:-AC
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Implementation Using Other Gates (cont’d)

e Majority function

A B C

Bt

Ly
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Implementation Using Other Gates (cont’d)

Bubble Notation

B C A B C

HEO—
=

= D
' T_}
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Implementation Using Other Gates (cont’d)

* Using XOR gates

% More complicated

B

(a) Even-parity function (b) Two-output function
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Summary

* Logic gates
» AND, OR, NOT
» NAND, NOR, XOR

 Logical functions can be represented using

» Truth table
» Logical expressions
» Graphical form

 Logical expressions
% Sum-of-products
% Product-of-sums
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Summary (cont’d)

o Simplifying logical expressions
* Boolean algebra
* Karnaugh map
% Quine-McCluskey

* Implementations

# Using AND, OR, NOT
» Straightforward

% Using NAND
% Using XOR

Last slide
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