Digital Logic Basics

Chapter 2 S. Dandamudi

Outline

- Basic concepts
 - * Simple gates
 - * Completeness
- Logic functions
 - * Expressing logic functions
 - * Equivalence
- Boolean algebra
 - * Boolean identities
 - * Logical equivalence
- Logic Circuit Design Process

- Deriving logical expressions
 - Sum-of-products form
 - * Product-of-sums form
- Simplifying logical expressions
 - * Algebraic manipulation
 - * Karnaugh map method
 - * Quine-McCluskey method
- Generalized gates
- Multiple outputs
- Implementation using other gates (NAND and XOR)

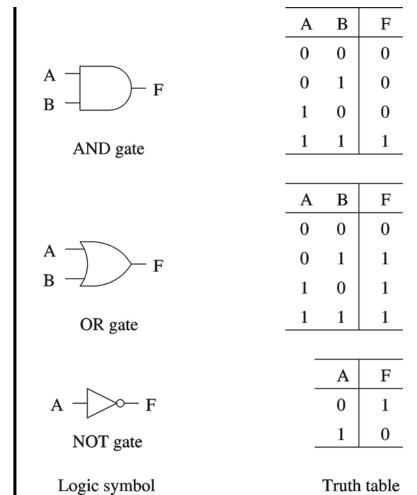
© S. Dandamudi

Introduction

- Hardware consists of a few simple building blocks
 - * These are called *logic gates*
 - » AND, OR, NOT, ...
 - » NAND, NOR, XOR, ...
- Logic gates are built using transistors
 - » NOT gate can be implemented by a single transistor
 - » AND gate requires 3 transistors
- Transistors are the fundamental devices
 - » Pentium consists of 3 million transistors
 - » Compaq Alpha consists of 9 million transistors
 - » Now we can build chips with more than 100 million transistors

Basic Concepts

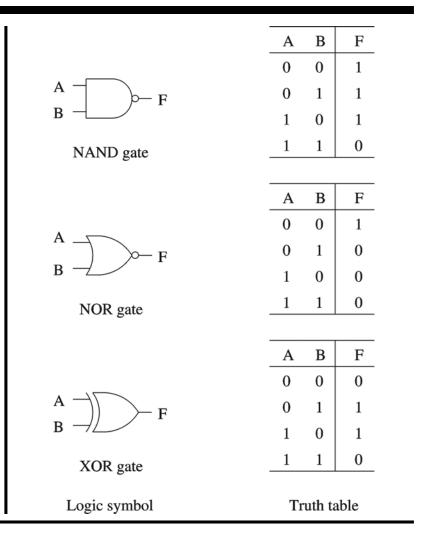
- Simple gates
 - * AND
 - * OR
 - * NOT
- Functionality can be expressed by a truth table
 - * A truth table lists output for each possible input combination
- Other methods
 - * Logic expressions
 - * Logic diagrams



© S. Dandamudi

Chapter 2: Page 4

- Additional useful gates
 - * NAND
 - * NOR
 - * XOR
- NAND = AND + NOT
- NOR = OR + NOT
- XOR implements exclusive-OR function
- NAND and NOR gates require only 2 transistors
 - * AND and OR need 3 transistors!



© S. Dandamudi

Chapter 2: Page 5

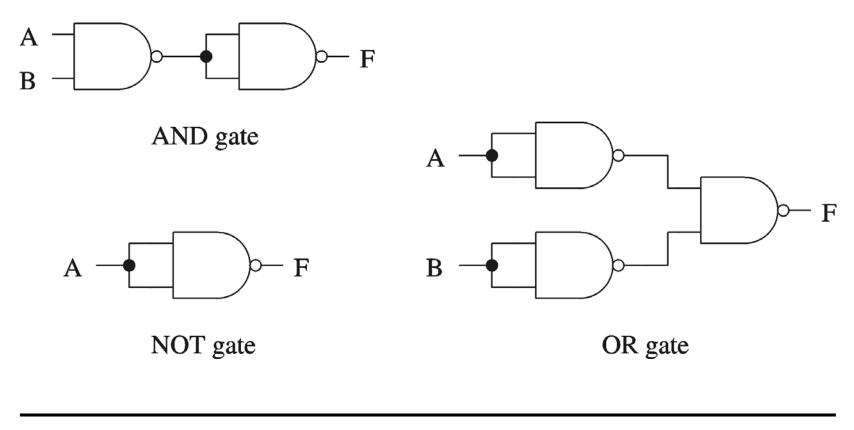
- Number of functions
 - * With *N* logical variables, we can define 2^{2^N} functions
 - * Some of them are useful
 - » AND, NAND, NOR, XOR, ...
 - * Some are not useful:
 - » Output is always 1
 - » Output is always 0
 - * "Number of functions" definition is useful in proving completeness property

- Complete sets
 - * A set of gates is complete
 - » if we can implement any logical function using only the type of gates in the set
 - You can uses as many gates as you want
 - * Some example complete sets

 - » {AND, NOT}
 - » {OR, NOT}
 - {NAND}
 - » {NOR}
 - * Minimal complete set

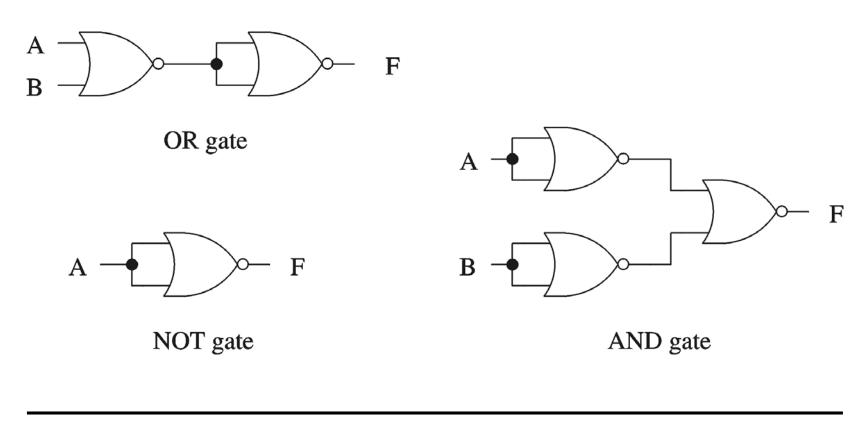
– A complete set with no redundant elements.

• Proving NAND gate is universal



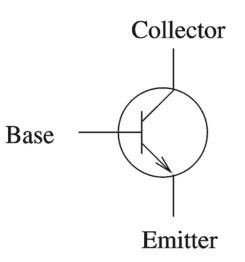
© S. Dandamudi

• Proving NOR gate is universal



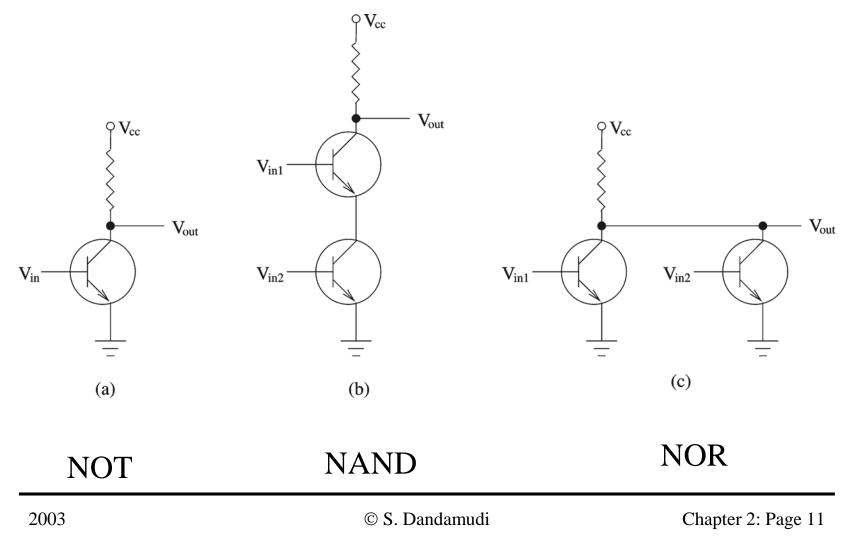
Logic Chips

- Basic building block:
 - » Transistor
- Three connection points
 - * Base
 - * Emitter
 - * Collector
- Transistor can operate
 - * Linear mode
 - » Used in amplifiers
 - * Switching mode
 - » Used to implement digital circuits



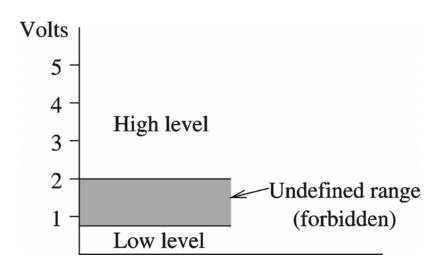
© S. Dandamudi

Logic Chips (cont'd)

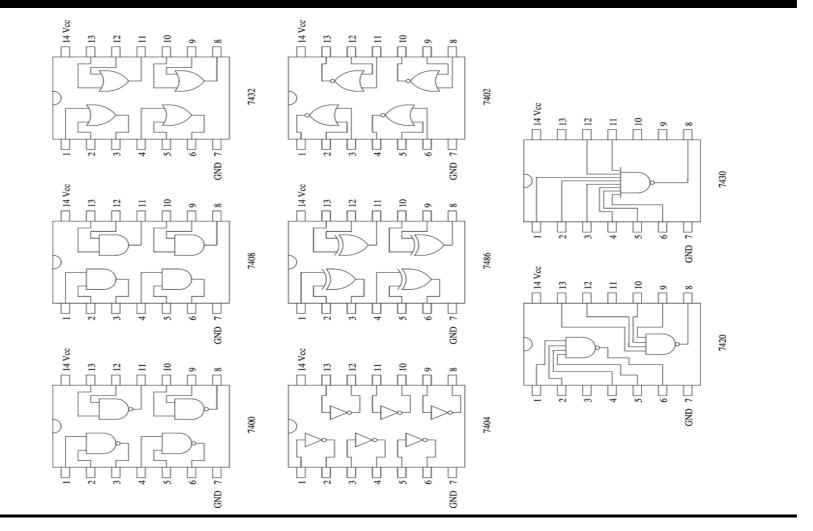


Logic Chips (cont'd)

- Low voltage level: < 0.4V
- High voltage level: > 2.4V
- Positive logic:
 - * Low voltage represents 0
 - * High voltage represents 1
- Negative logic:
 - * High voltage represents 0
 - * Low voltage represents 1
- Propagation delay
 - * Delay from input to output
 - * Typical value: 5-10 ns



Logic Chips (cont'd)



© S. Dandamudi

To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

Logic Chips (cont'd)

- Integration levels
 - * SSI (small scale integration)
 - » Introduced in late 1960s
 - » 1-10 gates (previous examples)
 - * MSI (medium scale integration)
 - » Introduced in late 1960s
 - » 10-100 gates
 - * LSI (large scale integration)
 - » Introduced in early 1970s
 - » 100-10,000 gates
 - * VLSI (very large scale integration)
 - » Introduced in late 1970s
 - » More than 10,000 gates

2003

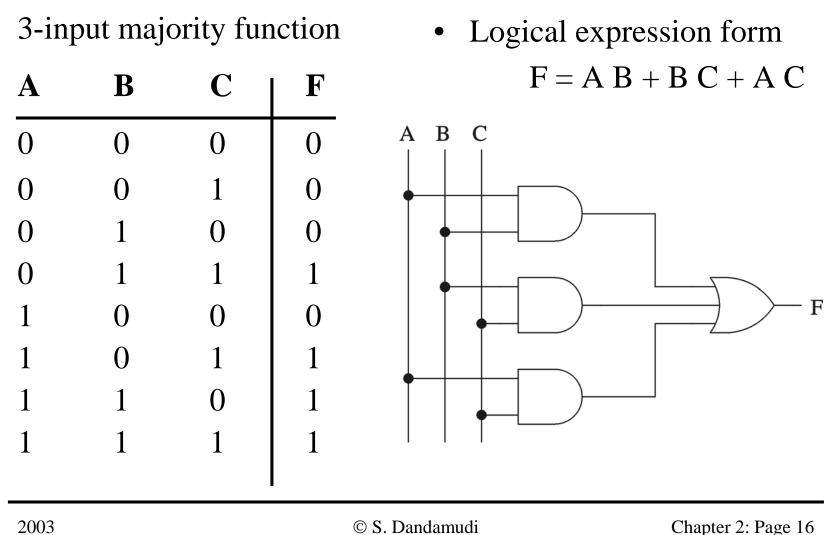
Logic Functions

- Logical functions can be expressed in several ways:
 - * Truth table
 - * Logical expressions
 - * Graphical form
- Example:
 - * Majority function
 - » Output is one whenever majority of inputs is 1
 - » We use 3-input majority function

Chapter 2: Page 15

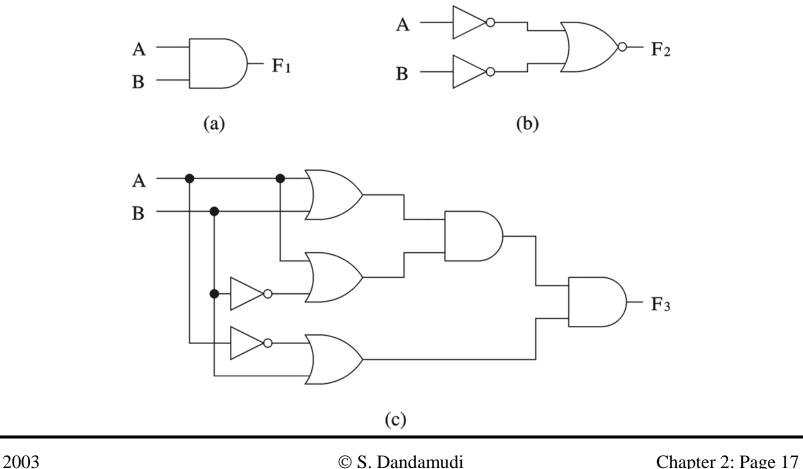
© S. Dandamudi

Logic Functions (cont'd)



Logical Equivalence

All three circuits implement F = A B function •



© S. Dandamudi

Chapter 2: Page 17

Logical Equivalence (cont'd)

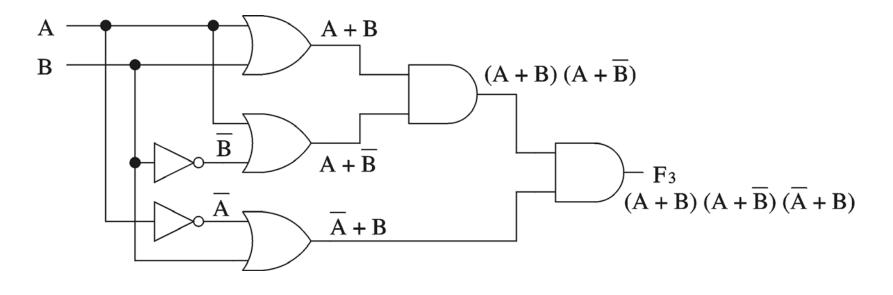
- Proving logical equivalence of two circuits
 - * Derive the logical expression for the output of each circuit
 - * Show that these two expressions are equivalent
 - » Two ways:
 - You can use the truth table method
 - →For every combination of inputs, if both expressions yield the same output, they are equivalent
 - →Good for logical expressions with small number of variables
 - You can also use algebraic manipulation

→Need Boolean identities

© S. Dandamudi

Logical Equivalence (cont'd)

- Derivation of logical expression from a circuit
 - * Trace from the input to output
 - » Write down intermediate logical expressions along the path



To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

Logical Equivalence (cont'd)

• Proving logical equivalence: Truth table method

Α	B	F1 = A B	$\mathbf{F3} = (\mathbf{A} + \mathbf{B}) \ (\mathbf{\overline{A}} + \mathbf{B}) \ (\mathbf{A} + \mathbf{\overline{B}})$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

© S. Dandamudi

Boolean Algebra

Boolean identities				
Name	AND version	OR version		
Identity	$\mathbf{x} \cdot 1 = \mathbf{x}$	$\mathbf{x} + 0 = \mathbf{x}$		
Complement	$\mathbf{x} \cdot \overline{\mathbf{x}} = 0$	$x + \overline{x} = 1$		
Commutative	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$		
Distribution	$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x}\mathbf{y} + \mathbf{x}\mathbf{z}$	$x + (y \cdot z) =$		
		(x+y)(x+z)		
Idempotent	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	$\mathbf{x} + \mathbf{x} = \mathbf{x}$		
Null	$\mathbf{x} \cdot 0 = 0$	x + 1 = 1		

© S. Dandamudi

Boolean Algebra (cont'd)

• Boolean identities (cont'd)

Name	AND version	OR version
Involution	$\overline{\overline{\mathbf{x}}} = \mathbf{x}$	
Absorption	$x \cdot (x+y) = x$	$\mathbf{x} + (\mathbf{x} \cdot \mathbf{y}) = \mathbf{x}$
Associative	$\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$	x + (y + z) =
		(x + y) + z
de Morgan	$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$	$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

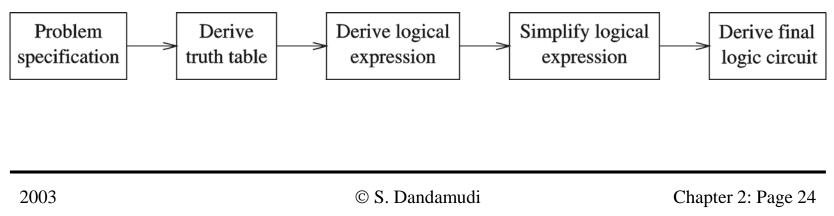
2003	© S. Dandamudi	Chapter 2: Page 22	
	To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.		

Boolean Algebra (cont'd)

- Proving logical equivalence: Boolean algebra method
 - * To prove that two logical functions F1 and F2 are equivalent
 - » Start with one function and apply Boolean laws to derive the other function
 - » Needs intuition as to which laws should be applied and when
 - Practice helps
 - Sometimes it may be convenient to reduce both functions to the same expression
 - * Example: F1= A B and F3 are equivalent

Logic Circuit Design Process

- A simple logic design process involves
 - » Problem specification
 - » Truth table derivation
 - » Derivation of logical expression
 - » Simplification of logical expression
 - » Implementation



Deriving Logical Expressions

- Derivation of logical expressions from truth tables
 * sum-of-products (SOP) form
 - * product-of-sums (POS) form
- SOP form
 - * Write an AND term for each input combination that produces a 1 output
 - » Write the variable if its value is 1; complement otherwise
 - * OR the AND terms to get the final expression
- POS form
 - * Dual of the SOP form

Deriving Logical Expressions (cont'd)

• 3-input majority function

A	B	С	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- SOP logical expression
- Four product terms
 - * Because there are 4 rows with a 1 output

```
F = \overline{A} B C + A \overline{B} C + A \overline{B} C + A B \overline{C} + A B C
```

• Sigma notation

 $\Sigma(3, 5, 6, 7)$

© S. Dandamudi

Deriving Logical Expressions (cont'd)

• 3-input majority function

A	B	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

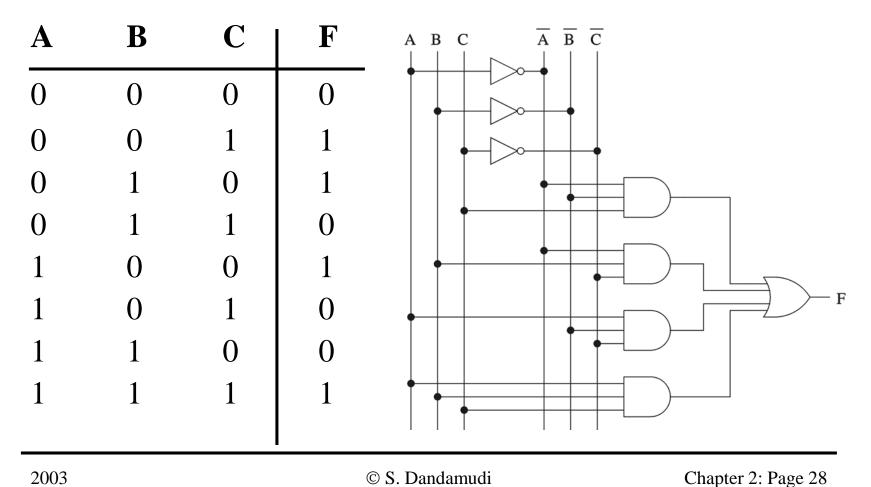
- POS logical expression
- Four sum terms
 - * Because there are 4 rows with a 0 output

$$F = (A + B + C) (A + B + \overline{C})$$
$$(A + \overline{B} + C) (\overline{A} + B + C)$$

Pi notation
 Π (0, 1, 2, 4)

© S. Dandamudi

Brute Force Method of Implementation



To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

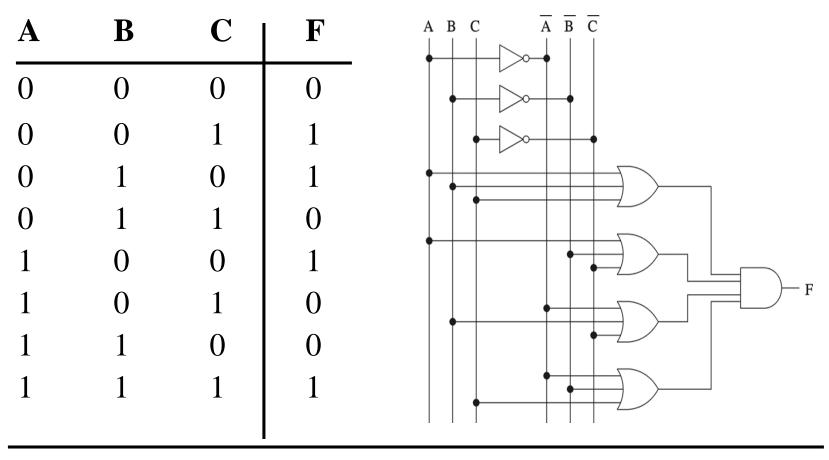
Brute Force Method of Implementation

3-input even-parity function	•	
------------------------------	---	--

2003

• POS implementation

Chapter 2: Page 29



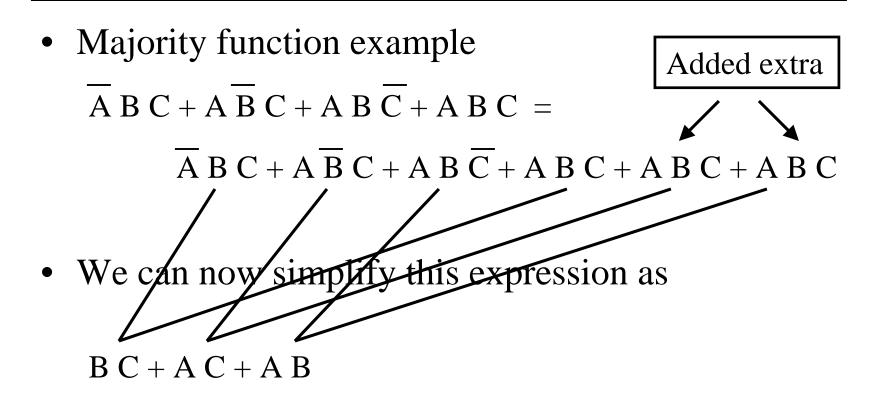
To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

© S. Dandamudi

Logical Expression Simplification

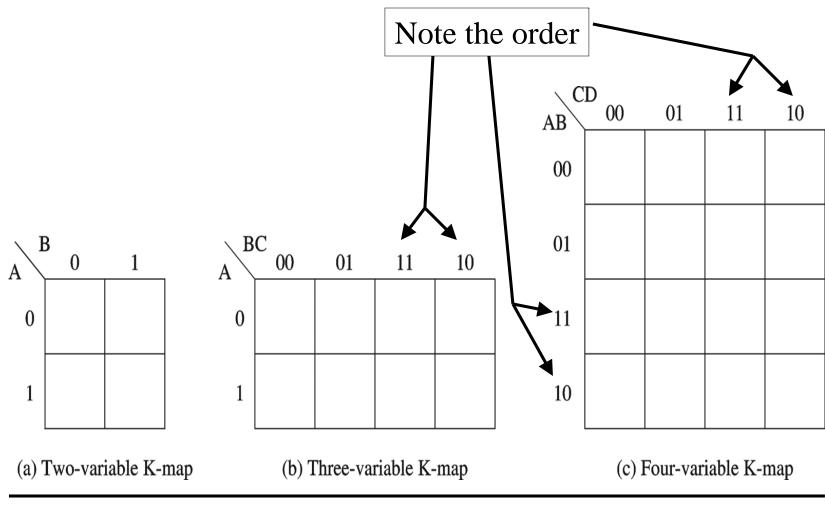
- Three basic methods
 - * Algebraic manipulation
 - » Use Boolean laws to simplify the expression
 - Difficult to use
 - Don't know if you have the simplified form
 - * Karnaugh map method
 - » Graphical method
 - » Easy to use
 - Can be used to simplify logical expressions with a few variables
 - * Quine-McCluskey method
 - » Tabular method
 - » Can be automated

Algebraic Manipulation



• A difficult method to use for complex expressions

Karnaugh Map Method

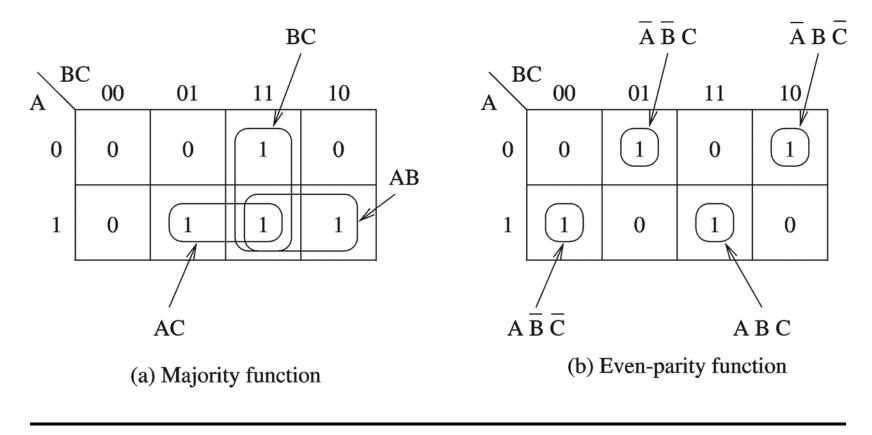


2003

 $\ensuremath{\mathbb{C}}$ S. Dandamudi

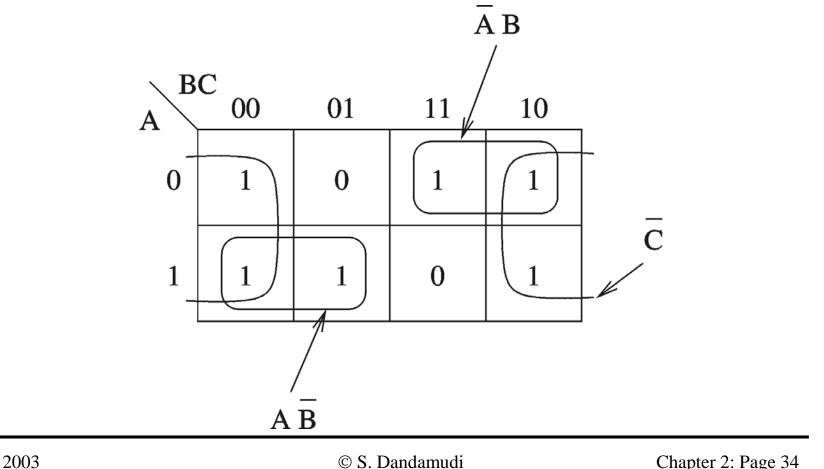
Chapter 2: Page 32

Simplification examples



To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

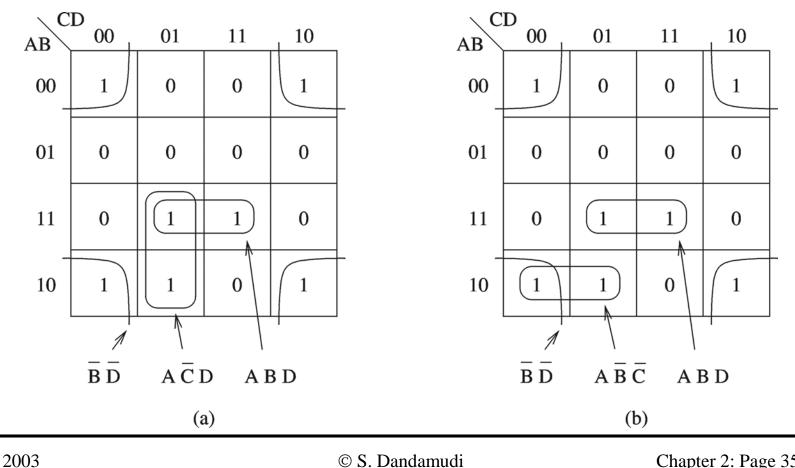
First and last columns/rows are adjacent



© S. Dandamudi

Chapter 2: Page 34

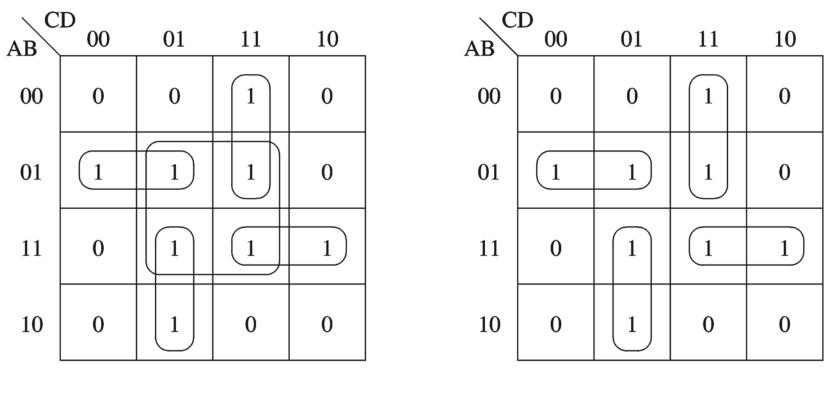
Minimal expression depends on groupings



© S. Dandamudi

Chapter 2: Page 35

No redundant groupings



(a) Nonminimal simplification

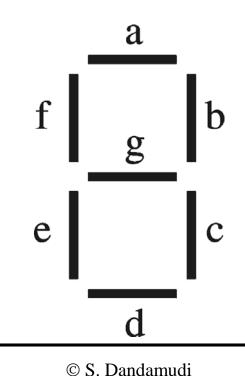
(b) Minimal simplification

© S. Dandamudi

• Example

* Seven-segment display

* Need to select the right LEDs to display a digit

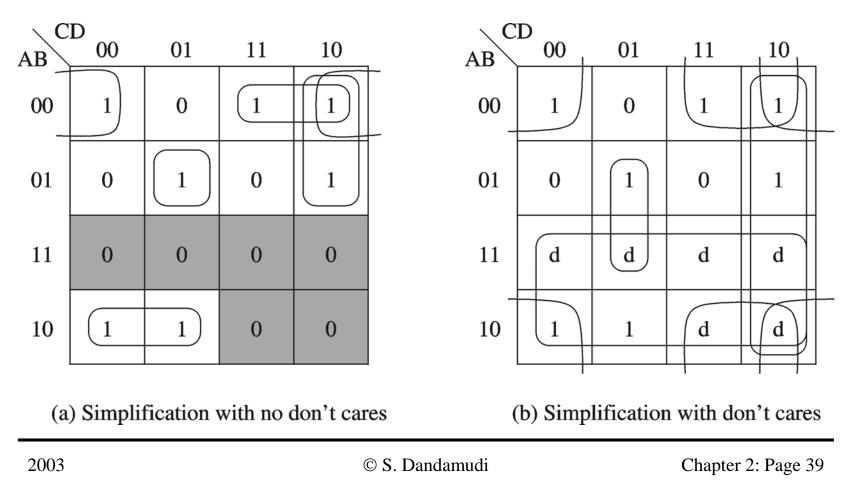


Truth table for segment d

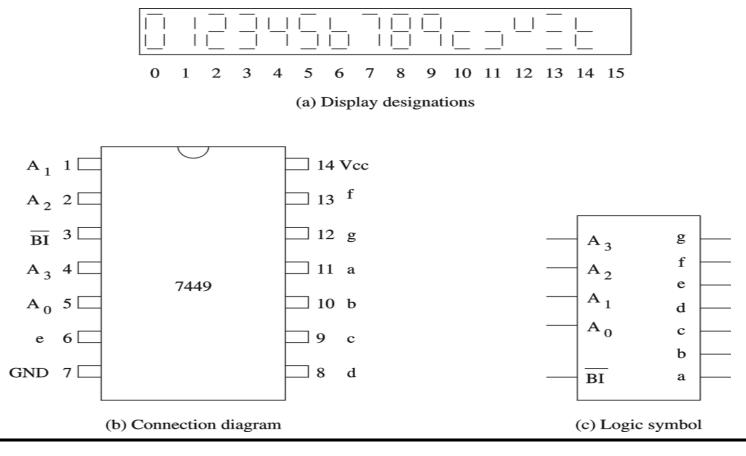
No	A	B	С	D	Seg.	No	A	B	С	D	Seg.
0	0	0	0	0	1	8	1	0	0	0	1
1	0	0	0	1	0	9	1	0	0	1	1
2	0	0	1	0	1	10	1	0	1	0	?
3	0	0	1	1	1	11	1	0	1	1	?
4	0	1	0	0	0	12	1	1	0	0	?
5	0	1	0	1	1	13	1	1	0	1	?
6	0	1	1	0	1	14	1	1	1	0	?
7	0	1	1	1	0	15	1	1	1	1	?
	I				I	I	I				I

© S. Dandamudi

Don't cares simplify the expression a lot



Example 7-segment display driver chip



© S. Dandamudi

Chapter 2: Page 40

Quine-McCluskey Method

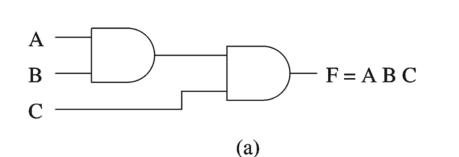
- Simplification involves two steps:
 - * Obtain a simplified expression
 - » Essentially uses the following rule

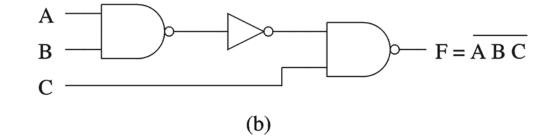
 $X \ Y + X \overline{Y} = X$

- » This expression need not be minimal
 - Next step eliminates any redundant terms
- * Eliminate redundant terms from the simplified expression in the last step
 - » This step is needed even in the Karnaugh map method

Generalized Gates

- Multiple input gates can be built using smaller gates
- Some gates like AND are easy to build



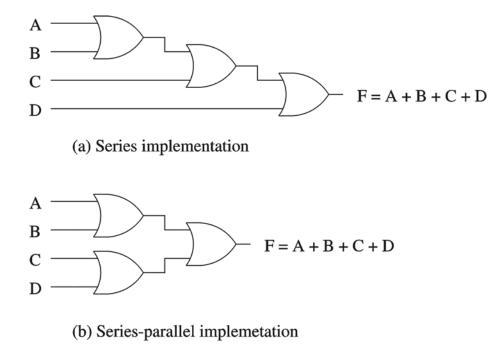


• Other gates like NAND are more involved

© S. Dandamudi

Generalized Gates (cont'd)

- Various ways to build higher-input gates
 - * Series
 - * Series-parallel
- Propagation delay depends on the implementation
 - * Series implementation
 - » 3-gate delay
 - * Series-parallel implementation
 - » 2-gate delay



© S. Dandamudi

Multiple Outputs

	Two-	output	function	• F1 and F2 are			
A	B	С	F 1	F 2	familiar functions		
0	0	0	0	0	» F1 = Even-parity function		
0	0	1	1	0	» F2 = Majority		
0	1	0	1	0	function		
0	1	1	0	1	• Another		
1	0	0	1	0	interpretation		
1	0	1	0	1	* Full adder		
1	1	0	0	1	$ F_1 = Sum $		
1	1	1	1	1	» F2 = Carry		

Implementation Using Other Gates

• Using NAND gates

* Get an equivalent expression

$$A B + C D = A B + C D$$

* Using de Morgan's law

$$A B + C D = A B \cdot C D$$

* Can be generalized

» Majority function

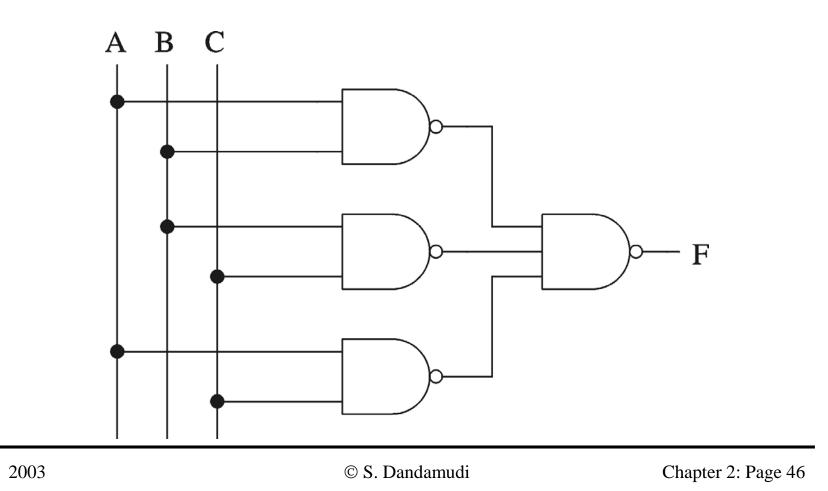
$A B + B C + AC = A B \cdot BC \cdot AC$

© S. Dandamudi

Chapter 2: Page 45

Implementation Using Other Gates (cont'd)

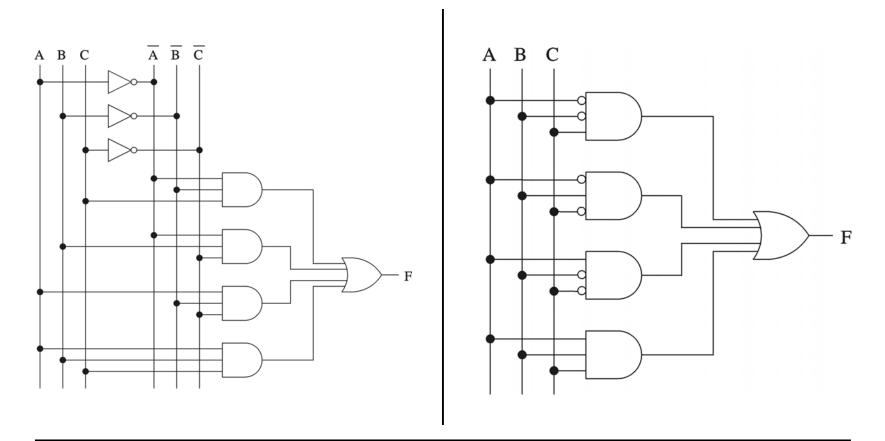
• Majority function



To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

Implementation Using Other Gates (cont'd)

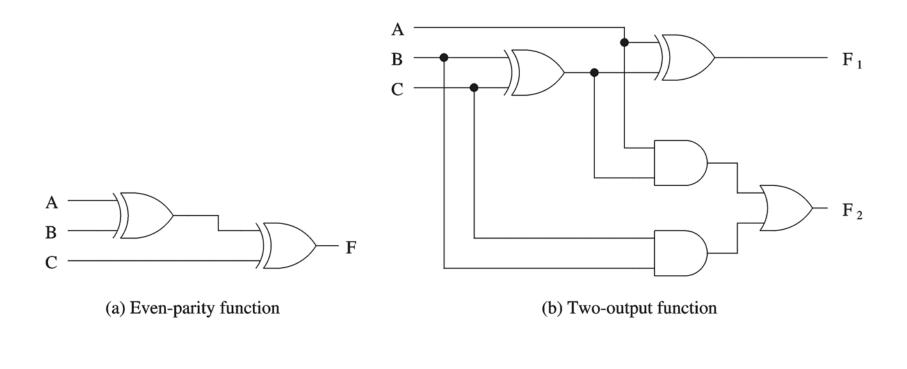
Bubble Notation



2003 © S. Dandamudi Chapter 2: Page 47 To be used with S. Dandamudi, "Fundamentals of Computer Organization and Design," Springer, 2003.

Implementation Using Other Gates (cont'd)

- Using XOR gates
 - * More complicated



2003

© S. Dandamudi

Summary

- Logic gates
 - » AND, OR, NOT
 - » NAND, NOR, XOR
- Logical functions can be represented using
 - » Truth table
 - » Logical expressions
 - » Graphical form
- Logical expressions
 - * Sum-of-products
 - * Product-of-sums

Summary (cont'd)

- Simplifying logical expressions
 - * Boolean algebra
 - * Karnaugh map
 - * Quine-McCluskey
- Implementations
 - * Using AND, OR, NOT
 - » Straightforward
 - * Using NAND
 - * Using XOR

Last slide