Chapter 6 Reed-Solomon Codes

1. Introduction

- The Reed-Solomon codes (RS codes) are nonbinary cyclic codes with code symbols from a Galois field. They were discovered in 1960 by I. Reed and G. Solomon. The work was done when they were at MIT Laboratory.
- In the decades since their discovery, RS codes have enjoyed countless applications from compact discs and digital TV in living room to spacecraft and satellite in outer space.
- The most important RS codes are codes with symbols from $GF(2^m)$.

• One of the most important features of RS codes is that the minimum distance of an (n, k) RS code is n-k+1.

Codes of this kind are called "maximum-distance-separable codes".

2. RS Codes with Symbols from $GF(2^m)$

- Let α be a primitive element in $GF(2^m)$.
- For any positive integer $t \le 2^m 1$, there exists a t-symbol-error-correcting RS code with symbols from $GF(2^m)$ and the following parameters:

$$n = 2^{m} - 1$$

$$n - k = 2t$$

$$k = 2^{m} - 1 - 2t$$

$$d_{\min} = 2t + 1 = n - k + 1$$
(6-1)

The generator polynomial is

$$g(x) = (x + \alpha)(x + \alpha^{2}) \cdots (x + \alpha^{2t})$$

$$= g_{0} + g_{1}x + g_{2}x^{2} + \cdots + g_{2t-1}x^{2t-1} + x^{2t}$$
(6-

2)

Where $g_i \in GF(2^m)$

Note that g(x) has $\alpha, \alpha^2, \dots, \alpha^{2t}$ as roots.

Example:

$$m = 8, t = 16$$

 $n = 255$
 $k = n - 2t = 223$
 $d_{\min} = 33$

It is a (255, 223) RS code. This code is NASA standard code for satellite and space communications.

3. Encoding of RS Codes

Let $m(x) = m_0 + m_1 x + \dots + m_{k-1} x^{k-1}$ be the message polynomial to be encoded

Where $m_i \in GF(2^m)$ and k = n - 2t.

• Dividing $x^{2t}m(x)$ by g(x), we have

$$x^{2t}m(x) = a(x)g(x) + b(x)$$
 (6-3)

where
$$b(x) = b_0 + b_1 x + \dots + b_{2t-1} x^{2t-1}$$
 (6-4)

is the remainder.

Then $b(x) + x^{2t}m(x)$ is the codeword polynomial for the message m(x).

■ The encoding circuit is shown below: (Lin / Costello p.172)

Encoding circuit for a nonbinary cyclic code.

4. RS Codes for Binary Data

- Every element in $GF(2^m)$ can be represented uniquely by a binary m-tuple, called a m-bit byte.
- Suppose an (n, k) RS code with symbols from GF(2^m) is used for encoding binary data. A message of km bits is first divided into k
 m-bit bytes. Each m-bit byte is regarded as a symbol in GF(2^m).
 The k-byte message is then encoded into n-byte codeword based on the RS encoding rule.
- By doing this, we actually expand a RS code with symbols from $GF(2^m)$ into a binary (nm, km) linear code, called a binary RS code.
- Binary RS codes are very effective in correcting bursts of bit errors as long as no more than t bytes are affected.

5. Decoding of RS Codes

- RS codes are actually a special class of nonbinary BCH codes.
- Decoding of a RS code is similar to the decoding of a BCH code except an additional step is needed.

Let
$$c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}, c_i \in GF(2^m)$$

and $r(x) = r_0 + r_1 x + \dots + r_{n-1} x^{n-1}, r_i \in GF(2^m)$

Then the error polynomial is

$$e(x) = r(x) - c(x)$$

$$= e_0 + e_1 x + e_2 x^2 + \dots + e_{n-1} x^{n-1}$$
(6-5)

Where $e_i = r_i - c_i$ is a symbol in GF(2^m).

Suppose e(x) has V errors at the locations $x^{j_1}, x^{j_2}, \dots, x^{j_{\nu}}$, then $e(x) = e_{j_1} x^{j_1} + e_{j_2} x^{j_2} + \dots + e_{j_{\nu}} x^{j_{\nu}}$ (6-6)

The error-location numbers are

$$Z_{j_1} = \alpha^{j_1}, Z_{j_2} = \alpha^{j_2}, \dots, Z_{j_v} = \alpha^{j_v}$$

The error values are

$$e_{j_1}, e_{j_2}, \cdots, e_{j_{\nu}}$$

- Thus, in decoding a RS code, we not only have to determine the error-locations but also have to evaluate the error values.
- If there are s erasure symbols and v errors in the received polynomial r(x), then the (n, k) RS decoder and correct these erasure symbols and errors if $2v + s \le d 1 = n k$

The received polynomial is represented by

$$r(x) = c(x) + e(x) + e(x) = c(x) + u(x)$$

Where e(x) and are $e^*(x)$ are the error and erasure polynomials, respectively.

6. Errors-only Decoding of RS Codes

For errors-only decoding the received polynomial r(x) has the simply form, r(x)=c(x)+e(x)

where
$$e(x) = e_0 + e_1 x + e_2 x^2 + \dots + e_{n-1} x^{n-1}, e_i \in GF(2^m)$$

For $e_i \neq 0$, let e_i denote the error value at the *i*-th position.

Suppose there are ν errors, where $2\nu \le n-k$ at positions i_{ν} for $\nu=1,2,\cdots,\nu$.

The objective of the RS decoder is to find the number of errors, their positions and then their values.

7. Syndrome Computation

Let
$$r(x) = r_0 + r_1 x + \dots + r_{n-1} x^{n-1}$$
 (6-7)

The generator polynomial has $\alpha, \alpha^2, \dots, \alpha^{2t}$ as roots.

Since
$$c(\alpha^i) = m(\alpha^i)g(\alpha^i)$$
, $i = 1, 2, \dots, 2t$

We have the relations

$$r(\alpha^{i}) = c(\alpha^{i}) + e(\alpha^{i}) = e(\alpha^{i}) = \sum_{j=0}^{n-1} e_{j} \alpha^{ij}$$
 (6-8)

The syndrome of the received polynomial is

$$\overline{S} = (S_1, S_2, \dots, S_{2t})$$

where
$$S_i = r(\alpha^i)$$

The syndrome can be obtained by using the relationship

$$r(x) = a(x)(x + \alpha^{i}) + b_{i}$$

where
$$b_i = GF(2^m)$$

Thus,
$$S_i = r(\alpha^i) = b_i$$

■ The syndrome computation circuit is shown below.

(Lin /Costello p. 174)

Figure 6.14 Syndrome computation circuits for Reed-Solomon codes:

(a) over $GF(2^m)$; (b) in binary form.

8. Determination of Error-Location Polynomial

• Peterson Algorithm can be used to determine the error-locator polynomial for small number of errors in r(x).

However, the complexity of the Peterson-type algorithm is $O(n^3)$.

■ In 1967, E. Berlekamp demonstrated an extremely efficient algorithm for both BCH and RS codes.

Berlekamp's algorithm allowed for the first time the possibility of a quick and efficient decoding of dozens of symbol errors in some powerful RS codes.

Ref:

- (1) E. R. Berlekamp, "On Decoding Binary

 Bose-Chaudhuri-Hocquenghem Codes", IEEE Trans.

 Information Theory, pp. 577-580, Oct. 1965.
- (2) E. R. Berlekamp, "Nonbinary BCH Decoding", Int.

 Symposium on Information Theory, Italy, 1967.
- (3) E. R. Berlekamp, Algebraic Coding Theory, *McGraw Hill*, New York, 1968.

- 9. Berlekamp's Iterative Method for Finding L(z) [Chen / Reed pp. 263-269]
- The Berlekamp-Massey algorithm is an efficient algorithm for determining the error-locator polynomial.
- The algorithm solves the following modified problem:

Find the smallest ν for $\nu \le 2t$ such that the system of eq. (5-19) has a solution and find a vector $(\Lambda_1, \Lambda_2, \dots, \Lambda_{\nu})$ that is a solution.

Eq. (5-19) can be expressed as

$$S_{j} = -\sum_{i=1}^{\nu} \Lambda_{i} S_{j-i}$$
 for $j = \nu + 1, \nu + 2, \dots, 2t$ (6-9)

• For a fixed $\Lambda(x)$, eq. (6-9) is the equation for the classical auto-regressive filter.

It is known that such a filter can be implemented as a linear-feedback shift register (LFSR) with taps, given by the coefficients of $\Lambda(x)$.

The design procedure is iterative.

For each i, starting with i=1, a minimum length LFSR $\Lambda^{(i)}(x)$ is designed for producing the syndrome components S_1, S_2, \dots, S_i . This shift register for stage i need not be unique and several choices may exist.

$$\Lambda(x) = 1 + \Lambda_1 x + \Lambda_2 x^2 + \dots + \Lambda_{\nu} x^{\nu}$$

The length L_i of this shift register can be greater than the degree of $\Lambda^{(i)}(x)$.

A shift register is designated by the pair $(\Lambda^{(i)}(x), L_i)$. At the start of the *i*-th iteration, it is assumed that a list of LFSR had been constructed,

i.e. the list $(\Lambda^{(1)}(x), L_1), (\Lambda^{(2)}(x), L_2), \cdots, (\Lambda^{(i-1)}(x), L_{i-1})$ for $L_1 \leq L_2 \leq \cdots \leq L_{i-1} \ \ \text{already is found.}$

The operation principle of the Berlekamp-Massey algorithm is iterative and inductive:

At the iteration step i, compute the next output of the (i-1)-th LFSR to obtain the next estimate of the i-th syndrome as follows:

$$\hat{S}_i = -\sum_{j=1}^{L_{i-1}} \Lambda_j^{(i-1)} S_{i-j}$$
 (6-

Next, subtract this "estimated" \hat{S}_i from the desired syndrome output S_i to get an "error" quantity Δ_i , that is called the *i*-th discrepancy, i.e.

$$\Delta_i = S_i - \hat{S}_i = S_i + \sum_{j=1}^{L_{i-1}} \Lambda_j^{(i-1)} S_{i-j}$$
 (6-

11)

10)

or, equivalently,

$$\Delta_i = \sum_{i=0}^{L_{i-1}} \Lambda_j^{(i-1)} S_{i-j}$$
 (6- 12)

If
$$\Delta_i = 0$$
, then set $(\Lambda^{(i)}(x), L_i) = (\Lambda^{(i-1)}(x), L_{i-1})$

and the i-th iteration is complete.

Otherwise, the LFSR are modified as follows:

$$\Lambda^{(i)}(x) = \Lambda^{(i)}(x) + \Delta_i A(x) = \sum_{l=0}^{L_1} (\Lambda_l^{(i-1)} + \Delta_i a_l) x^l$$
 (6-13)

for some polynomial $A(x) = \sum_{l=0}^{L_i} a_l x^l$ yet to be found, where L_i

is specified by a mathematical lemma [demonstrated in reference [10] by J. L. Massey, 1969].

The length of A(x) is $L_u + i - u$. This length is minimum if i - u has the smallest value. This happens only if u is the most recent step for u < i such that $\Delta_u \neq 0$ and $L_u > L_{u-1}$.

A flowchart of the Berlehamp-Massey algorithm for the errors-only decoding of (nonbinary & binary) BCH codes as RS codes is shown in Fig. 6.7.

Example: (Example 6.9 p.269)

For the (15, 9) RS code over $GF(2^4)$

$$m = 4, \quad \alpha^{15} = 1$$

$$r(x) = x^{8} + \alpha^{11}x^{7} + \alpha^{8}x^{5} + \alpha^{10}x^{4} + \alpha^{4}x^{3} + \alpha^{3}x^{2} + \alpha^{8}x + \alpha^{12}$$

$$S_{1} = 1$$

$$S_{2} = 1$$

$$S_{3} = \alpha^{5}$$

$$S_{4} = 1$$

$$S_{5} = 0$$

$$S_{6} = \alpha^{10}$$

Use the Berlekamp-Massey algorithm to find the error-locator polynomial.

Solution: n - k = 6

For i = 0

$$\Delta_0 = 1, \quad u = 0 \quad \Lambda^{(-1)}(x) = 1 \quad \Lambda^{(0)}(x) = 1$$
 $L_0 = 0$

$$\Delta_1 = S_1 + \sum_{l=0}^{L_{i-1}} \Lambda_l^{(i-1)} S_{i-l} = S_1 = 1$$

$$\begin{split} \Lambda^{(1)}(x) &= \Lambda^{(0)}(x) - \Delta_1 \Delta_0^{-1} x^{(1-0)} \Lambda^{(0-1)}(x) \\ &= 1 - x \Lambda^{(-1)}(x) \\ &= 1 - x \\ &= 1 + x \end{split}$$

$$L_0 < 1 - L_0$$
 then $u = 1$
 $L_1 = 1 - L_0$
 $= 1 - 0$
 $= 1$

For i=2

$$S_2 = 1$$
 $i-1=1$

$$\Delta_2 = S_2 + \Lambda_1^{(1)} S_1$$

$$= S_2 + 1$$

$$= 1+1$$

$$= 0$$

Note that
$$\Lambda^{(1)}(x) = 1 + x$$

 $\Lambda^{(1)}_1 = 1$

$$\Lambda^{(2)}(x) = \Lambda^{(1)}(x) = 1 + x$$

$$L_2 = L_1 = 1$$

$$u = 1 \quad \text{(unchanged)}$$

$$S_{3} = \alpha^{5} \qquad i-1=2 \qquad L_{i-1} = L_{2} = 1$$

$$\Delta_{3} = S_{3} + \Lambda_{1}^{(2)} S_{2}$$

$$= \alpha^{5} + S_{2}$$

$$= 1 + \alpha^{5}$$

$$= \alpha^{10} \qquad (From Table 2.5 p.65)$$

$$S_{3}(x) = \Lambda^{(2)}(x) - \Delta_{3} \Delta_{1}^{-1} x^{3-1} \Lambda^{(0)}(x)$$

$$\Lambda^{(3)}(x) = \Lambda^{(2)}(x) - \Delta_3 \Delta_1^{-1} x^{3-1} \Lambda^{(0)}(x)$$

$$= 1 + x - \alpha^{10} x^2$$

$$= 1 + x + \alpha^{10} x^2$$

$$\therefore L_2 < 3 - L_2$$

For i=4

$$S_4 = 1 i - 1 = 3 L_{i-1} = L_3 = 2$$

$$\Delta_4 = S_4 + \Lambda_1^{(3)} S_3 + \Lambda_1^{(2)} S_2$$

$$= S_4 + S_3 + \alpha^{10} S_2$$

$$= 1 + \alpha^5 + \alpha^{10}$$

$$= 0$$

$$\Lambda^{(4)}(x) = \Lambda^{(3)}(x) = 1 + x + \alpha^{10}x^2$$

$$L_4 = L_3 = 2$$

$$S_{5} = 0 i - 1 = 4 L_{4} = 1$$

$$\Delta_{5} = S_{5} + \Lambda_{1}^{(4)} S_{4} + \Lambda_{2}^{(4)} S_{3}$$

$$= 0 + S_{4} + \alpha^{10} \alpha^{5}$$

$$= 1 + \alpha^{15}$$

$$= 1 + 1$$

$$= 0$$

$$\Lambda^{(5)}(x) = \Lambda^{(4)}(x) = 1 + x + \alpha^{10} x^{2}$$

$$\Lambda^{(5)}(x) = \Lambda^{(4)}(x) = 1 + x + \alpha^{10}x^{2}$$

$$L_{5} = L_{4} = 2$$

For i = 6

$$S_{6} = \alpha^{10} \qquad i - 1 = 5 \qquad L_{i-1} = L_{5} = 2$$

$$\Delta_{6} = S_{6} + \Lambda_{1}^{(5)} S_{5} + \Lambda_{2}^{(5)} S_{4}$$

$$= \alpha^{10} + 0 + \alpha^{10} \cdot 1$$

$$= 0$$

$$\Lambda^{(6)}(x) = \Lambda^{(5)}(x) = 1 + x + \alpha^{10}x^2$$

Thus we have $\Lambda(x) = 1 + x + \alpha^{10}x^2$