Chapter 6
Reed-Solomon Codes

1. Introduction

The Reed-Solomon codes (RS codes) are nonbinary cyclic codes
with code symbols from a Galois field. They were discovered in
1960 by |. Reed and G. Solomon. The work was done when they

wereat MIT Laboratory.

In the decades since their discovery, RS codes have enjoyed
countless applications from compact discs and digital TV in living

room to spacecr aft and satellitein outer space.

The most important RS codes are codes with symbols from

GF(2™).



» One of the most important features of RS codes is that the
minimum distance of an (n, k) RS codeis n—k+1.
Codes of this kind are called “maximum-distance-separable

codes’.

2. RS Codeswith Symbolsfrom GF(2")

= Let @ beaprimitiveelementin GF(2").

= For any positive integer t<2"-1 |, thee exists a
t-symbol-error-correcting RS code with symbols from GF(2™)

and thefollowing parameters:

n=2"-1
n-k=2t
k=2"-1-2t (6- 1)

d,.,=2t+1=n-k+1



» Thegenerator polynomial is

g(x) = (Xx+a)(x+a?)---(x+a?)
=0, + 0, X+ 92X2 +---+ th_1X2t—l + X

2t (6-
2)
Where g. € GF(2™)

Notethat g(x) has a,a’,---,@* asroots.

Example:
m=8,t=16
n =255
k=n-2t =223
dmin = 33

It is a (255, 223) RS code. This code is NASA standard code for

satellite and space communications.



3. Encoding of RS Codes

= Let m(X)=my+mx+--+m_x“"  be the message

polynomial to be encoded

Where m. € GF(2™) andk=n - 2t.

= Dividing X*'m(x) by g(x), we have
x*m(x) = a(x)g(x) + b(x) (6- 3)

where b(x) =b, +bx+---+ b2t-1X2t_ (6- 4)

istheremainder.

Then b(x)+x*m(x) is the codeword polynomial for the

message m(Xx).

» Theencoding circuit is shown below: (Lin/Costello p.172)
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Encoding circuit for a nonbinary cyclic code.



4. RS Codesfor Binary Data

Every eement in GF(2") can be represented uniquely by a

binary m-tuple, called a m-bit byte.

Suppose an (n, k) RS code with symbols from GF(2") is used for
encoding binary data. A message of km bitsisfirst divided into k
m-bit bytes. Each m-bit byteisregarded asa symbol in GF(2™).

The k-byte message is then encoded into n-byte codeword based

on the RS encoding rule.

By doing this, we actually expand a RS code with symbols from

GF(2") into a binary (nm, km) linear code, called a binary RS

code.

Binary RS codes are very effective in correcting bursts of bit

errorsaslong asno morethan t bytes are affected.



5. Decoding of RS Codes

» RScodesareactually a special class of nonbinary BCH codes.

» Decoding of a RS code is similar to the decoding of a BCH code

except an additional step isneeded.

= Let ¢(X)=C,+C,X+---+C,_, X", c e GF(2")
and r(x)=r,+rx+---+r_x"*r e GF(2")
Then the error polynomial is

e(x) =r(x)—c(x)

=g, +eXxX+ex’-+e _x"" (6-5)

Where € =T, —C; isasymbol in GF(2").

= Supposee(x) has v errorsat thelocations X', x’2,---, x  then
e(x)=e x" +e x" +..-+e x¥ (6- 6)
Theerror-location numbersare

Z. =a"Z =a",-Z

I ]

.V =aJ"
Theerror valuesare

e ,e e

TR PR ¥



Thus, in decoding a RS code, we not only have to determine the

error-locations but also haveto evaluatethe error values.

If there are s erasure symbols and v errors in the received
polynomial r(x), then the (n, k) RS decoder and correct these
erasuresymbolsand errorsif 2v+s<d-1=n-k

Thereceived polynomial isrepresented by

r(x)=c(x)+e(x)+e* (x)=c(x)+u(x)

Where g(x) and are e*(x) are the error and erasure polynomials,

respectively.



. Errors-only Decoding of RS Codes

For errors-only decoding the received polynomial r(x) has the
simply form, r(x)=c(x)+e(x)
n-1

where e(x) =g, +ex+ex*--+e_x"", e eGF(2")

For € #0,let € denotetheerror valueat thei-th position.

Suppose there are v errors, where 2v <n—k at positions i,
for w=12,---,v.
The objective of the RS decoder is to find the number of errors,

their positions and then their values.



7. Syndrome Computation

Let r(X)=r,+rX+--+r _ X"

7)

The generator polynomial has a,a?,---,a” asroots.
Since c(a')=m(a')g(e'), 1=12,---,2t

We havetherelations

ra')=cla')+e(a') =e(a') =§ejaij

The syndrome of therecelved polynomial is

S=(Sl782"“’82t)

where S =r(a')

The syndrome can be obtained by using the relationship
r(x)=a(x)(x+a')+b
where b = GF(2™)

Thus, S =r(a')=h

(6-8)



» The syndrome computation circuit is shown below.

(Lin/Costellop. 174)
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Figure 6.14 Syndrome computation circuits for Reed-Solomon codes:

(a) over GF(2™); (b) in binary form.



. Determination of Error-L ocation Polynomial

Peterson Algorithm can be used to determine the error-locator
polynomial for small number of errorsin r(x).
However, the complexity of the Peterson-type algorithm is

o(n®).

In 1967, E. Berlekamp demonstrated an extremely efficient

algorithm for both BCH and RS codes.

Berlekamp’s algorithm allowed for the first time the possibility

of a quick and efficient decoding of dozens of symbol errorsin

some power ful RS codes.

Ref:

() E. R. Berlekamp, “On Decoding Binary
Bose-Chaudhuri-Hocquenghem  Codes’, [|EEE Trans.
I nformation Theory, pp. 577-580, Oct. 1965.

(2 E. R. Berlekamp, “Nonbinary BCH Decoding”, Int.
Symposium on | nformation Theory, Italy, 1967.

(3) E. R. Berlekamp, Algebraic Coding Theory, McGraw Hill,

New York, 1968.



. Berlekamp’s lIterative Method for Finding L(2)
[Chen / Reed pp. 263-269]

The Berlekamp-Massey algorithm is an efficient algorithm for

determining the error-locator polynomial.

The algorithm solves the following modified problem:

Find the smallest v for v <2t such that the system of eq.
(5-19) has a solution and find a vector (A;,A,,---,A,) thatisa
solution.

Eq. (5-19) can be expressed as

Sj=_ZAiSj—i for j=v+1lv+2---,2t (6- 9)
i=1

For a fixed A(X), eq. (6-9) is the equation for the classical
auto-regressivefilter.

It is known that such a filter can be implemented as a
linear-feedback shift register (LFSR) with taps, given by the

coefficientsof A(X).



The design procedureisiterative.
For each i, starting with i = 1, a minimum length LFSR A" (x)
Is designed for producing the syndrome components
S,,S,,---,S. This shift register for stage i need not be unique
and several choices may exist.
A(X) =1+ A X+ A, X2+ +A X"

The length L, of this shift register can be greater than the
degreeof AV (X).

A shift register is designated by the pair (A" (x),L;). At the
start of the i-th iteration, it is assumed that a list of LFSR had
been constructed,

i.e thelist (AY(x),L;),(AP(x),L,), (A" ™P(x),L_,) for
L, <L,<---<L,_, areadyisfound.

The operation principle of the Berlekamp-Massey algorithm is
iterative and inductive:

At the iteration step i, compute the next output of the (i-1)-th

L FSR to obtain the next estimate of thei-th syndrome as follows:



~ L
SI =_ZA(j 1)Si—j (6_

j=1

10)

~

Next, subtract this “estimated” S from the desired syndrome

output S to get an “error” quantity A,, that is called the i-th

discrepancy, i.e.

Li_y .
A =S -S=S+> A™S, (6-

J
j=1

11)
or, equivalently,

N

i—-1

Ai=Z(;AJ- S, (6- 12)

J=

If A, =0,thenset (A”(x),L;)=(A"(x),L,)
and thei-th iteration is complete.

Otherwise, the LFSR are modified as follows:

AV (x) = AV (X) + A, A(X) = i(Aﬁ“” +4a)x (6- 13)

=0
Li

for some polynomial A(X) =Y &X' et to be found, where L,
=0

Is specified by a mathematical lemma [demonstrated in reference

[10] by J. L. Massey, 1969].



The length of A(x) is L,+i—u . This length is minimum if
I —u hasthe smallest value. This happensonly if U isthe most

recent step for u<i suchthat A, #0 and L,>L, ;.

= A flowchart of the Berlehamp-Massey algorithm for the

errors-only decoding of (nonbinary & binary) BCH codes as RS

codesisshown in Fig. 6.7.



i=0,A,=1u=0
AV (x)=A""(x)=1,L,=0

A\ 4
|i=i+1|

Compute .S,

!

A =

Ly
S+ A7S,

=1

l

AV (0 = A,
Li=L

> |

A(') (X) = A("l)(x) _AIA—UIXI—LIA(U—I)(X)

Example: ( Example 6.9 p.269)

For the (15, 9) RS code over GF(2)

<



m=4, a®=1
r(x)=x®+a"x" +a®x* +a°x* +a*x* +a’x* + a’x + ™

S =1

10
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Use the Berlekamp-Massey algorithm to find the error-locator

polynomial.

Solution: n—-k=6
For i=0

u=0 AP (x)=1 A9(x)=1

1,
0

A
Lo

For i=1



Lioy
A =S +) A7S =S5 =1

=0
AP (x) = A (x) = A, A XTI AD (%)
=1-xA""(x)
=1-X
=1+X

L,<1-L, then u=

For 1=2

S =1
A, =S, +AYS, Notethat A™(x)=1+x
A(ll) =1

AP (X)) =AY (x) =1+x

Lz
u

L, =1
1 (unchanged)

For i=3



S, =a’ i-1=2 L,=L,=
A, =S, +A?S,

=a’+S,

=1+0°

=a" (From Table2.5p.65)

AP (x) = AP (x) = A AT XTAD ()
=1+ Xx—a'x?

=1+ x+a°x?

For i=4

S, =1 i—1=3 L,=L,=2
A, =S, +AYS, +APS,
=S,+S,+a"S,
=1l+a’ +a®
=0

AY(X)=A® (x) =1+ x+a"x?

For i=5



S,=0 i-1=4 L,=1
A =S +AYS, +AY'S
5—05+s iag‘oas 273 AP (X) =1+ x+a™x?
- 4
=1+a®
=1+1
=0

AP ()= A (X) =1+ x+a™°x?

L.=L,=2

For i=6

S, =a’ i—1=5 L, =L =2
Ay =S, +ADS, +AD'S,
=a®+0+a® 1
=0

A9(x)=A®(x) =14+ x+ x>

Thuswehave A(X)=1+Xx+a"°x?



