
Chapter 6

Reed-Solomon Codes

1. Introduction

� The Reed-Solomon codes (RS codes) are nonbinary cyclic codes

with code symbols from a Galois field. They were discovered in

1960 by I. Reed and G. Solomon. The work was done when they

were at MIT Laboratory.

� In the decades since their discovery, RS codes have enjoyed

countless applications from compact discs and digital TV in living

room to spacecraft and satellite in outer space.

� The most important RS codes are codes with symbols from

GF( m2 ).



� One of the most important features of RS codes is that the

minimum distance of an (n, k) RS code is n–k+1.

Codes of this kind are called “maximum-distance-separable

codes”.

2. RS Codes with Symbols from GF( m2 )

� Let αααα be a primitive element in GF( m2 ).

� For any positive integer 12 −−−−≤≤≤≤ mt , there exists a

t-symbol-error-correcting RS code with symbols from GF( m2 )

and the following parameters:
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� The generator polynomial is
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Where )2(GF m
ig ∈∈∈∈

Note that g(x) has t22 ,,, αααααααααααα L as roots.
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It is a (255, 223) RS code. This code is NASA standard code for

satellite and space communications.



3. Encoding of RS Codes

� Let 1
110)( −−−−

−−−−++++++++++++==== k
k xmxmmxm L be the message

polynomial to be encoded

Where )2(GF m
im ∈∈∈∈ and k = n - 2t.

� Dividing )(2 xmx t by g(x), we have

)()()()(2 xbxgxaxmx t ++++==== (6- 3)
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is the remainder.

Then )()( 2 xmxxb t++++ is the codeword polynomial for the

message m(x).

� The encoding circuit is shown below: (Lin / Costello p.172)
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Encoding circuit for a nonbinary cyclic code.



4. RS Codes for Binary Data

� Every element in GF( m2 ) can be represented uniquely by a

binary m-tuple, called a m-bit byte.

� Suppose an (n, k) RS code with symbols from GF( m2 ) is used for

encoding binary data. A message of km bits is first divided into k

m-bit bytes. Each m-bit byte is regarded as a symbol in GF( m2 ).

The k-byte message is then encoded into n-byte codeword based

on the RS encoding rule.

� By doing this, we actually expand a RS code with symbols from

GF( m2 ) into a binary (nm, km) linear code, called a binary RS

code.

� Binary RS codes are very effective in correcting bursts of bit

errors as long as no more than t bytes are affected.



5. Decoding of RS Codes

� RS codes are actually a special class of nonbinary BCH codes.

� Decoding of a RS code is similar to the decoding of a BCH code

except an additional step is needed.
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Then the error polynomial is
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Where iii cre −−−−==== is a symbol in GF( m2 ).

� Suppose e(x) has νννν errors at the locations ννννjjj xxx ,,, 21
L , then
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The error-location numbers are
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� Thus, in decoding a RS code, we not only have to determine the

error-locations but also have to evaluate the error values.

� If there are s erasure symbols and v errors in the received

polynomial r(x), then the (n, k) RS decoder and correct these

erasure symbols and errors if kndsv −−−−====−−−−≤≤≤≤++++ 12

The received polynomial is represented by

)()()(*)()()( xuxcxexexcxr ++++====++++++++====

Where e(x) and are e*(x) are the error and erasure polynomials,

respectively.



6. Errors-only Decoding of RS Codes

� For errors-only decoding the received polynomial r(x) has the

simply form, r(x)=c(x)+e(x)

where )2(GF,)( 1
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For 0≠≠≠≠ie , let ie denote the error value at the i-th position.

� Suppose there are νννν errors, where kn −−−−≤≤≤≤νννν2 at positions wi

for νννν,,2,1 L====w .

The objective of the RS decoder is to find the number of errors,

their positions and then their values.



7. Syndrome Computation

� Let 1
110)( −−−−
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The generator polynomial has t22 ,,, αααααααααααα L as roots.
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� The syndrome of the received polynomial is
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� The syndrome computation circuit is shown below.

(Lin /Costello p. 174)
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Figure 6.14 Syndrome computation circuits for Reed-Solomon codes:

(a) over GF(2m); (b) in binary form.



8. Determination of Error-Location Polynomial

� Peterson Algorithm can be used to determine the error-locator

polynomial for small number of errors in r(x).

However, the complexity of the Peterson-type algorithm is

)( 3nO .

� In 1967, E. Berlekamp demonstrated an extremely efficient

algorithm for both BCH and RS codes.

Berlekamp’s algorithm allowed for the first time the possibility

of a quick and efficient decoding of dozens of symbol errors in

some powerful RS codes.

Ref:

(1) E. R. Berlekamp, “On Decoding Binary

Bose-Chaudhuri-Hocquenghem Codes”, IEEE Trans.

Information Theory, pp. 577-580, Oct. 1965.

(2) E. R. Berlekamp, “Nonbinary BCH Decoding”, Int.

Symposium on Information Theory, Italy, 1967.

(3) E. R. Berlekamp, Algebraic Coding Theory, McGraw Hill,

New York, 1968.



9. Berlekamp’s Iterative Method for Finding L(z)

[Chen / Reed pp. 263-269]

� The Berlekamp-Massey algorithm is an efficient algorithm for

determining the error-locator polynomial.

� The algorithm solves the following modified problem:

Find the smallest νννν for t2≤≤≤≤νννν such that the system of eq.

(5-19) has a solution and find a vector ),,,( 21 ννννΛΛΛΛΛΛΛΛΛΛΛΛ L that is a

solution.

Eq. (5-19) can be expressed as
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� For a fixed )(xΛΛΛΛ , eq. (6-9) is the equation for the classical

auto-regressive filter.

It is known that such a filter can be implemented as a

linear-feedback shift register (LFSR) with taps, given by the

coefficients of )(xΛΛΛΛ .



� The design procedure is iterative.

For each i, starting with i = 1, a minimum length LFSR )()( xiΛΛΛΛ

is designed for producing the syndrome components

iSSS ,,, 21 L . This shift register for stage i need not be unique

and several choices may exist.
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The length iL of this shift register can be greater than the

degree of )()( xiΛΛΛΛ .

A shift register is designated by the pair ),)(( )(
i

i LxΛΛΛΛ . At the

start of the i-th iteration, it is assumed that a list of LFSR had

been constructed,

i.e. the list ),)((,),,)((),,)(( 1
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121 −−−−≤≤≤≤≤≤≤≤≤≤≤≤ iLLL L already is found.

The operation principle of the Berlekamp-Massey algorithm is

iterative and inductive:

At the iteration step i, compute the next output of the (i-1)-th

LFSR to obtain the next estimate of the i-th syndrome as follows:
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Next, subtract this “estimated” iŜ from the desired syndrome

output iS to get an “error” quantity i∆∆∆∆ , that is called the i-th

discrepancy, i.e.
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or, equivalently,
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and the i-th iteration is complete.

Otherwise, the LFSR are modified as follows:
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)( yet to be found, where iL

is specified by a mathematical lemma [demonstrated in reference

[10] by J. L. Massey, 1969].



The length of A(x) is uiLu −−−−++++ . This length is minimum if

ui −−−− has the smallest value. This happens only if u is the most

recent step for iu <<<< such that 0≠≠≠≠∆∆∆∆ u and 1−−−−>>>> uu LL .

� A flowchart of the Berlehamp-Massey algorithm for the

errors-only decoding of (nonbinary & binary) BCH codes as RS

codes is shown in Fig. 6.7.
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Example: ( Example 6.9 p.269)

For the (15, 9) RS code over GF( 42 )



10
6

5

4

5
3

2

1

1282334410587118

15

0
1

1
1

)(
1,4

αααα

αααα

αααααααααααααααααααααααααααα
αααα

====
====
====
====
====
====

++++++++++++++++++++++++++++====
========

S
S
S
S
S
S

xxxxxxxxr
m

Use the Berlekamp-Massey algorithm to find the error-locator

polynomial.

Solution: n – k = 6
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