

Semiconductor Laser Diodes

The Road Ahead

Lasers

- Basic Principles
- Applications
- Gas Lasers
- Semiconductor Lasers
- Semiconductor Lasers in Optical Networks
- Improvement in Basic Design
- Recent Advances

Lasers: Basic Principle

Light Amplification by Stimulated Emission of Radiation

Key Terms:

- Stimulated Emission
- Metastable State
- Population Inversion

Spontaneous and Stimulated Emission

 Two possibilities of emission (an electron moves/transits down in energy to an unoccupied energy level → emits a photon).

Spontaneous

Induced

- Spontaneous emission: random direction → random photon.
- Transition for E_2 to E_1 as if the electron is oscilating with a frequency v.

Spontaneous and Stimulated Emission

• An electron in an atom can be excited from an energy level E_1 to a higher energy level E_2 by absorption \rightarrow photon absorption $hv = E_2 - E_1$.

Spontaneous and Stimulated Emission Stimulated emission: incoming photon of energy hv = E₂ - E₁ stimulates the whole emission process by inducing the electron at E₂ to transit down to E₁. Emitted photon: in phase, same direction, same polarization, same energy with incoming photon → two outgoing photons. To obtain stimulated emission → the incoming photon should not be absorbed by another atom at E₁.

Spontaneous and Stimulated Emission

- Although we consider transitions of an electron in an atom, we could have just well described photon
 absorption, spontaneous and stimulated emission in term of energy transitions of the atom itself in which case E₁ and E₂ represent the energy levels of the atom.
- Consider the collection of atoms to amplify light → we must have the majority of atoms at the energy level E₂. Otherwise the incoming photon will be absorbed by the atom at E₁.
- **Population inversion**: more atoms at E₂ than at E₁.
- In steady state incoming photon will cause as many upward excitations as downward stimulated emissions
 → for only two energy levels → we never achieve atom population at E₂ greater than E₁.

9

wavelength division multiplexed system (WDM) systems.

Typi	Overall efficiency = $\frac{\text{Optical Power Output}}{\text{Electrical Power Input}} \times 100\%$					
rypi	Wavelength	543.5	594.1	612	632.8	1523
	(nm)					
		Green	Yellow		Red	Infrared
	Optical output power (mW)	1.5	2	4	5	1
	Typical current (mA)	6.5	6.5	6.5	6.5	6
	Typical voltage	2750	2070	2070	1910	3380
	Overall	0.0084	0.015	0.030	0.040	0.005
	efficiency =	%	%	%	%	%
	P_{out}/IV					

<section-header><list-item><list-item><list-item><text><text><text><text><text>

Gas LASER Output Spectrum Since the atoms are in random motion the observer will detect a range of frequencies due to Doppler effect. Resulting the frequency or wavelength of the output radiation from a gas laser will have a "linewidth" $\Delta v = v_2$ - υ₁. It is called **Doppler broadened linewidth**. → Stimulated emission wavelength of lasing medium or **optical gain** has distribution around $\lambda_0 = c/v_0$. The full width at half maximum FWHM in the output intensity vs. frequency spe $\Delta v_{1/2} = 2 v_{o1}$ Optical Gain Doppler (a) where M is mass of lasing atom broadening or molecule 32

Example: A typical low power 5mW He-Ne laser tube operate at a DC voltage of 2000V and carrier a current of 7mA . What is the efficiency of the laser? Solution: Efficiency=output light power/Input Electric power $=5 \times 10^{-3}W/(7 \times 101^{-3}A)(2000V)$ =0.036%Note that 5mW over a beam diameter of 1mm is $6.4kW/m^{-2}$

4.2 The He-Ne Laser A particular He-Ne laser operating at 632.8 nm has a tube that is 50 cm long. The operating temperature is 130 °C

a Estimate the Doppler broadened linewidth ($\Delta \lambda$ in the output spectrum.

b What are the mode number *m* values that satisfy the resonant cavity condition? How many modes are therefore allowed?

c What is the separation Δv_m in the frequencies of the modes? What is the mode separation $\Delta \lambda_m$ in wavelength.

(a) A laser medium with an optical gain (b) The optical gain curve of the medium. The dashed line is the approximate derivation in the text.

