Clock Generation and Distribution for High-Performance Processors

Stefan Rusu Senior Principal Engineer Enterprise Microprocessor Division Intel Corporation

stefan.rusu@intel.com

Outline

- Clock Distribution Trends
- Distribution Networks
- De-skew Circuits
- Jitter Reduction Techniques
- Clock Power Dissipation
- Future Directions
- Summary

SoC 2004 – Stefan Rusu

Clock Definition and Parameters

• The clock is a periodic synchronization signal used as a time reference for data transfers in synchronous digital systems

- Skew
 - Spatial variation of the clock signal as distributed through the chip
 - Global vs. local skew
- Clock jitter
 - Temporal variation of the clock with respect to a reference edge
 - Long-term vs. cycle-to-cycle jitter
 - Duty cycle variation50/50 design target

Processor Frequency Trend

SoC 2004 – Stefan Rusu

Clock Skew Trend

Source: ISSCC and JSSC papers

Relative Clock Skew

Clock skew accounts in average for ~5% of the cycle time

Source: ISSCC and JSSC papers

Sources of Clock Skew

• With a perfectly balanced distribution, device mismatch is the largest contributor to the clock skew

Geannopoulos, ISSCC-1998

int

Clock Jitter Trend

Source: ISSCC and JSSC papers

Outline

- Clock Distribution Trends
- Distribution Networks
- De-skew Circuits
- Jitter Reduction Techniques
- Clock Power Dissipation
- Future Directions
- Summary

SoC 2004 – Stefan Rusu

Clock Distribution Networks

Tree

Grid

H-Tree

X-Tree

Tapered H-Tree

Inductance Effect

Xanthopoulos, ISSCC-2001

Itanium[®] Processor Clock Hierarchy

Rusu, ISSCC-2000

Local Clock Distribution

- Local clock distribution enables flexible skew management to support:
 - Intentional clock skew insertion for timing optimization
 - Clock gating for power reduction

Rusu, ISSCC-2000

Itanium[®] 2 Processor Clock Distribution

- First level: Pseudo-differential, impedance matched branching, balanced h-tree
- Second level: balanced, width and length tuned binary h-tree
- Second Level Clock Buffers: adjustable delay buffer
- Gaters: all constant input loading with load-tuned drive strength

Anderson, ISSCC-2002

mt

Optical Skew Probing

- Clock edge generates infrared photon emission
- Emission peak indicates clock transition edge

Tam, VLSI Symposium, 2003

int

Optical Probing Results

Tam, VLSI Symposium, 2003

SoC 2004 – Stefan Rusu

130nm Itanium[®] 2 Skew Profile

Tam, VLSI Symposium, 2003

int

Pentium[®] 4 Processor Clock Network

• 2GHz triple-spine clock distribution (180nm)

Kurd, JSSC-2001

SoC 2004 – Stefan Rusu

90nm Clock Distribution

 Sub-10ps clock skew demonstrated in a 90nm processor using clock tree averaging

Bindal, ISSCC 2003

Pentium[®] 4 Processor Clock Skew

130nm Pentium[®] 4 Processor

90nm Pentium® 4 Processor

90nm design has 3x lower clock skew than the 130nm

Schutz, ISSCC 2004

SoC 2004 – Stefan Rusu

Alpha* Processors Clocking

Product	21064	21164	21264	
Frequency	166MHz	300MHz	600MHz	
Transistors	1.7M	9.3M	9.3M	
Process	0.75um 4ML	0.5um, 4ML 0.35um, 6ML		
Power	25W	50W	72W	
Clock load	2.75nF	3.75nF	2.8nF	
Clock Floorplan		final drivers pre-driver		
Clock skew plot	Turturturturturturturturturturturturturtu		75 60 60 60 60 60 60 60 10 Vertical Ation Chip Hotranul Ation	

* Other names and brands may be claimed as the property of others

Gronowski, JSSC 1998

SoC 2004 – Stefan Rusu

1.2GHz Alpha* Processor Clock

* Other names and brands may be claimed as the property of others

Xanthopoulos, ISSCC-2001

Power4* Clock Distribution

- Dual core, SOI process, 174M transistors
- Measured clock skew below 25ps

* Other names and brands may be claimed as the property of others

Restle, ISSCC-2002

int

Power4* - 3D Skew Visualization

Outline

- Clock Distribution Trends
- Distribution Networks
- De-skew Circuits
- Jitter Reduction Techniques
- Clock Power Dissipation
- Future Directions
- Summary

SoC 2004 – Stefan Rusu

Dual-Zone Clock Deskew

Geannopoulos, ISSCC-1998

SoC 2004 – Stefan Rusu

Itanium[®] Processor Clock Deskew

- Distributed array of deskew buffers to reduce process related skew
- 8 deskew clusters each holding up to 4 buffers
- 30 deskew zones

Rusu, ISSCC-2000

Itanium[®] Processor Deskew Buffer

- Small step size enables fine skew control over a wide range
- TAP read / write access to Control Register enables faster timing debug and performance tuning

Rusu, ISSCC-2000

Pentium[®] 4 Processor Deskew

Logical diagram of the skew optimization circuit

Phase detector network

Kurd, JSSC-2001

int_{el}

Deskew Techniques Summary

Author	Source	Clock Zones	Skew Before	Skew After	Step Size
Geannopoulos	ISSCC-98	2	60ps	15ps	12ps
Rusu	ISSCC-00	30	110ps	28ps	8ps
Kurd	ISSCC-01	47	64ps	16ps	8ps
Stinson	ISSCC-03	23	60ps	7ps	7ps

- Clock deskew techniques compensate for device and interconnect within-die variations
- Deskew circuits cut clock skew to less than a quarter of the original value

Useful Clock Skew

- Use de-skew buffers to insert intentional skew to maximize the processor operating frequency
- Larger benefit achieved in early steppings

Tam, VLSI Symposium, 2003

int

Outline

- Clock Distribution Trends
- Distribution Networks
- De-skew Circuits
- Jitter Reduction Techniques
- Clock Power Dissipation
- Future Directions
- Summary

intel SoC 2004 – Stefan Rusu

Pentium[®] 4 Processor Jitter Reduction

 RC-filtered power supply for clock drivers reduces clock distribution jitter

Kurd, JSSC-2001

Alpha* Processor Voltage Regulator

- Voltage regulator ensures optimum DLL tracking
- Supply noise frequencies over 1MHz are attenuated by more than 15dB

Xanthopoulos, ISSCC-2001

* Other names and brands may be claimed as the property of others

SoC 2004 – Stefan Rusu

On-Die Clock Jitter Detector

Kuppuswamy, VLSI Symposium 2001

Array Phase Detector

- 7 elements above and below center, with increasing positive and negative built-in offset away from center
- Phase offset created by progressively delaying data wrt clock

Histogram Mode Operation

Graph Mode Operation

time

Outline

- Clock Distribution Trends
- Distribution Networks
- De-skew Circuits
- Jitter Reduction Techniques
- Clock Power Dissipation
- Future Directions
- Summary

SoC 2004 – Stefan Rusu

Clock Power Breakdown Example

- 30% of the total power is attributed to clock
- Most of the clock power is used in the final clock buffers and flip-flops

Clock Power Reduction

- Reduce clock frequency
 - Multiple frequency domains
 - Dual edge triggered flip-flops
- Reduce voltage swing
 Low swing clocks

Clock Power = $f * C * V^2$

- Reduce clock loading
 - Clock gating
 - Clock-on-demand flip-flop
 - Optimized routing

Half Swing Clocking

- Requires four clock signals
 - Two clock phases with a swing between
 Vdd and Vdd/2 drive the PMOS devices
 - The other two phases with a swing between Gnd and Vdd/2 drive the NMOS transistors
- Experimental savings of 67% were demonstrated on a 0.5µm CMOS test chip with only 0.5ns speed degradation
- Requires additional area for the special clock drivers and suffers from skew problems between the four phases

m

Clock-on-demand Flip-Flop

- Activates internal clock only when the input data will change the output equivalent to single bit clock gating
- Longer setup time and sensitive to hold time violations

Hamada, ISSCC 1999

XScale Processor Clock Gating

- Three hierarchical clock gating levels
 - Top level stop clock
 - Unit level 83 enables
 - Local clock buffers –
 400 unique enables

Clark, JSSC 11/2001

SoC 2004 – Stefan Rusu

Dual Edge Triggered Flip-Flop

- Operates at half the clock frequency
- Requires tight control of the clock duty cycle

Nedovic, ESSCIRC 2002

Outline

- Clock Distribution Trends
- Distribution Networks
- De-skew Circuits
- Jitter Reduction Techniques
- Clock Power Dissipation
- Future Directions
- Summary

SoC 2004 – Stefan Rusu

Rotary Clock Distribution

 Transmission line based, self-regenerating rotary clock generator

Wood, ISSCC-2001

Standing Wave Oscillator

Standing wave

O'Mahony, ISSCC-2003

10GHz Clock Grid Test Chip

Fabricated in a 0.18µm
 1.8V 6M CMOS process

- Very low clock skew and power consumption
- Attractive alternative for 10GHz clocking and beyond

Locking range	9.8 GHz – 10.5 GHz (6.4% range)
Skew	0.6ps
Jitter (added to	0.5ps rms
external source)	(1.4ps rms external source)
Power	430mW

Optical Clock Distribution

- Board-level guided-wave H-tree distribution
- Monolithic silicon-based detection
- Couplers provide tolerance for horizontal and vertical misalignment of the flip-chip assembly
- Optical transmission is immune to process variations, power-grid noise and temperature

J.D. Meindl, Georgia Institute of Technology, 2000

int

Summary

- High performance processors require a low skew and jitter clock distribution network
- Clock distribution techniques are optimized to achieve the best skew and jitter with reduced area and power consumption
- Deskew techniques are demonstrated to cut the skew to ¼ of its original value
- On-die supply filters are used to reduce jitter
- Intensive research focuses on novel clock
 distribution techniques

