APPENDIX F
Complex Numbers

Operations with Complex Numbers « Complex Solutions of Quadratic Equations *
Polar Form of a Complex Number ¢ Powers and Roots of Complex Numbers

Operations with Complex Numbers
Some equations have no real solutions. For instance, the quadratic equation
X¥+1=0 Equation with no real solution

has no real solution because there is no real nurtbet can be squared to produce
—1. To overcome this deficiency, mathematicians created an expanded system of
numbers using thienaginary unit i, defined as

i=v-1 Imaginary unit

wherei? = —1. By adding real numbers to real multiples of this imaginary unit, we
obtain the set o€omplex numbers.Each complex number can be written in the
standard form, a + bi.

Definition of a Complex Number
For real numbera andb, the number
a+ bi

is acomplex number.If b # 0, a + bi is called animaginary number, andbi
is called gpure imaginary number.

To add (or subtract) two complex numbers, you add (or subtract) the real and
imaginary parts of the numbers separately.

Addition and Subtraction of Complex Numbers

If a + bi andc + di are two complex numbers written in standard form, their
sum and difference are defined as follows.

Sum: (a + bi) + (c + di) = (a+ c) + (b + d)i

Difference: (a + bi) — (c + di) = (a—¢) + (b — d)i
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NOTE Notice in Example 1b that the
sum of two complex numbers can be a
real number

STUDY TIP  Rather than trying to
memorize the multiplication rule at the
right, you can simply remember how the
Distributive Property is used to multiply
two complex numberd.he procedure is
similar to multiplying two polynomials
and combining like terms.

The additive identity in the complex number system is zero (the same as in the
real number system). Furthermore, theditive inverse of the complex number
a+hiis

—(a+ bi) = —a— hi Additive inverse
Thus, you have

@+ bi)+ (—a—hbi)=0+0i =0.

EXAMPLE 1 Adding and Subtracting Complex Numbers

a. B—-)+@2+3)=3—-i+2+3i Remove parentheses.

=3+2—-i+3i Group like terms.
=B+ 2+ (—1+ 3

=5+ 2 Standard form
b.2i+(—4—-2)=2i —4— 2i Remove parentheses.
=—44+2 -2 Group like terms.
= —4 Standard form

¢3—-(—2+4+3)+(-5+i)=3+2—-3i—5+i
=3+2-5-3i+i
=0-2
= —2i

Many of the properties of real numbers are valid for complex humbers as well.
Here are some examples.

Associative Rypetties ofAddition and Multiplication
Commutative Rapetties ofAddition and Multiplication
Distributive Popeity of Multiplication overAddition

Notice below how these properties are used when two complex numbers are
multiplied.

(a + bi)(c + di) = a(c + di) + bi(c + di) Distributive
= ac + (ad)i + (bc)i + (bd)i? Distributive
= ac + (ad)i + (bc)i + (bd)(—1) Definition of i
= ac — bd + (ad)i + (bc)i Commutative

(ac — bd) + (ad + bo)i Associative
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EXAMPLE 2 Multiplying Complex Numbers

——
a. 3+ 2)(B3—2)=9—6i +6i —4i? Product of binomials
=9—4(-1) i2=-1
=9+14 Simplify.
=13 Standard form
b. 3+ 2)2=9+6i + 6i + 4i? Product of binomials
=9+ 4(-1) + 12i i2=-1
=9-4+12 Simplify.
=5+ 12 Standard form
——

Notice in Example 2a that the product of two complex numbers can be a real number
This occurs with pairs of complex numbers of the fant bi anda — bi, called
complex conjugates.

(a + bi)(a— bi) = a2 — abi + abi — b2
=a%—b(—-1
=a’+ b?
To find the quotient o& + bi andc + di wherec andd are not both zero, multiply
the numerator and denominator by the conjugate of the denominator to obtain
a+bi _a+hbi (c—di)z (ac + bd) + (bc — ad)i
c+di cH+di\c—di c? + d?

EXAMPLE 3 Dividing Complex Numbers

2+ 3i 2+3i<4+2i> . .
= Multiply by conjugate.

4-2 4-2\4+2
8+ 4i + 12i + 6i?
= 16 — 42 Expand.
_8-6+16 P
T 16+4 o
1 . o
=?0(2+ 16i) Simplify.
1 4.
= —+ = Standard form

10 5 ——
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Complex Solutions of Quadratic Equations

When using the Quadratic Formula to solve a quadratic equation, you often obtain a
result such asy/—3, which you know is not a real numbdBy factoring out
i = —1, you can write this number in standard form.

V=3=V3(-1) =V3/-1= 3

The number/3i is called the principal square rootef3.

STUDY TIP  The definition of princi Principal Square Root of a Negative Number
pal square root uses the rule . L . .
If ais a positive numbetheprincipal square root of the negative numbera
Jab = JaJb is
for a > 0 and b < 0. The rule is not J—a= /ai.
valid if both aandb are negative.
For example,
J/=5-5= /55 EXAMPLE 4 Writing Complex Numbers in Standard Form
= J/25i2
_52_ & a. V/-3/-12= /3iJ/12i = /36i2=6(—1) = —6
) b. /—48 — /—27 = /48 — J27i = 43 — 3/3i = /3
whereas
¢ (-1+ /=3)2=(-1+ J3ip
/99 = V5 =5 = (12 - 23 + (V3R

To avoid problems with multiplying 4 . B
square roots of negative numbers, be =1-2/8+ 3(-1)

sure to convert to standard fotrafore =—-2-2J/3i ——
multiplying.

EXAMPLE 5 Complex Solutions of a Quadratic Equation
I

Solve3x2 — 2x + 5= 0.

Solution
—(=2) + \/?
X = (=2 = 5(3)2) 436 Quadratic Formula
2+ /56 -
= T Simplify.
= %\/ﬂ Write ini-form.
= % + ?i Standard form
—
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Imaginary Polar Form of a Complex Number
- 3, 2) Just as real numbers can be represented by points on the real number line, you can
(-1, 3) 375 represent a complex number
or
13 2] ’ z=a-+ b
1T at the point(a, b) in a coordinate plane (tteomplex plang. The horizontal axis is
o . Rea called thereal axisand the vertical axis is called timaginary axis, as shown in
2 -1 1 2 3 axis Figure F1.
. 1 The absolute valueof the complex numbea + bi is defined as the distance
(-2,-1) between the origi0, 0) and the pointa, b).
or
-2-i T
Figure 1 The Absolute Value of a Complex Number
Theabsolute valueof the complex number = a + bi is given by
|a + bi| = a2 + b2
NOTE If the complex numbea + bi To work efectively with powersandrootsof complex numbers, it is helpful to

is a real numbefthat is, ifb = 0), then write complex numbers ipolar form. In Figure F2, consider the nonzero complex
:E's d;zﬂnlltlton a?reesf with trat g"éen for  numbera + bi. By letting § be the angle from the positixeaxis (measured counter
€ absolute value ot a real numboer clockwise) to the line segment connecting the origin and the faih}, you can

la+0i| = V& + 0% = |al. write
a=rcosé and b=rsno
wherer = /a2 + b% Consequentlyyou have
a+ bi = (rcosh) + (r sin H)i

from which you can obtain theolar form of a complex number

Imaginary
axis

Polar Form of a Complex Number
Thepolar form of the complex number = a + bi is
z=r(cosf + isin6)

wherea =rcosfh, b =rsing,r = /a?+ b? andtan § = b/a. The number

\f\9 Real is themodulus of z, and6 is called arargument of z
ea
a axis

NOTE The polar form of a complex number is also calledttigpnometric form.
Because there are infinitely many choiceséahe polar form of a complex number is not
unique. Normally @ is restricted to the interv@l < 6 < 27, although on occasion it is con
Figure F.2 venient to use < 0.
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Imaginary
axis
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Figure F.3

Rea
axis

Complex Numbers

EXAMPLE 6 Writing a Complex Number in Polar Form

Write the complex number= —2 — 2./3i in polar form.
Solution The absolute value dfis

r=]-2-243 = J(-2?+ (-2/3 = V16 =4
and the angl® is given by

b -2.3
== - /3

tan 6 = —
a

Becausetan(w/3) = /3 and because = —2 — 2./3i lies in Quadrant Ill, you
choosef to bef = = + 7/3 = 44/3. Thus, the polar form is

- 4 .. 4
z=r(cosf + ising) = 4<cos?77 +i sm%).

(See Figure B.) ——

The polar form adapts nicely to multiplication and division of complex numbers.
Suppose you are given two complex numbers

z =r,(cosf, +ising) and z,=r,cosf, +ising,).
The product ok, andz, is
2,2, = r,r,(cos 0, + i sin 6;)(cos 6, + i sin 6,)
= r,r,[(cos 6, cos 6, — sin 6, sin 6,) + i(sin 6, cos 6, + cos 6, sin 6,)].

Using the sum and dérence formulas for cosine and sine, you can rewrite this
equation as

2,2, = ryr,[cos(6;, + 6,) + isin(6; + 6,)].

This establishes the first part of the following rdlgy to establish the second part on
your own.

Product and Quotient of Two Complex Numbers

Let z =r,(cosh, +isn6,) and z, =ry(cosb, +isinh,) be complex
numbers.

2,2, = r,r,[cos(6, + 6,) +isin(6; + 6,)] Product

% = [cos(0, — 6,) + isin(6, — 6,)], 2 #0 Quotient
2
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Note that this rule says that to multiply two complex numbers you multiply
moduli and add guments, whereas to divide two complex numbers you divide
moduli and subtract guments.

EXAMPLE 7 Multiplying Complex Numbers in Polar Form

Find the product of the complex numbers.

= Z(COSZ— +i sm@> z, = 8(00511—77 +isin £T)

3 3 6 6
Solution
z 2<cosz— + i smz—ﬂ> 8(003£ +isin &>
1% = 3 6 6
117 . (27 1lw
16| c 5( ) |sm( 3 6 )}

S5
= — + —
160052 |sm2}

B -
= — + —
16_cos 5 isin 2}

= 16(0 + ()] = 16i

Check this result by first converting to the standard fomns —1 + /3i and
= 4./3 — 4i and then multiplying algebraically

EXAMPLE 8 Dividing Complex Numbers in Polar Form

Find the quotieng, /z, of the complex numbers.
z, = 24(cos 300° + i sin 300°) z, = 8(cos75° + i €§in 75°)

Solution

7z _ 24(cos 300° + i sin 300°)
Z, 8(cos 75° + i sin 75°)

- %“[cos(som 759 + i sin(300° — 75%]

= 3[c0s225° + i sin 225°]

A9-(4)
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NOTE Notice in Example 9 that the
answer is a real number

Powers and Roots of Complex Numbers

To raise a complex number to a powesnsider repeated use of the multiplication
rule.

z=r(cosf + isinb)
72 = r2(cos 20 + i sin26)
22 = r3(cos 360 + i sin 30)

This pattern leads to the following important theorem, which is named after the
French mathematiciafbbraham DeMoivre (1667-1754).

THEOREM A.4 DeMoivre’'s Theorem
If z=r(cos § + i sin 6) is a complex number andis a positive integethen

7" = [r(cos @ + i sin H)]" = r"(cosnd + i sin nb).

EXAMPLE 9 Finding Powers of a Complex Number

Use DeMoivres Theorem to find —1 + /3i)*.

Solution First convert to polar form.

-1+ J3i= Z(COS%T +i sinz—;>

Then, by DeMoivres Theorem, you have

(-1+ J3)2 = [2<°°52?7T . gn%ﬂ”

- 212[005(12) %7’ +i€n(12) %7’}

= 4096(cos 87 + i sin 8m)

= 4096. ——

Recall that a consequence of the Fundamélitabrem ofAlgebra is that a poly-
nomial equation of degree hasn solutions in the complex number system. Each
solution is amth root of the equatiorThe nth root of a complex number is defined
as follows.

Definition of nth Root of a Complex Number
The complex numbear = a + bi is annth root of the complex numbeiif

z=Uu"= (a+ bi)"



STUDY TIP  Thenth roots of a
complex number are useful for solving
some polynomial equations. For
instance, you can use DeMoiwse’
Theorem to solve the polynomial
equation

x*+16=0

by writing —16 as16(cos 7 + i sin 7).

NOTE Whenk exceeds — 1, the
roots begin to repeat. For instance, if
k = n, the angle
O+2mn _ 6 ‘o
n n
is coterminal withd/n, which is also
obtained wherk = 0.

Imaginary
axis

Real
axis

Figure F.4
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To find a formula for amth root of a complex numbeetu be annth root ofz,
where

u=s(cospB +isinp) and z=r(cosf +isin o).
By DeMoivre’s Theorem and the fact that = z, you have
s,(cosnB + isinnB) = r(cos 6 + i sin 6).

Taking the absolute values of both sides of this equation, it followssthatr.
Substituting back into the previous equation and dividing, lypu get

cosnB +isinnB = cosé + isiné.
Thus, it follows that

cosngB = cos 6 and sinnB = siné.

Because both sine and cosine have a perio2lmofthese last two equations have
solutions if and only if the angles flif by a multiple oR7r. Consequentlythere must
exist an integek such that

ng =6 + 2wk
0 + 27k
B="

By substituting this value fg8 into the polar form ofi, you get the following result.

THEOREM A.5 nth Roots of a Complex Number

For a positive integem, the complex number = r(cosf + i sing) has exactlyn
distinctnth roots given by

A .. 4
{‘/F(COSB n271'k +isn 0 n27rk>

wherek=0,1,2,. . .,n— 1.

This formula for thenth roots of a complex numberhas a nice geometrical
interpretation, as shown in FiguretFNote that because tinéh roots ofz all have
the same magnitudgr, theyall lie on a circle of radiu&’r with center at the origin.
Furthermore, because successitreroots have guments that diér by 2#/n, then
roots are equally spaced along the circle.
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EXAMPLE 10 Finding the nth Roots of a Complex Number

Find the three cube roots = —2 + 2i.

Solution

Because lies in Quadrant I, the polar form faiis

z= -2+ 2i = /8(cos135° + i sin 135°).

By the formula fomth roots, the cube roots have the form

S 135° + 360°k

§/§<CO - +isn 135° + 360 k>.

3

Finally, fork = 0, 1, and 2, you obtain the roots

J2(cos45° +isin45°) = 1 + i
/2 (cos 165° + i sin 165°) = —1.3660 + 0.3660i
/2 (cos 285° + i sin 285°) ~ 0.3660 — 1.3660i.

EXERCISES FOR APPENDIX F

In Exercises 1-24, perform the operation and write theasult in

standard form.

© 00 N o o~ WN P
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In Exercises 25—-32, write the conjugate of the complex number
Multiply the number and its conjugate.

.(54+1i)+(6-2) 25.5+ 3i 26.9 — 12
. (13— 2) + (-5 + 6i) 27. -2 — /5 28. —4 + /2i
8- —-@4-1i 29. 20i 30. /—15
. (3+2i) — (6 + 13)) 31. /8 32.1+ /8
-2+ /=8) +(5- /=50)
. (8+ /18 18) _ (4 + 3\@0 In Exercises 33-46, perform the operation and write theesult
13 — (14 — 7i) in standard form.
.13 - = 7i
6 10
.22+ (=5+ 8i) + 10i 33. 7 4. =5
=B+ 3)+ G+ 3 5 A s 3
. (1.6 + 3.2i) + (—=5.8 + 4.3i) "4 — 5 1
V=6 V-2 12. V/-5- v/-10 37 2+ 38 8—7i
. (V=10)2 14. (/=75) "2 T1-2i
.2+ 0)3EB-2) 16. (6 — 2i)(2 — 3i) 39 6 — 7i 20 8 + 20i
. 6i(5 — 2i) 18. —8i(9 + 4i) B T2
(V14 + J10i)( /14 — J/10) 1 (2 — 3i)(5i)
3+ V/=5)(7 - v~10) L G—Ee 425 s
. (4 + 5i)? .
) 2 3 2i 5
L(2- 3 BT Mooritaoi
(24 3i)2+ (2-30)? . L 3
o2 o i i +i
.(1-2)2 -2+ 2) 45'3—2i 318 46. i g



In Exercises 47-54, use the Quadratic Formula to solve the
quadratic equation.

47. X —2x+2=0

48. X + 6x + 10 =0

49. 4% + 16x+ 17 =10

50. 92 —6x + 37 =0

51. 4% + 16x+ 15=0

52. 9% —6x —35=0

53. 162 — 4 +3=0

54. 58 + 6s+3=0

In Exercises 55-62, simplify the complex numbemd write it in
standard form.

55. —6i% +i2

56. 4i2 — 2i3

57. —5i®

58. (—i)®

59. (/=75)

60. (/—2)°

61. -

62. —=

In Exercises 63-68, plot the complex numbeand find its
absolute value.

63. —5i 64. —5
65. —4 + 4i 66. 5 — 12
67.6 — 7i 68. —8 + 3i

In Exercises 69-76,epresent the complex numbegraphically,
and find the polar form of the number.

69. 3 — 3i 70.2 + 2i
71. V3 +1i 72. -1+ J3i
73. —2(1 + J/3i) 74.3(/3 - i)
75. 6i 76. 4

In Exercises 77-82,epresent the complex numbegraphically,
and find the standard form of the number

77. 2(cos 150° + i sin 150°)

78. 5(cos 135° + i sin 135°)

79. 3(cos300° + i sin 300°)

80. 3(cos 315° + i sin 315°)

37 . . 3w
81. 3.75(0057 +i smj)

ar .. T
82. 8<cos 1 +isn 12>
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In Exercises 83—-86, perform the operation and leave thesult
in polar form.

T . . TT T . . T
83. [3(0035 + i smgﬂ[4<cos€ + i smgﬂ

3 T . . T T . . T
84. [2(0052 +isn 2)][6(cos4 +isn 4>]

85. [3(cos 140° + i sin 140°)[[2(cos 60° + i sin 60°)]
cos(57/3) + i sin(5/3)

86 —
cosw +1snm

In Exercises 87-94, use DeMoigis Theorem to find the indi-
cated powerof the complex number Express the esult in stan
dard form.

87. (1L +i)°

88. (2 + 2i)°

89. (—1 +i)°

90. (1 —i)®?

91. 2(V/3 + i)

92. 4(1 - V3

S5

50 . . 10
93. (cosj + i sm7>

T . .\ |8
. [2<cos§ +i sniﬂ

In Exercises 95-100, (a) useheorem A.5 on pageA64 to find
the indicated roots of the complex number(b) represent each of
the roots graphically, and (c) expess each of the gots in
standard form.

9

~

95. Square roots df(cos 120° + i sin 120°)
96. Square roots of6(cos60° + i sin 60°)

97. Fourth roots otl6<cos4?77 +i sin%)

98. Fifth roots of32<0035—g +i sins—g)

99. Cube roots of—l—gs(l + /3

100. Cube roots of-4./2(1 — i)

In Exercises 101-108, us&éheorem A.5 on pageA64 to find
all the solutions of the equation and epresent the solutions
graphically.

102.x¥+1=0
104.x*—-81=0

106. X6 — 64i = 0

108.x*+ (1+i)=0

101 X* =i =0
103,55 + 243 =0
105. %3 + 64i = 0
107.x¢ — (1-i)=0



