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Operations with Complex Numbers • Complex Solutions of Quadratic Equations •
Polar Form of a Complex Number • Powers and Roots of Complex Numbers

Operations with Complex Numbers
Some equations have no real solutions. For instance, the quadratic equation

Equation with no real solution

has no real solution because there is no real number x that can be squared to produce
To overcome this deficiency, mathematicians created an expanded system of

numbers using the imaginary unit i, defined as

Imaginary unit

where By adding real numbers to real multiples of this imaginary unit, we
obtain the set of complex numbers.Each complex number can be written in the
standard form, 

To add (or subtract) two complex numbers, you add (or subtract) the real and
imaginary parts of the numbers separately.

a 1 bi.

i2 5 21.

i 5 !21

21.

x2 1 1 5 0

Definition of a Complex Number

For real numbers a and b, the number

is a complex number.If is called an imaginary number, and bi
is called a pure imaginary number.

a 1 bib Þ 0,

a 1 bi

Addition and Subtraction of Complex Numbers

If and are two complex numbers written in standard form, their
sum and difference are defined as follows.

Sum:

Difference: sa 1 bid 2 sc 1 did 5 sa 2 cd 1 sb 2 ddi

sa 1 bid 1 sc 1 did 5 sa 1 cd 1 sb 1 ddi

c 1 dia 1 bi

APPENDIX F

Complex Numbers
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The additive identity in the complex number system is zero (the same as in the
real number system). Furthermore, the additive inverse of the complex number

is

Additive inverse

Thus, you have

EXAMPLE 1 Adding and Subtracting Complex Numbers

a. Remove parentheses.

Group like terms.

Standard form

b. Remove parentheses.

Group like terms.

Standard form

c.

Many of the properties of real numbers are valid for complex numbers as well.
Here are some examples.

Associative Properties of Addition and Multiplication

Commutative Properties of Addition and Multiplication

Distributive Property of Multiplication over Addition

Notice below how these properties are used when two complex numbers are
multiplied.

Distributive

Distributive

Definition of i

Commutative

Associative 5 sac 2 bdd 1 sad 1 bcdi

 5 ac 2 bd 1 saddi 1 sbcdi

 5 ac 1 saddi 1 sbcdi 1 sbdds21d

 5 ac 1 saddi 1 sbcdi 1 sbddi2

 sa 1 bidsc 1 did 5 asc 1 did 1 bisc 1 did

5 22i

5 0 2 2i

5 3 1 2 2 5 2 3i 1 i

 3 2 s22 1 3id 1 s25 1 id 5 3 1 2 2 3i 2 5 1 i

5 24

5 24 1 2i 2 2i

 2i 1 s24 2 2id 5 2i 2 4 2 2i

5 5 1 2i

5 s3 1 2d 1 s21 1 3di

5 3 1 2 2 i 1 3i

 s3 2 id 1 s2 1 3id 5 3 2 i 1 2 1 3i

sa 1 bid 1 s2a 2 bid 5 0 1 0i 5 0.

2sa 1 bid 5 2a 2 bi

a 1 bi

NOTE Notice in Example 1b that the
sum of two complex numbers can be a
real number.

STUDY TIP Rather than trying to
memorize the multiplication rule at the
right, you can simply remember how the
Distributive Property is used to multiply
two complex numbers. The procedure is
similar to multiplying two polynomials
and combining like terms.
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EXAMPLE 2 Multiplying Complex Numbers

a. Product of binomials

Simplify.

Standard form

b. Product of binomials

Simplify.

Standard form

Notice in Example 2a that the product of two complex numbers can be a real number.
This occurs with pairs of complex numbers of the form and called
complex conjugates.

To find the quotient of and where c and d are not both zero, multiply
the numerator and denominator by the conjugate of the denominator to obtain

EXAMPLE 3 Dividing Complex Numbers

Multiply by conjugate.

Expand.

Simplify.

Standard form 5
1

10
1

4
5

 i

 5
1

20
s2 1 16id

i 2 5 21 5
8 2 6 1 16i

16 1 4

 5
8 1 4i 1 12i 1 6i2

16 2 4i2

 
2 1 3i
4 2 2i

5
2 1 3i
4 2 2i

 14 1 2i
4 1 2i2

a 1 bi
c 1 di

5
a 1 bi
c 1 di

 1c 2 di
c 2 di2 5

sac 1 bdd 1 sbc 2 addi
c2 1 d2

.

c 1 dia 1 bi

 5 a2 1 b2

 5 a2 2 b2s21d

 sa 1 bidsa 2 bid 5 a2 2 abi 1 abi 2 b2i2

a 2 bi,a 1 bi

 5 5 1 12i

 5 9 2 4 1 12i

i 2 5 21 5 9 1 4s21d 1 12i

 s3 1 2id2 5 9 1 6i 1 6i 1 4i2

 5 13

 5 9 1 4

i 2 5 21 5 9 2 4s21d

 s3 1 2ids3 2 2id 5 9 2 6i 1 6i 2 4i2



F4 APPENDIX F Complex Numbers

Complex Solutions of Quadratic Equations
When using the Quadratic Formula to solve a quadratic equation, you often obtain a
result such as which you know is not a real number. By factoring out

you can write this number in standard form.

The number is called the principal square root of 

EXAMPLE 4 Writing Complex Numbers in Standard Form

a.
b.
c.

EXAMPLE 5 Complex Solutions of a Quadratic Equation

Solve 

Solution

Quadratic Formula

Simplify.

Write in i-form.

Standard form 5
1
3

±
!14

3
 i

 5
2 ± 2!14i

6

 5
2 ± !256

6

 x 5
2s22d ± !s22d2 2 4s3ds5d

2s3d

3x2 2 2x 1 5 5 0.

 5 22 2 2!3i

 5 1 2 2!3i 1 3s21d

 5 s21d2 2 2!3i 1 s!3d2si2d

  s21 1 !23d2 5 s21 1 !3id2

!248 2 !227 5 !48i 2 !27i 5 4!3i 2 3!3i 5 !3i

!23!212 5 !3i!12i 5 !36i2 5 6s21d 5 26

23.!3i

!23 5 !3s21d 5 !3!21 5 !3i

i 5 !21,
!23,

Principal Square Root of a Negative Number

If a is a positive number, the principal square root of the negative number 
is

!2a 5 !ai.

2a

STUDY TIP The definition of princi-
pal square root uses the rule

for and The rule is not
valid if both aand b are negative.
For example,

whereas

To avoid problems with multiplying
square roots of negative numbers, be
sure to convert to standard form before
multiplying.

!s25ds25d 5 !25 5 5.

 5 5i 2 5 25

 5 !25i 2

 !25!25 5 !5i!5i

b  <  0.a  >  0

!ab 5 !a!b
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Polar Form of a Complex Number
Just as real numbers can be represented by points on the real number line, you can
represent a complex number

at the point in a coordinate plane (the complex plane). The horizontal axis is
called the real axisand the vertical axis is called the imaginary axis, as shown in
Figure F.1.

The absolute valueof the complex number is defined as the distance
between the origin and the point 

To work effectively with powersand rootsof complex numbers, it is helpful to
write complex numbers in polar form. In Figure F.2, consider the nonzero complex
number By letting be the angle from the positive x-axis (measured counter-
clockwise) to the line segment connecting the origin and the point you can
write

and

where Consequently, you have

from which you can obtain the polar form of a complex number.

a 1 bi 5 sr cos ud 1 sr sin udi

r 5 !a2 1 b2.

b 5 r sin ua 5 r cos u

sa, bd,
ua 1 bi.

sa, bd.s0, 0d
a 1 bi

sa, bd

z 5 a 1 bi

The Absolute Value of a Complex Number

The absolute valueof the complex number is given by

|a 1 bi| 5 !a2 1 b2.

z 5 a 1 bi

Polar Form of a Complex Number

The polar form of the complex number is

where and The number r
is the modulus of z, and is called an argument of z.u

tan u 5 bya.a 5 r cos u, b 5 r sin u, r 5 !a2 1 b2,

z 5 rscos u 1 i sin ud

z 5 a 1 bi

Figure F.2

Real
axis

Imaginary
axis

r
b

a

θ

(  ,   )a  b

Figure F.1

NOTE If the complex number 
is a real number that is, if then
this definition agrees with that given for
the absolute value of a real number.

|a 1 0i| 5 !a2 1 02 5 |a|.

b 5 0d,s
a 1 bi

Real
axis

Imaginary
axis

(3, 2)
or

3 + 2i( 1, 3)
or

1 + 3

−

− i

( 2, 1)
or
2

−    −

−   − i

−1−2 1 2 3

1

2

3

NOTE The polar form of a complex number is also called the trigonometric form.
Because there are infinitely many choices for the polar form of a complex number is not
unique. Normally, is restricted to the interval although on occasion it is con-
venient to use u  <  0.

0  ≤  u  <  2p,u
u,
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EXAMPLE 6 Writing a Complex Number in Polar Form

Write the complex number in polar form.

Solution The absolute value of z is

and the angle is given by

Because and because lies in Quadrant III, you
choose to be Thus, the polar form is

(See Figure F.3.)

The polar form adapts nicely to multiplication and division of complex numbers.
Suppose you are given two complex numbers

and

The product of and is

Using the sum and difference formulas for cosine and sine, you can rewrite this
equation as

This establishes the first part of the following rule. Try to establish the second part on
your own.

z1z2 5 r1r2fcossu1 1 u2d 1 i sinsu1 1 u2dg.

 5 r1r2fscos u1 cos u2 2 sin u1 sin u2d 1 issin u1 cos u2 1 cos u1 sin u2dg.

 z1z2 5 r1r2scos u1 1 i sin u1dscos u2 1 i sin u2d

z2z1

z2 5 r2scos u2 1 i sin u2d.z1 5 r1scos u1 1 i sin u1d

z 5 rscos u 1 i sin ud 5 41cos 
4p

3
1 i sin 

4p

3 2.

u 5 p 1 py3 5 4py3.u
z 5 22 2 2!3itanspy3d 5 !3

tan u 5
b
a

5
22!3

22
5 !3.

u

r 5 |22 2 2!3i| 5 !s22d2 1 s22!3d2 5 !16 5 4

z 5 22 2 2!3i

Product and Quotient of Two Complex Numbers

Let and be complex 
numbers.

Product

Quotientz2 Þ 0
z1

z2
5

r1

r2
 fcossu1 2 u2d 1 i sinsu1 2 u2dg,

z1z2 5 r1r2fcossu1 1 u2d 1 i sinsu1 1 u2dg

z2 5 r2scos u2 1 i sin u2dz1 5 r1scos u1 1 i sin u1d

Figure F.3

Real
axis

Imaginary
axis

−2−3 1

−2

−1

−3

−4

 z = 4

3

z i= 2 2   3−   −

π4
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Note that this rule says that to multiply two complex numbers you multiply
moduli and add arguments, whereas to divide two complex numbers you divide
moduli and subtract arguments.

EXAMPLE 7 Multiplying Complex Numbers in Polar Form

Find the product of the complex numbers.

Solution

Check this result by first converting to the standard forms and
and then multiplying algebraically.

EXAMPLE 8 Dividing Complex Numbers in Polar Form

Find the quotient of the complex numbers.

Solution

 5 2
3!2

2
2

3!2
2

 i

 5 3312
!2
2 2 1 i12

!2
2 24

 5 3fcos 2258 1 i sin 2258g

 5
24
8

 fcoss3008 2 758d 1 i sins3008 2 758dg

 
z1

z2
5

24scos 3008 1 i sin 3008d
8scos 758 1 i sin 758d

z2 5 8scos 758 1 i sin 758dz1 5 24scos 3008 1 i sin 3008d

z1yz2

z2 5 4!3 2 4i
z1 5 21 1 !3i

 5 16f0 1 is1dg 5 16i

 5 163cos 
p

2
1 i sin 

p

24

 5 163cos 
5p

2
1 i sin 

5p

2 4

 5 163cos12p

3
1

11p

6 2 1 i sin12p

3
1

11p

6 24
 z1z2 5 21cos 

2p

3
1 i sin 

2p

3 2 ? 81cos 
11p

6
1 i sin 

11p

6 2

z2 5 81cos 
11p

6
1 i sin 

11p

6 2z1 5 21cos 
2p

3
1 i sin 

2p

3 2
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Powers and Roots of Complex Numbers
To raise a complex number to a power, consider repeated use of the multiplication
rule.

This pattern leads to the following important theorem, which is named after the
French mathematician Abraham DeMoivre (1667–1754).

EXAMPLE 9 Finding Powers of a Complex Number

Use DeMoivre’s Theorem to find 

Solution First convert to polar form.

Then, by DeMoivre’s Theorem, you have

Recall that a consequence of the Fundamental Theorem of Algebra is that a poly-
nomial equation of degree n has n solutions in the complex number system. Each 
solution is an nth root of the equation. The nth root of a complex number is defined
as follows.

 5 4096.

 5 4096scos 8p 1 i sin 8pd

 5 2123coss12d 2p

3
1 i sins12d 2p

3 4

 s21 1 !3id12
5 321cos 

2p

3
1 i sin 

2p

3 2412

21 1 !3i 5 21cos 
2p

3
1 i sin 

2p

3 2

s21 1 !3id12
.

:

 z3 5 r3scos 3u 1 i sin 3ud

 z2 5 r2scos 2u 1 i sin2ud

 z 5 rscos u 1 i sin ud

THEOREM A.4 DeMoivre’s Theorem

If is a complex number and n is a positive integer, then

zn 5 frscos u 1 i sin udgn 5 rnscos nu 1 i sin nud.

z 5 rscos u 1 i sin ud

Definition of nth Root of a Complex Number

The complex number is an nth root of the complex number z if

z 5 un 5 sa 1 bidn.

u 5 a 1 bi

NOTE Notice in Example 9 that the
answer is a real number.
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To find a formula for an nth root of a complex number, let u be an nth root of z,
where

and

By DeMoivre’s Theorem and the fact that you have

Taking the absolute values of both sides of this equation, it follows that 
Substituting back into the previous equation and dividing by r, you get

Thus, it follows that

and

Because both sine and cosine have a period of these last two equations have
solutions if and only if the angles differ by a multiple of Consequently, there must
exist an integer k such that

By substituting this value for into the polar form of u, you get the following result.

This formula for the nth roots of a complex number z has a nice geometrical
interpretation, as shown in Figure F.4. Note that because the nth roots of z all have 
the same magnitude theyall lie on a circle of radius with center at the origin.
Furthermore, because successive nth roots have arguments that differ by the n
roots are equally spaced along the circle.

2pyn,

n!rn!r,

b

 b 5
u 1 2pk

n
.

 nb 5 u 1 2pk

2p.
2p,

sin nb 5 sin u.cos nb 5 cos u

cos nb 1 i sin nb 5 cos u 1 i sin u.

sn 5 r.

snscos nb 1 i sin nbd 5 rscos u 1 i sin ud.

un 5 z,

z 5 rscos u 1 i sin ud.u 5 sscos b 1 i sin bd

THEOREM A.5 nth Roots of a Complex Number

For a positive integer n, the complex number has exactly n
distinct nth roots given by

where k 5 0, 1, 2, .  .  . , n 2 1.

n!r1cos 
u 1 2pk

n
1 i sin 

u 1 2pk
n 2

z 5 rscosu 1 i sinud

STUDY TIP The nth roots of a
complex number are useful for solving
some polynomial equations. For
instance, you can use DeMoivre’s
Theorem to solve the polynomial
equation

by writing as 16scos p 1 i sin pd.216

x4 1 16 5 0

Figure F.4

Real
axis

Imaginary
axis

rn

n

n
2π

2π

NOTE When k exceeds the
roots begin to repeat. For instance, if

the angle

is coterminal with which is also
obtained when k 5 0.

uyn,

u 1 2pn
n

5
u

n
1 2p

k 5 n,

n 2 1,
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In Exercises 1–24, perform the operation and write the result in
standard form.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. 12.

13. 14.

15. 16.

17. 18.

19.

20.

21.

22.

23.

24.

In Exercises 25–32, write the conjugate of the complex number.
Multiply the number and its conjugate.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33–46, perform the operation and write the result
in standard form.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.
1 1 i

i
2

3
4 2 i

i
3 2 2i

1
2i

3 1 8i

2i
2 1 i

1
5

2 2 i
2

1 1 i
2

3
1 2 i

s2 2 3ids5id
2 1 3i

1
s4 2 5id2

8 1 20i
2i

6 2 7i
i

8 2 7i
1 2 2i

2 1 i
2 2 i

3
1 2 i

4
4 2 5i

2
10
2i

6
i

1 1 !8!8

!21520i

24 1 !2i22 2 !5i

9 2 12i5 1 3i

s1 2 2id2 2 s1 1 2id2

s2 1 3id2 1 s2 2 3id2

s2 2 3id2

s4 1 5id2

s3 1 !25ds7 2 !210d
s!14 1 !10ids!14 2 !10id

28is9 1 4id6is5 2 2id
s6 2 2ids2 2 3ids1 1 ids3 2 2id
s!275d2s!210d2

!25 ? !210!26 ? !22

s1.6 1 3.2id 1 s25.8 1 4.3id
2s3

2 1
5
2 id 1 s5

3 1
11
3 id

22 1 s25 1 8id 1 10i

13i 2 s14 2 7id
s8 1 !218d 2 s4 1 3!2id
s22 1 !28d 1 s5 2 !250d
s3 1 2id 2 s6 1 13id
s8 2 id 2 s4 2 id
s13 2 2id 1 s25 1 6id
s5 1 id 1 s6 2 2id

E X E R C I S E S F O R A P P E N D I X F

EXAMPLE 10 Finding the nth Roots of a Complex Number

Find the three cube roots of 

Solution

Because z lies in Quadrant II, the polar form for z is

By the formula for nth roots, the cube roots have the form

Finally, for and 2, you obtain the roots

!2 scos 2858 1 i sin 2858d < 0.3660 2 1.3660i.

 !2 scos 1658 1 i sin 1658d < 21.3660 1 0.3660i

 !2 scos 458 1 i sin 458d 5 1 1 i

k 5 0, 1,

6!8 1cos 
1358 1 3608k

3
1 i sin 

1358 1 3608k
3 2.

z 5 22 1 2i 5 !8 scos 1358 1 i sin 1358d.

z 5 22 1 2i.
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In Exercises 47–54, use the Quadratic Formula to solve the
quadratic equation.

47.

48.

49.

50.

51.

52.

53.

54.

In Exercises 55–62, simplify the complex numberand write it in
standard form.

55.

56.

57.

58.

59.

60.

61.

62.

In Exercises 63–68, plot the complex numberand find its
absolute value.

63. 64.

65. 66.

67. 68.

In Exercises 69–76, represent the complex numbergraphically,
and find the polar form of the number.

69. 70.

71. 72.

73. 74.

75. 76.

In Exercises 77–82, represent the complex numbergraphically,
and find the standard form of the number.

77.

78.

79.

80.

81.

82.

In Exercises 83–86, perform the operation and leave the result
in polar form.

83.

84.

85.

86.

In Exercises 87–94, use DeMoivre’s Theorem to find the indi-
cated powerof the complex number. Express the result in stan-
dard form.

87.

88.

89.

90.

91.

92.

93.

94.

In Exercises 95–100, (a) use Theorem A.5 on page A64 to find
the indicated roots of the complex number, (b) represent each of
the roots graphically, and (c) express each of the roots in
standard form.

95. Square roots of 

96. Square roots of 

97. Fourth roots of 

98. Fifth roots of 

99. Cube roots of

100. Cube roots of 

In Exercises 101–108, use Theorem A.5 on page A64 to find
all the solutions of the equation and represent the solutions
graphically.

101. 102.

103. 104.

105. 106.

107. 108. x4 1 s1 1 id 5 0x3 2 s1 2 id 5 0

x6 2 64i 5 0x3 1 64i 5 0

x4 2 81 5 0x5 1 243 5 0

x3 1 1 5 0x4 2 i 5 0

24!2s1 2 id

2
125
2

 s1 1 !3id

321cos 
5p

6
1 i sin 

5p

6 2

161cos 
4p

3
1 i sin 

4p

3 2
16scos 608 1 i sin 608d
5scos 1208 1 i sin 1208d

321cos 
p

2
1 i sin 

p

224
8

1cos 
5p

4
1 i sin 

5p

4 210

4s1 2 !3id3

2s!3 1 id7

s1 2 id12

s21 1 id10

s2 1 2id6

s1 1 id5

coss5py3d 1 i sins5py3d
cos p 1 i sin p

f5
3 scos 1408 1 i sin 1408dgf2

3 scos 608 1 i sin 608dg
33

2
 1cos 

p

2
1 i sin 

p

224361cos 
p

4
1 i sin 

p

424
331cos 

p

3
1 i sin 

p

324341cos 
p

6
1 i sin 

p

624

81cos 
p

12
1 i sin 

p

122

3.751cos 
3p

4
1 i sin 

3p

4 2
3
4 scos 3158 1 i sin 3158d

3
2 scos 3008 1 i sin 3008d
5scos 1358 1 i sin 1358d
2scos 1508 1 i sin 1508d

46i

5
2 s!3 2 id22s1 1 !3id
21 1 !3i!3 1 i

2 1 2i3 2 3i

28 1 3i6 2 7i

5 2 12i24 1 4i

2525i

1
s2id3

1
i3

s!22d6

s!275d3

s2id3

25i5
4i 2 2 2i 3

26i3 1 i 2

5s2 1 6s 1 3 5 0

16t2 2 4t 1 3 5 0

9x2 2 6x 2 35 5 0

4x2 1 16x 1 15 5 0

9x2 2 6x 1 37 5 0

4x2 1 16x 1 17 5 0

x2 1 6x 1 10 5 0

x2 2 2x 1 2 5 0


