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Lecture 17:  Main Memory

Course Outline Revisited

Network/GPU Processors

Storage, I/O, Clusters

Ch 5CachesCachesApr 5/7W10

Ch 3Tomasulo’s AlgorithmMulticycle/ScoreboardFeb 23/25W4

PapersSecurity ProcessorsMay 3/5W14

Ch 6/7Multithreading (SMT/MP)Apr 26/28W13
PapersShared Memory MPsVirtual MemoryApr 19/21W12
Ch 5Main MemoryCachesApr 12/14W11

Spring BreakMar 29/31W9
MidtermIA64 Study/ReviewMar 22/24W8

Ch 4IA64 Study/ReviewStatic ILP vs. HW ILPMar 15/17W7
Ch 3/4Static IssueProcessor Case StudiesMar 8/10W6
Ch 3Mult. Issue/SpeculationBranch Pred./FetchMar 1/3W5

A.4-11, Ch3Basic PipeliningHoliday/No ClassFeb 16/18W3
Ch. 2, A.1-3ISA DesignMeasuring Perf.Feb 9/11W2

Ch. 1IntroductionFeb 4W1
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Lecture Outline

• Main Memory
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Main Memory Background
• Random Access Memory
• Different flavors at different levels

– Physical Makeup (CMOS, DRAM)
– Low Level Architectures (FPM,EDO,SDRAM,RAMBUS)

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor

Size: DRAM/SRAM - 4-8x, 
Cost and Cycle time: SRAM/DRAM - 8-16x

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms, 1% time)
– Addresses divided into 2 halves (Memory as a 2D matrix):

• RAS or Row Access Strobe
• CAS or Column Access Strobe
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Static RAM (SRAM)

• Six transistors in cross 
connected fashion
– Provides regular AND 

inverted outputs
– Implemented in CMOS 

process

Single Port 6-T SRAM Cell

Computer Science 146
David Brooks

• SRAM cells exhibit 
high speed/poor density

• DRAM: simple 
transistor/capacitor 
pairs in high density 
form

Dynamic RAM
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DRAM Operations
• Write

– Charge bitline HIGH or LOW and set wordline HIGH
• Read

– Bit line is precharged to a voltage halfway 
between HIGH and LOW, and then the 
word line is set HIGH. 

– Depending on the charge in the cap, the 
precharged bitline is pulled slightly higher or lower.

– Sense Amp Detects change
• Reads are destructive (Must follow with a write)
• Must refresh capacitor every so often
• Access Time = Time to Read
• Cycle Time = Time between Reads
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DRAM logical organization 
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• Square Row/Column Matrix
• Multiplex Address Lines to save 

pins
• Internal Row Buffer
• Put Row Address on Lines
• Set RAS
• Read row into row buffer
• Put Column Adddress on Lines
• Set CAS
• Read Column bits out of row 

buffer
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Vanilla DRAM Read

Access Time
Cycle Time Timing diagrams from Ars Technica

RAM Guide
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Fast Page DRAM
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Extended Data Out (EDO) DRAM

Synchronous DRAM
DDR SDRAM: Transmit
Data on Both Clock Edges
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Comparison with SRAM

• By it’s nature, DRAM isn’t built for speed
– Response times dependent on capacitive circuit 

properties which get worse as density increases

• DRAM process isn’t easy to integrate into 
standard CMOS process

• SRAM:
– Optimized for speed (8x - 16x DRAM), not density 
– Bits not erased on read

• No refresh, access time = cycle time
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Main Memory Organizations

• Simple: 
– CPU, Cache, Bus, Memory 

same width 
(32 or 64 bits)

• Wide: 
– CPU/Mux 1 word; 

Mux/Cache, Bus, Memory N 
words (Alpha: 64 bits & 256 
bits; UtraSPARC 512)

• Interleaved: 
– CPU, Cache, Bus 1 word: 

Memory N Modules
(4 Modules); example is word 
interleaved
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Main Memory Configurations

• Simple Main Memory
– 32-bit DRAM (1 word of data at a time)
– Access time: 2 cycles (A)
– Transfer time: 1 cycle (T)
– Cycle Time: 4 cycles (B = cycle time – access time)
– Miss penalty for a 4-word block?

Simple Main Memory

• 4 word access = 15 
cycles

• 4-word cycle = 16 
cycles

• How to improve?
– Lower latency?

• A,B,T are fixed

– Higher bandwidth?

*B16

*T/B15

*A14

*A1513

*B12

*T/B11

*A10

*A149

*B8

*T/B7

*A6

*A135

*B4

*T/B3

*A2

*A121

steadyMemAddrCycle
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Bandwidth: Wider DRAMs

• 64-bit DRAM instead

• 4 word access = 7 cycles
• 4-word cycle = 8 cycles

• 64-bit buses are more 
expensive (Pentium vs. 
486)*B8

*T/B7

*A6

*A145

*B4

*T/B3

*A2

*A121

steadyMemAddrCycle
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Bandwidth: Interleaving/Banking
• Use Multiple DRAMs, exploit their aggregate 

bandwidth
– Each DRAM is called a bank
– M 32-bit banks
– Word A in bank (A % M) at (A div M)
– Simple interleaving: banks share address lines



10

Computer Science 146
David Brooks

Simple Interleaving

• 4-word access = 6-cycles
• 4-word cycle = 4-cycles

– Can start a new access in cycle 5
– Overlap access with transfer (and still use a 32-bit bus!)

T/B

B

A

A

Bank1

T

B

B
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A
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B

B

A

A

Bank3

*6
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*B4
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A121
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Complex Interleaving

• Simple interleaving: banks share address lines
• Complex interleaving: banks are independent

– More expensive (separate address lines for each bank)

B0 B1 B2 B3 B0 B1 B2 B3

data data

address
address0
address1
address2
address3
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Complex Interleaving

• 4-word access = 6-cycles
• 4-word cycle = 4-cycles

– Same as simple interleaving

B7

B

T/B
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A

Bank1

B

T/B

A

A
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A

A
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steadyBank0AddrCycle

Simple Interleaving (Non-Sequential)

• Non-sequential access, e.g. stride = 3
• 4-word access = 4-word cycle = 12-cycles
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Complex Interleaving 
(Non-Sequential)

• 4-word access = 6-cycles
• 4-word cycle = 4-cycles
• DMA (I/O), Multiprocessors are non-sequential
• Want more banks than words in a cache line

– Multiple cache misses in parallel (non-blocking caches)
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Interleaving Problem

• Powers of 2 strides are a problem – all addresses, same bank
• 4-word access = 15 cycles, 4-word cycle = 16 cycle
• Solution: Use prime number of banks (e.g. 17)

*B8

*T/B7

Bank1 Bank2 Bank3

*A6

*A205

*B4

*T/B3

*A2

*A121

steadyBank0AddrCycle
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Avoiding Bank Conflicts
• Lots of banks
int x[256][512];for (j = 0; j < 512; j = j+1)for (i = 0; i < 256; i = i+1)x[i][j] = 2 * x[i][j];

• Even with 128 banks, since 512 is multiple of 128, conflict on 
word accesses

• SW: loop interchange or declaring array not power of 2 (“array 
padding”)

• HW: Add more Banks, Add Prime number of banks
– bank number =  address mod number of banks
– address within bank = address / number of words in bank
– modulo & divide per memory access with prime no. banks?
– address within bank = address mod number words in bank
– bank number? easy if 2N words per bank

Independent Memory Banks
• How many banks?

number banks ≥ number clocks to access word in bank

– For sequential accesses, otherwise will return to 
original bank before it has next word ready

• Increasing DRAM => fewer chips => less banks

4 banks/chip * 1 rank  = 4 total banks

16 banks/chip * 8 chips = 128 banks
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Independent Memory Banks

• DIMM (Dual-Inline Memory Module) 
Configuration

• Banking occurs at the chip, module, and 
system levels

• 1 Rank of devices responds to each access
– All devices respond similarly

• Single-Sided DIMM
– 4 banks per device => DIMM has 4 banks

• 512MB DIMM = 8x64Mx8, 4 Banks

RAMBUS (RDRAM)
• Protocol based RAM w/ narrow (16-bit) bus

– High clock rate (400 Mhz), but long latency
– Pipelined operation

• Multiple arrays w/ data transferred on both edges 
of clock

RAMBUS Bank RDRAM Memory System
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RDRAM Timing
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Independent Memory Banks

• Standard PC Upgrade Path
– Traditional DIMMS => 8 devices at a time with 8-bit chips
– Rambus RIMMs => One at a time

• Successful Markets: PlayStation 2 (High Bandwidth, Small 
Memory) 

• Rambus: 400MHz, 16-bits per channel, 2-bits per clock
– 1.6GB/sec per channel (only 1 chip needed)
– 2 Rambus Channels in Parallel, 3.2GB/sec memory bandwidth

• Traditional:PC100 SDRAM: 100MHz, 1-bit per clock
– Would need 32 chips to achieve 3.2GB/sec bandwidth
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Interleaving Summary

• Banks
– Method to get high bandwidth with cheap (narrow) bus

• Bandwidth determines memory capacity
– Hard to make many banks from narrow DIMMs
– 32, 64-bit banks from 1x64MB DRAMS => 2048 DIMMS => 

4GB
– Can’t force customers to buy so much memory to get good 

bandwidth
– Must use wider DRAMs
– RAMBUS does better with small memory systems (PS2)
– Big servers have lots of memory so traditional banking works
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Next Time

• Multiprocessors


