Computer Science 146
Computer Architecture

Spring 2004
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 17: Main Memory

Computer Science 146
David Brooks

Course Outline Revisited

W1 Feb 4 Introduction Ch. 1

w2 Feb 9/11 Measuring Perf. ISA Design Ch. 2, A.1-3
W3 Feb 16/18 | Holiday/No Class Basic Pipelining A.4-11, Ch3
W4 Feb 23/25 | Multicycle/Scoreboard Tomasulo’s Algorithm Ch3

W5 Mar 1/3 Branch Pred./Fetch Mult. Issue/Speculation Ch3

Wé Mar 8/10 | Processor Case Studies Static Issue Ch 3/4

W7 Mar 15/17 | Static ILP vs. HW ILP IA64 Study/Review Ch4

W8 Mar 22/24 | 1A64 Study/Review Midterm

W9 Mar 29/31 Spring Break

W10 | Apr5/7 Caches Caches Chs

W11 | Apr 12/14 | Caches Main Memory Chs

W12 | Apr 19/21 | Virtual Memory Shared Memory MPs Papers

W13 | Apr 26/28 | Multithreading (SMT/MP) | Storage, I/O, Clusters Ch 6/7

W14 | May 3/5 Security Processors Network/GPU Processors | Papers

Lecture Outline

* Main Memory

Computer Science 146
David Brooks

Main Memory Background

Random Access Memory

Different flavors at different levels
— Physical Makeup (CMOS, DRAM)
— Low Level Architectures (FPM,EDO,SDRAM,RAMBUS)

Cache uses SRAM: Static Random Access Memory
— No refresh (6 transistors/bit vs. 1 transistor
Size: DRAM/SRAM - 4-8x,
Cost and Cycle time: SRAM/DRAM - 8-16x
Main Memory is DRAM: Dynamic Random Access Memory
— Dynamic since needs to be refreshed periodically (8 ms, 1% time)
— Addresses divided into 2 halves (Memory as a 2D matrix):
* RAS or Row Access Strobe
e CAS or Column Access Strobe

Computer Science 146
David Brooks

Static RAM (SRAM)

e Six transistors in cross

connected fashion r ’
— Provides regular AND l % |g_ ‘CI E l
inverted outputs - TwLle
— Implemented in CMOS N
process w |- _I E'
BL Bl
I

Single Port 6-T SRAM Cell

Computer Science 146
David Brooks

Dynamic RAM

 SRAM cells exhibit

Word Line
high speed/poor density]
° . 1 ///’ —) \\
DRAM. 51mple. ‘- — Y '
transistor/capacitor :L: ’
pairs in high density e -
form Bit Line

: ; Sense Amp

Computer Science 146
David Brooks

DRAM Operations

* Write

— Charge bitline HIGH or LOW and set wordline HIGH

* Read

— Bit line is precharged to a voltage halfway
between HIGH and LOW, and then the

word line is set HIGH.

— Depending on the charge in the cap, the
precharged bitline is pulled slightly higher or lower.

— Sense Amp Detects change Sense
* Reads are destructive (Must follow with a write) [Ame

* Must refresh capacitor every so often

e Access Time = Time to Read

* Cycle Time = Time between Reads

Word

C_E

J_ Line
L

Bit Line

Computer Science 146

David Brooks

DRAM logical organization

Square Row/Column Matrix
Multiplex Address Lines to save
pins

Internal Row Buffer

Put Row Address on Lines

Set RAS

Read row into row buffer

Put Column Adddress on Lines
Set CAS

Read Column bits out of row
buffer

Column Decoder

SenseAmps & 1/0

E
1
|

Address Buffer

Memory Array :
(2,048 x 2,048)

Word Linegténr ©

Computer Science 146

David Brooks

Vanilla DRAM Read

DRAM Read
Prech:
RAS RAS Active R RAS Active recharge
cAS Precharge m Precharge m

Bus Ll

WE

e Data | = Dara g
Bus tCAC 1CAC

<& »
< »

Access Time

> Timing diagrams from Ars Technica
RAM Guide

Cycle Time

Computer Science 146
David Brooks

Fast Page DRAM

Fast Page Mode Read

s

CAS Precharge Precharge -M-_Pr_eﬂlﬂgi-
Address m_ .

Bus N IR

WE

oo m m
Bus

tCAC tCAC tCAC tCAC

Computer Science 146
David Brooks

Extended Data Out (EDO) DRAM

EDO Read

e —

Computer Science 146
David Brooks

Synchronous DRAM

DDR SDRAM: Transmit

SDRAM Read Data on Both Clock Edges
ras

cas —ia

Ml

o - —

tRAC
Bus 1CAC

Dam

Comparison with SRAM

* By it’s nature, DRAM isn’t built for speed

— Response times dependent on capacitive circuit
properties which get worse as density increases

* DRAM process isn’t easy to integrate into
standard CMOS process

« SRAM:
— Optimized for speed (8x - 16x DRAM), not density

— Bits not erased on read
* No refresh, access time = cycle time

Computer Science 146
David Brooks

Main Memory Organizations

» Simple:

(&) One-word-wide
mamorny arganization

{5} Wide memary organization

() Intereaved
memary organization

— CPU, Cache, Bus, Memory | crv ED oy |
same width T T =F

(32 or 64 bits) cate o cane

o Wide: - L _
o = 3

— CPU/Mux 1 word; - Malipieror —_ :

Mux/Cache, Bus, Memory N
words (Alpha: 64 bits & 256
bits; UtraSPARC 512)

o [Interleaved:

— CPU, Cache, Bus 1 word:

Memory N Modules

(4 Modules); example is word

interleaved

Memary
bank 1

Memary
bank 2

Memary
bank 3

Computer Science 146
David Brooks

Main Memory Configurations

» Simple Main Memory

— 32-bit DRAM (1 word of data at a time)

— Access time: 2 cycles (A)

— Transfer time: 1 cycle (T)

— Cycle Time: 4 cycles (B = cycle time — access time)
— Miss penalty for a 4-word block?

Computer Science 146
David Brooks

Simple Main Memory

Cycle Addr Mem steady
1 12 A *
2 A * _
* 4 word access = 15
3 T/B *
1 B . cycles
> 13 A * * 4-word cycle =16
. A - les
7 T/B * Cyc
8 B *
9 14 A * .
m N " * How to improve?
11 /B * — Lower latency?
12 B * * A,B,T are fixed
= 1 A " — Higher bandwidth?
14 A *
15 T/B *
16 B *

Bandwidth: Wider DRAMSs

64-bit DRAM instead

Cycle Addr Mem steady

1 12 A *

*
2 A + 4 word access = 7 cycles
3 /B *
. B " * 4-word cycle = 8 cycles
5 14 A *
6 A . * 64-bit buses are more

* . .
! B expensive (Pentium vs.
8 B *

486)

Computer Science 146
David Brooks

Bandwidth: Interleaving/Banking

» Use Multiple DRAMs, exploit their aggregate
bandwidth
— Each DRAM is called a bank
— M 32-bit banks
— Word A in bank (A % M) at (A div M)
— Simple interleaving: banks share address lines

Computer Science 146
David Brooks

Simple Interleaving

Cycle Addr Bank0 Bank1l Bank2 Bank3 steady
1 12 A A A A
2 A A A A
3 T/B B B B *
4 B T/B B B *
5 T *
6 T *

* 4-word access = 6-cycles
* 4-word cycle = 4-cycles
— Can start a new access in cycle 5
— Overlap access with transfer (and still use a 32-bit bus!)

Computer Science 146
David Brooks

Complex Interleaving

» Simple interleaving: banks share address lines

« Complex interleaving: banks are independent
— More expensive (separate address lines for each bank)

address3
address2
address addressl
l l l l address0 |
BO|B1|B2|B3 BO|B1|B2|B3
data < l l l l data < l l l l

Computer Science 146
David Brooks

Complex Interleaving

Cycle Addr Bank(Bank1l Bank2 Bank3 steady
1 12 A
2 13 A A
3 14 T/B A A *
4 15 B T/B A A *
5 B T/B A *
6 B T/B *
7 B

* 4-word access = 6-cycles
* 4-word cycle = 4-cycles
— Same as simple interleaving

Computer Science 146
David Brooks

Simple Interleaving (Non-Sequential)

Cycle Addr Bank0 Bank1l Bank2 Bank3 steady
1 12(15) A A A A *
2 A A A A *
3 T/B B B B *
4 B B B T/B *
5 18 A A A A *
6 A A A A *
7 B B T/B B *
8 B B B B *
9 21 A A A A *
10 A A A A *
11 B T/B B B *
12 B B B B *

* Non-sequential access, e.g. stride = 3
* 4-word access = 4-word cycle = 12-cycles

Complex Interleaving
(Non-Sequential)

Cycle Addr Bank0 Bank1 Bank2 Bank3 steady
1 12 A *
2 15 A A *
3 18 T/B A A *
4 21 B A A T/B *
5 A T/B B
6 T/B B

* 4-word access = 6-cycles
+ 4-word cycle = 4-cycles
+ DMA (I/O), Multiprocessors are non-sequential

* Want more banks than words in a cache line
— Multiple cache misses in parallel (non-blocking caches)

Computer Science 146
David Brooks

Interleaving Problem

Cycle Addr Bank(Bank1l Bank2 Bank3 steady
1 12 A *
2 A *
3 T/B *
4 B *
5 20 A *
6 A *
7 T/B *
8 B *

* Powers of 2 strides are a problem — all addresses, same bank
* 4-word access = 15 cycles, 4-word cycle = 16 cycle
* Solution: Use prime number of banks (e.g. 17)

Computer Science 146
David Brooks

Avoiding Bank Conflicts

Lots of banks
int x[256][512];
for (3 = 0; j < 512; j = j+1)
for (1 = 0; 1 < 256; 1 = 1+1)

x[1]1[3] = 2 * x[i](3];
Even with 128 banks, since 512 is multiple of 128, conflict on
word accesses

SW: loop interchange or declaring array not power of 2 (“array
padding”)

HW: Add more Banks, Add Prime number of banks

— bank number = address mod number of banks

address within bank = address / number of words in bank

— modulo & divide per memory access with prime no. banks?

— address within bank = address mod number words in bank
— bank number? easy if 2N words per bank

Independent Memory Banks
How many banks?

number banks > number clocks to access word in bank

— For sequential accesses, otherwise will return to
original bank before it has next word ready

Increasing DRAM => fewer chips => less banks

DIMM Modules 4 banks/chip * 1 rank = 4 total banks

ommand = | 3 i 3 g & "s
T N
RIMM Meodules 16 banks/chip * 8 chips = 128 banks

Row 75 B
Column —+7 -
Daa —— -

.18

Independent Memory Banks

DIMM Modules

Command - l’s I
ET)

¥

INE R

Daa

* DIMM (Dual-Inline Memory Module)

Configuration

* Banking occurs at the chip, module, and

system levels

— All devices respond similarly

+ Single-Sided DIMM

— 4 banks per device => DIMM has 4 banks
* 512MB DIMM = 8x64Mx8, 4 Banks

RAMBUS (RDRAM)
* Protocol based RAM w/ narrow (16-bit) bus
— High clock rate (400 Mhz), but long latency
— Pipelined operation

« Multiple arrays w/ data transferred on both edges

Control f BusDataf C\ocksf

Rambus Interface

i Internal Data Bus

P ! !
Sense Amps / Sense Amps /
Control
i I Logic and
Cofiguration
4 Registers
DRAM Array H 3 DRAM Array
152256 [*7] m% ™| 1152x256
a
RAMBUS Bank

Controller RDRAM 1 RDRAM 2 RDRAM n

V

i [|

INITo |

RCIK2]

| | | Bus data [18: 0]
RC[7.0]

TCIk[Z

G u(azna
Vool

400 MHZ

RDRAM Memory System

RDRAM Timing

Direct RDRAM Protocol (32 byte Xfer)

W Separate Row and Column control
m Enables pipelining, enhances performance

B Smaller Write-Read bubble

M Increases bandwidth

W Bank conflicts still possible
m High bank counts reduce probability of conflicts

Computer Science 146
David Brooks

Independent Memory Banks

Standard PC Upgrade Path

— Traditional DIMMS => § devices at a time with 8-bit chips

— Rambus RIMMs => One at a time
Successful Markets: PlayStation 2 (High Bandwidth, Small
Memory)
Rambus: 400MHz, 16-bits per channel, 2-bits per clock

— 1.6GB/sec per channel (only 1 chip needed)

— 2 Rambus Channels in Parallel, 3.2GB/sec memory bandwidth
Traditional:PC100 SDRAM: 100MHz, 1-bit per clock

— Would need 32 chips to achieve 3.2GB/sec bandwidth

Computer Science 146
David Brooks

Interleaving Summary

* Banks
— Method to get high bandwidth with cheap (narrow) bus

» Bandwidth determines memory capacity

— Hard to make many banks from narrow DIMMs

— 32, 64-bit banks from 1x64MB DRAMS => 2048 DIMMS =>
4GB

— Can’t force customers to buy so much memory to get good
bandwidth

— Must use wider DRAMs
— RAMBUS does better with small memory systems (PS2)
— Big servers have lots of memory so traditional banking works

Computer Science 146
David Brooks

Next Time

* Multiprocessors

Computer Science 146
David Brooks

