
1

Computer Science 146
David Brooks

Computer Science 146
Computer Architecture

Spring 2004
Harvard University

Instructor: Prof. David Brooks
dbrooks@eecs.harvard.edu

Lecture 17: Main Memory

Course Outline Revisited

Network/GPU Processors

Storage, I/O, Clusters

Ch 5CachesCachesApr 5/7W10

Ch 3Tomasulo’s AlgorithmMulticycle/ScoreboardFeb 23/25W4

PapersSecurity ProcessorsMay 3/5W14

Ch 6/7Multithreading (SMT/MP)Apr 26/28W13
PapersShared Memory MPsVirtual MemoryApr 19/21W12
Ch 5Main MemoryCachesApr 12/14W11

Spring BreakMar 29/31W9
MidtermIA64 Study/ReviewMar 22/24W8

Ch 4IA64 Study/ReviewStatic ILP vs. HW ILPMar 15/17W7
Ch 3/4Static IssueProcessor Case StudiesMar 8/10W6
Ch 3Mult. Issue/SpeculationBranch Pred./FetchMar 1/3W5

A.4-11, Ch3Basic PipeliningHoliday/No ClassFeb 16/18W3
Ch. 2, A.1-3ISA DesignMeasuring Perf.Feb 9/11W2

Ch. 1IntroductionFeb 4W1

2

Computer Science 146
David Brooks

Lecture Outline

• Main Memory

Computer Science 146
David Brooks

Main Memory Background
• Random Access Memory
• Different flavors at different levels

– Physical Makeup (CMOS, DRAM)
– Low Level Architectures (FPM,EDO,SDRAM,RAMBUS)

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor

Size: DRAM/SRAM - 4-8x,
Cost and Cycle time: SRAM/DRAM - 8-16x

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms, 1% time)
– Addresses divided into 2 halves (Memory as a 2D matrix):

• RAS or Row Access Strobe
• CAS or Column Access Strobe

3

Computer Science 146
David Brooks

Static RAM (SRAM)

• Six transistors in cross
connected fashion
– Provides regular AND

inverted outputs
– Implemented in CMOS

process

Single Port 6-T SRAM Cell

Computer Science 146
David Brooks

• SRAM cells exhibit
high speed/poor density

• DRAM: simple
transistor/capacitor
pairs in high density
form

Dynamic RAM

Word Line

Bit Line

C

Sense Amp

.

.

.

4

Computer Science 146
David Brooks

DRAM Operations
• Write

– Charge bitline HIGH or LOW and set wordline HIGH
• Read

– Bit line is precharged to a voltage halfway
between HIGH and LOW, and then the
word line is set HIGH.

– Depending on the charge in the cap, the
precharged bitline is pulled slightly higher or lower.

– Sense Amp Detects change
• Reads are destructive (Must follow with a write)
• Must refresh capacitor every so often
• Access Time = Time to Read
• Cycle Time = Time between Reads

Word
Line

Bit Line

C

Sense
Amp

.

.

.

Computer Science 146
David Brooks

DRAM logical organization

Column Decoder

Sense Amps & I/O

Memory Array
(2,048 x 2,048)

…

11

Word Line
Storage
CellR

ow
 D

ec
od

er
…

A
dd

re
ss

 B
uf

fe
r

• Square Row/Column Matrix
• Multiplex Address Lines to save

pins
• Internal Row Buffer
• Put Row Address on Lines
• Set RAS
• Read row into row buffer
• Put Column Adddress on Lines
• Set CAS
• Read Column bits out of row

buffer

5

Computer Science 146
David Brooks

Vanilla DRAM Read

Access Time
Cycle Time Timing diagrams from Ars Technica

RAM Guide

Computer Science 146
David Brooks

Fast Page DRAM

6

Computer Science 146
David Brooks

Extended Data Out (EDO) DRAM

Synchronous DRAM
DDR SDRAM: Transmit
Data on Both Clock Edges

7

Computer Science 146
David Brooks

Comparison with SRAM

• By it’s nature, DRAM isn’t built for speed
– Response times dependent on capacitive circuit

properties which get worse as density increases

• DRAM process isn’t easy to integrate into
standard CMOS process

• SRAM:
– Optimized for speed (8x - 16x DRAM), not density
– Bits not erased on read

• No refresh, access time = cycle time

Computer Science 146
David Brooks

Main Memory Organizations

• Simple:
– CPU, Cache, Bus, Memory

same width
(32 or 64 bits)

• Wide:
– CPU/Mux 1 word;

Mux/Cache, Bus, Memory N
words (Alpha: 64 bits & 256
bits; UtraSPARC 512)

• Interleaved:
– CPU, Cache, Bus 1 word:

Memory N Modules
(4 Modules); example is word
interleaved

8

Computer Science 146
David Brooks

Main Memory Configurations

• Simple Main Memory
– 32-bit DRAM (1 word of data at a time)
– Access time: 2 cycles (A)
– Transfer time: 1 cycle (T)
– Cycle Time: 4 cycles (B = cycle time – access time)
– Miss penalty for a 4-word block?

Simple Main Memory

• 4 word access = 15
cycles

• 4-word cycle = 16
cycles

• How to improve?
– Lower latency?

• A,B,T are fixed

– Higher bandwidth?

*B16

*T/B15

*A14

*A1513

*B12

*T/B11

*A10

*A149

*B8

*T/B7

*A6

*A135

*B4

*T/B3

*A2

*A121

steadyMemAddrCycle

9

Computer Science 146
David Brooks

Bandwidth: Wider DRAMs

• 64-bit DRAM instead

• 4 word access = 7 cycles
• 4-word cycle = 8 cycles

• 64-bit buses are more
expensive (Pentium vs.
486)*B8

*T/B7

*A6

*A145

*B4

*T/B3

*A2

*A121

steadyMemAddrCycle

Computer Science 146
David Brooks

Bandwidth: Interleaving/Banking
• Use Multiple DRAMs, exploit their aggregate

bandwidth
– Each DRAM is called a bank
– M 32-bit banks
– Word A in bank (A % M) at (A div M)
– Simple interleaving: banks share address lines

10

Computer Science 146
David Brooks

Simple Interleaving

• 4-word access = 6-cycles
• 4-word cycle = 4-cycles

– Can start a new access in cycle 5
– Overlap access with transfer (and still use a 32-bit bus!)

T/B

B

A

A

Bank1

T

B

B

A

A

Bank2

T

B

B

A

A

Bank3

*6

*5

*B4

*T/B3

A2

A121

steadyBank0AddrCycle

Computer Science 146
David Brooks

Complex Interleaving

• Simple interleaving: banks share address lines
• Complex interleaving: banks are independent

– More expensive (separate address lines for each bank)

B0 B1 B2 B3 B0 B1 B2 B3

data data

address
address0
address1
address2
address3

11

Computer Science 146
David Brooks

Complex Interleaving

• 4-word access = 6-cycles
• 4-word cycle = 4-cycles

– Same as simple interleaving

B7

B

T/B

A

A

Bank1

B

T/B

A

A

Bank2

T/B

A

A

Bank3

*6

*5

*B154

*T/B143

A132

A121

steadyBank0AddrCycle

Simple Interleaving (Non-Sequential)

• Non-sequential access, e.g. stride = 3
• 4-word access = 4-word cycle = 12-cycles

*BBBB12

*BBT/BB11

*AAAA10

*AAAA219

*BBBB8

*BT/BBB7

A

A

B

B

A

A

Bank1

A

A

B

B

A

A

Bank2

A

A

T/B

B

A

A

Bank3

*A6

*A185

*B4

*T/B3

*A2

*A12(15)1

steadyBank0AddrCycle

12

Computer Science 146
David Brooks

Complex Interleaving
(Non-Sequential)

• 4-word access = 6-cycles
• 4-word cycle = 4-cycles
• DMA (I/O), Multiprocessors are non-sequential
• Want more banks than words in a cache line

– Multiple cache misses in parallel (non-blocking caches)

T/B

A

A

Bank1

B

T/B

A

A

Bank2

B

T/B

A

A

Bank3

6

5

*B214

*T/B183

*A152

*A121

steadyBank0AddrCycle

Computer Science 146
David Brooks

Interleaving Problem

• Powers of 2 strides are a problem – all addresses, same bank
• 4-word access = 15 cycles, 4-word cycle = 16 cycle
• Solution: Use prime number of banks (e.g. 17)

*B8

*T/B7

Bank1 Bank2 Bank3

*A6

*A205

*B4

*T/B3

*A2

*A121

steadyBank0AddrCycle

13

Avoiding Bank Conflicts
• Lots of banks
int x[256][512];for (j = 0; j < 512; j = j+1)for (i = 0; i < 256; i = i+1)x[i][j] = 2 * x[i][j];

• Even with 128 banks, since 512 is multiple of 128, conflict on
word accesses

• SW: loop interchange or declaring array not power of 2 (“array
padding”)

• HW: Add more Banks, Add Prime number of banks
– bank number = address mod number of banks
– address within bank = address / number of words in bank
– modulo & divide per memory access with prime no. banks?
– address within bank = address mod number words in bank
– bank number? easy if 2N words per bank

Independent Memory Banks
• How many banks?

number banks ≥ number clocks to access word in bank

– For sequential accesses, otherwise will return to
original bank before it has next word ready

• Increasing DRAM => fewer chips => less banks

4 banks/chip * 1 rank = 4 total banks

16 banks/chip * 8 chips = 128 banks

14

Independent Memory Banks

• DIMM (Dual-Inline Memory Module)
Configuration

• Banking occurs at the chip, module, and
system levels

• 1 Rank of devices responds to each access
– All devices respond similarly

• Single-Sided DIMM
– 4 banks per device => DIMM has 4 banks

• 512MB DIMM = 8x64Mx8, 4 Banks

RAMBUS (RDRAM)
• Protocol based RAM w/ narrow (16-bit) bus

– High clock rate (400 Mhz), but long latency
– Pipelined operation

• Multiple arrays w/ data transferred on both edges
of clock

RAMBUS Bank RDRAM Memory System

15

Computer Science 146
David Brooks

RDRAM Timing

Computer Science 146
David Brooks

Independent Memory Banks

• Standard PC Upgrade Path
– Traditional DIMMS => 8 devices at a time with 8-bit chips
– Rambus RIMMs => One at a time

• Successful Markets: PlayStation 2 (High Bandwidth, Small
Memory)

• Rambus: 400MHz, 16-bits per channel, 2-bits per clock
– 1.6GB/sec per channel (only 1 chip needed)
– 2 Rambus Channels in Parallel, 3.2GB/sec memory bandwidth

• Traditional:PC100 SDRAM: 100MHz, 1-bit per clock
– Would need 32 chips to achieve 3.2GB/sec bandwidth

16

Computer Science 146
David Brooks

Interleaving Summary

• Banks
– Method to get high bandwidth with cheap (narrow) bus

• Bandwidth determines memory capacity
– Hard to make many banks from narrow DIMMs
– 32, 64-bit banks from 1x64MB DRAMS => 2048 DIMMS =>

4GB
– Can’t force customers to buy so much memory to get good

bandwidth
– Must use wider DRAMs
– RAMBUS does better with small memory systems (PS2)
– Big servers have lots of memory so traditional banking works

Computer Science 146
David Brooks

Next Time

• Multiprocessors

