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DIFFRACTION

In this lab the phenomenon of diffraction will be explored.  Diffraction is interference of a wave

with itself. According to Huygen’s Principle waves propagate such that each point reached by a

wavefront acts as a new wave source.  The sum of the secondary waves emitted from all points on

the wavefront propagate the wave forward.  Interference between secondary waves emitted from

different parts of the wave front can cause waves to bend around corners and cause intensity

fluctuations much like interference patterns from separate sources.  Some of these effects were

touched in the previous lab on interference.  

In this lab the intensity patterns generated by monochromatic (laser) light passing through a single

thin slit, a circular aperture, and around a opaque circle will be calculated and experimentally

verified.

The intensity distributions of monochromatic light diffracted from the described objects are based

on:

a) the Superposition Principle

b) the wave nature of light

Disturbance:  A = A0 sin (ωt + φ)

Intensity:  I = (∑A)2

c) Huygen’s Principle  --  Light propagates in such a way that each point reached by

the wave acts as a point source of a new light wave.  The superposition of all these

waves represents the propagation of the light wave.

All calculations are based on the assumption that the distance L between the slit and the viewing

screen is much larger than the slit width a:, i.e. L >> a.  This particular case is called Fraunhofer

scattering.  The calculations of this type of scattering are much simpler than the Fresnel scattering

in which case the L >> a  constraint is removed.
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    Experiment 1: Single Slit Diffraction   

THEORY

A narrow slit of infinite length and width a  is

illuminated by a plane wave (laser beam) as as shown

in Figure 1.  The intensity distribution observed (on a

screen) at an angle θ with respect to the incident

direction is given by equation (1).  This relation is

derived in detail in the appendix and every student

must make an effort to go through its derivation.  The

mathematics used to calculate this relation are very

simple.  The contributions from the field at each small

area of the slit to the field at a point on the screen are added together by integration.  Squaring this

result and disregarding sinusoidal fluctuations in time gives the intensity.  The main difficulty in

the calculation is determining the relative phase of each small contribution.  Figure 2 shows the

expected shape of this distribution.
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Figure 1  Intensity Profile of the Diffraction Pattern Resulting from a Plane
Wave Passing Through a Single Narrow Slit

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

Slit Width = 4e−05

Wave Length = 1e−06

si
n(

   
)

αα
2

I 
(0

) α = a
λ

sin θπ

(radians)θ

R
el

at
iv

e 
In

te
ns

ity
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Diffraction Intensity Pattern
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where: λ = wavelength of incident plane

wave

a = slit width

θ = angle of observation (with

respect to incident direction)

I(θ) = intensity in direction of

observation

I(0) = maximum intensity of

diffraction pattern (central

fringe)

This relation will have a value of zero each
time that sin2 α = 0.  This occurs when,

α π π
λ

θ π =       or        =  ± ±m
a

msin

yielding the following condition for observing a minimum light intensity from a single slit:

Single Slit Minima: sin   =         =  1,  2,  . . .θ λ
m

a
m ± ± (2)

This relation is satisfied for integer values of m.  Increasing values of m give minima at

correspondingly larger angles.  The first minimum will be found for m = 1, the second for m = 2

and so forth.  If 
a

λ
θsin  is less than one for all values of θ, there will be no minima, i.e. when the

  1.                      1                           4 x 10 -2 mm

  2.                      1                           8.77 x 10 -2 mm                

  3.                      2                           4.39 x 10 -2 mm                     0.13 mm

  4.                      2                           8.77 x 10 -2 mm                     0.18 mm

  5.                      2                           8.77 x 10 -2 mm                     0.35 mm

  6.                      2                           8.77 x 10 -2 mm                     0.70 mm

Number of
     Slits Width of each Slit Space between 

   Slits ( mm )Slit

 1           2           3           4             5           6

Figure 3   Dimensions of Slits on Slide

Alignment Screw

Laser Slide Screen

Figure 4   Diffraction Experiment Setup
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size of the aperture is smaller than a wavelength (a < λ).  This indicates that diffraction is most

strongly caused be perturbances with sizes that are about the same dimension of a wavelength.

PROCEDURE

Two single slits (along with some double slits) are on a slide similar to the one diagrammed in

Figure 3.  To observe diffraction from a single slit, align the laser beam parallel to the table, at the

height of the center of the long slide, as shown in Figure 4.  The diffraction pattern you are

expected to observe is shown in Figure 5.

1a) Observe on the screen the different patterns generated by both of the single slits of this slide.

1b) Calculate the width of each one of the two single slits.  This quantity can be calculated from

Equation (2) using measurements of the spacing of the intensity minima.  The wavelength of the

HeNe laser is 6328Å, (1Å ≡ 10-10 m).  The quantity to be determined experimentally is sin θ.  This

can be done by trigonometry as shown below:

L

D

θ

x
sin    =        ,    tan    =       θ

D
x

L
θ x

for small       :  sin           tan      =  x / L . θ θ θ~

Measure the slit width using several intensity minima of the diffraction pattern.

Figure 5    Observed Diffraction Pattern.  The pattern observed by ones eyes does not
die off as quickly in intensity as one expects when comparing the observed pattern with the
calculated intensity profile given by Equation (1) and shown in Figure 2.  This is because the
bright laser light saturates the eye .  Thus the center and nearby fringes seem to vary slightly in
size but all appear to be the same brightness.
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This measurement can be done using the screen covered with white paper. With a sharp pencil

mark the position of the diffraction minima and then measure their relative distance with the ruler.

To improve the accuracy of your measurements make the distance from slit to screen as large as

possible.  Compare your result with those given in Figure 1.

    Experiment 2: Diffraction by a Circular Aperture    

THEORY

For a circular hole of diameter d the diffraction pattern consists of concentric rings, which are

analogous to the bands which we obtained for the slit.  The pattern for this intensity distribution

can be calculated in the same way as for the single slit (see appendix), but because the aperture here

is circular, it is more convenient to use cylindrical coordinates (z, ρ, θ).  The superposition

principle requires us to integrate over a disk, and the result is a Bessel function.

The condition for observing a minimum of intensity is found from the zeroes of the Bessel 

function:

Circular Aperture Minima sin   =   mθ λ
k

d
(3)

For the first order (m = 1) minimum k1 = 1.22. Higher order minima will have different km

coefficients.

PROCEDURE

The 35 mm slide given you has four patterns of dots and openings of two different diameters.  Put

the slide in the laser beam and choose the configuration which gives the best diffraction pattern.  It

will consist of concentric rings.

2a) Calculate the diameter of the aperture by measuring the distance between the center of the dot

pattern and the first minimum and using Equation (3).  To do an accurate measurement, the

distance between the object and the screen must be large; you may choose to use the wall as your

screen.  The quantity sin θ can be measured in the same way as in Experiment 1.
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2b) Measure the value of the current constant km in front of the ration λ/d in equation (3) for the

second order minimum: m = 2.  Do this by using as aperture diameter d the value previously

obtained, and measuring sin θ corresponding to the second minimum.  In measuring the constant

km you are determining the zeroes of a function called a Bessel function.

    Experiment 6: Light as Matter or Waves:  The Poisson Spot   

THEORY

In 1818 Fresnel entered a competition sponsored by the French Academy.  His paper was on the

theory of diffraction.  He showed that if light is to be described as a wave phenomenon, then a

bright spot would be visible at the center of the shadow of a circular opaque obstacle, a result

which he felt proved the absurdity of the wave theory of light.  This surprising prediction,

fashioned by Poisson as the death blow to wave theory, was almost immediately verified

experimentally by Dominique Argo.  The spot actually existed.

In less than 60 seconds you can now settle a controversy that has preoccupied the minds of the

brightest philosophers and scientists for centuries.  Is light described as a stream of particles or as a

wave phenomena?  Or in other words, does the Poisson spot exist?

PROCEDURE

3a) Observe the Poisson Spot.

or

Lens

oρ

Bi-concave
Poisson Spot

Ball Bearing
Screen

Shadow

Figure 6    Poisson Spot Experiment Setup
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Use the lens given to you to expand the beam slightly.  Place the circular obstacle in the beam,

(Fig. 11), and observe on the screen, at the center of the shadow generated by this obstacle, a

bright spot—the Poisson spot!  By varying the position of obstacle between the lens and screen,

you can optimize the intensity of the Poisson spot

Late 20th Century View of Light:

The distinction between wave and particle relies on two types of experiments.  Observation

of  interference phenomena demonstrates the presence of waves.   Experiments which

show discrete as opposed to continuous changes such as the photoelectric effect

demonstrate particle phenomena (each photon of light knocks one photoelectron off a

atom).  Light is a wave (you observe interference) and light is also a particle called the

photon (you observe scattering and absorbtion of single photons).  These two descriptions

of light are not mutually exclusive.  The wave nature of light is observable in certain natural

phenomena, whereas the particle nature becomes apparent in other natural phenomena.  The

surprising conclusion is that light behaves sometimes like a wave, and sometimes like a

particle-depending on the particular experimental situation.  This is called “wave particle

duality.”

Sections of this write up were taken from:

Physics Laboratory: Third Quater, Bruno Gobi, Northwestern University

Physics Part 2, D. Halliday & R. Resnick, John Wiley & Sons.

Physics Volume 2, Electricity, Magnetism, and Light, R. Blum & D. E. Roller, Holden-Day.

Optics, E. Hecht/A. Zajac, Addison-Wesley Publishing.



8

Following is a list of questions intended to help you prepare for this laboratory session.  If you

have read and understood this write up, you should be able to answer most of these questions.

The TA may decide to check your degree of preparedness by asking you some of these questions:

• The relation of sin2 α/α2 for α = 0 is an undefined expression of 0/0.  What is the limit of this

relation for α → 0?

• Are the eyes sensitive to the amplitude or to the intensity of light?

• Which relation gives the position of the diffraction minima for a slit of width a, illuminated

with light of wavelength λ?

• The distribution of light from two slits is represented by the product 
sin

cos
 

 
α

α
β



 ( )

2
2
.

Which one of these two terms is called the diffraction term and which one is the interference

term?  Which term is responsible for the interference fringes?

• If you want to sharpen up a beam spot by inserting into the beam a narrow vertical slit, will the

beam spot get more and more narrow as you close the slit?  Explain.

• What is responsible for the factor 1.22 in formula (3)?

• What size object will generate an observable diffraction pattern if placed in the path of light

with wavelength λ?

• Beams of particles act like waves with very short wavelengths when scattered by perturbances

such as other particles. If a target of Pb and one of C are bombarded with a beam of protons,

which target will show the sharpest diffraction pattern, the large size Pb target or the small C

one?  (Hint:  The pattern due to an aperture is identical to the pattern caused by its negative: a

disk in empty space.)

• What is the difference between Fraunhofer and Fresnel scattering?

• What is the Poisson spot?

• What does the existence of the Poisson spot demonstrate?

• What is our present view of light?  Is it made up of waves or particles?
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APPENDIX

Intensity Distribution from a
Single Slit

The calculation of the intensity distribution

of diffraction phenomena is based upon

the superposition principle and Huygen’s

principle.  Light is a wave, and if we

choose to characterize it by the magnitude

of its electric vector E
→

, then it can be

represented as,

  

r r
E E t=    +  )0 sin(ω φ . (a1)

If two waves with amplitudes E
→

1 and E
→

2

reach the same point P at the same time,

then the superposition principle gives the

total amplitude E
→

TOT  as,

E E E
→ → →

TOT  =   +  1 2 (a2)

This total amplitude depends upon the

relative phase φ between two waves.

Looking at Figure 7, try to imagine what

happens when E
→

2  shifts with respect to

E
→

1 (this shift is given by the phase φ).  By

lining up peaks with peaks and valleys with valleys, one gets a maximum amplitude.  In the

opposite case, when one lines up peaks with valleys, the amplitude E
→

TOT becomes zero.

The light intensity I is related to the amplitude E
→

TOT by the important relation
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I E =  TOT

r( )2
 . (a3)

Note that amplitudes must be summed

first before the square is taken for the

intensity:

E E E
→ → →









TOT

2

=   +  1 2

2

Figure Figure 8 shows the quantities used

to calculate the diffraction from a slit of

width a.  Each point of the slit along the

y-direction will generate its own wavelet

(Huygen’s principle)—and each of these

wavelets will have the same wavelength λ as the incident plane wave.

The amplitude of a wavelet generated at point y and reaching point P will be

E E t =    +  0 sin ω φ( )
with ω = 2π/T = 2πν.

The phase φ can be arrived at by using the path difference:

phase difference
 =  

2
 =  

path difference
 =   =  

  
2π

φ
π λ λ

θ
λ

∆ y sin

Consequently φ π
λ

θ =  
2

   y sin .

At point P, the amplitude of each wavelet generated by any point y along the slit will be

E E t y =    +     0 sin sinω π
λ

θ2



 (a4)

The total amplitude at P will be (according to the superposition principle) the sum of the

contribution of each point along y.  This is obtained by integrating along y:

E E y dy
a

TOT

0

 =  ( )∫  . (a5)

This integral is straightforward, and is given in the textbook as

∆

a

Plane

θ

y

Wave

θ
=  y  sin

P

θ

Figure 8    Diffraction by a Single Slit
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E
a a

TOT    ∝ 









sin sin sin

π
λ

θ π
λ

θ  .

We are interested in the light intensity I(=E2
TOT) rather

than the amplitude ETOT (see a3).  Neglecting

constants (which relate the intensity at P to the

intensity of the incident wave) one obtains

I I

a

a
( )

sin sin

sin
θ

π
λ

θ

π
λ

θ
 =  (0) 

 

 

2 











2 (a6)

with α π
λ

θ =  
a

sin ,this relation is found in the

literature as

Single Slit Diffraction I I( )
sinθ α

α
 =  (0)

 





2

α π
λ

θ =  
a

sin (a7)

I(0) is the intensity of the central fringe (θ = 0).  It is always the maximum intensity of the

diffraction pattern.  This relation will have a value of zero each time that sin2α = 0.  This occurs

when α  = ±mπ or 
π
λ

θa
sin  = ±mπ, yielding the following condition for observing a minimum

light intensity from a single slit:

Singe Slit Minima sin , , ,   =  
a

 ,   =     . . .θ λ
m m ± ± ±1 2 3 (a8)

The shape of the distribution given by (a7) is shown in figure Figure 9.
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Figure 9    Intensity Profile of
Single Slit Diffraction Pattern
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Diffraction from a

Double Slit

Figure 10 shows the quantities

used to calculate the double slit

diffraction.  The amplitude of the

light waves which pass through

each slit and which reach P (for a

given θ) will be the same as was

calculated for the single slit case:

E E

a

a1 =   =  
 

 
  t +  )2

sin sin

sin
sin (

π
λ

θ

π
λ

θ
ω φ













(a9)

If we take the phase of E1 to be π = 0, then the relative phase of E2 is  φ π
λ

θ= 2
d sin . The total

amplitude at P is,

E E E

a

aTOT 2 +   =  
 

 
  t +   +   t +  

d) ( )
Wave Part of E Wave Part of E1 2

=









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


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

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








↑ ↑

1 0
sin sin

sin
sin sin s in(

π
λ

θ

π
λ

θ
ω ω π

λ
θ (a10)

The two wave functions E1 and E2 can be added trigonometrically.

sin  +  sin  =  2 sin 
 +  
2

 cos 
 +  α β α β α β
2

so that we obtain,

   ( t +  
d

2
  )     (- 

d
2

  )

Wave part of ETOT

2 sin sin cos sinω π
π

θ π
π

θ×  . (a11)
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θ

θ

Plane
Wave

∆ θ

2

l =  d  sin

E1

E P

Figure 10    Double Slit Diffraction
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The amplitude of ETOT is the

product of two quantities.

The first,

A

a

aD( ) =  
  

 
θ

π
λ

θ

π
λ

θ

sin sin

sin







characterizes the intensity

distribution from each slit of

aperture a.  The second

amplitude

A
d

I ( ) =   (
2

  )θ π
π

θcos sin

has its origin in the sum of

the amplitude of the two

slits.  The total amplitude of

the light reaching P after

diffracting from the two slits is the product

ATOT (θ) = AD (θ) AI (θ) (a12)

Now that we have calculated the total amplitude, we are ready to calculate the quantity which we

will observe, the light intensity, which is the square of the amplitude.

I

a
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Figure 11  Diffration and Interference Terms of the
Two Slit Diffraction/Interference Intensity Profile
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In the textbook this relation is given by,

Double Slit Diffraction I I ( ) =   (0) 
 

  2θ θ
α

βsin
cos

2
2 (a14)

It is the product of two factors:

Diffraction factor:
sin

sin
2  

 ,      
α

α
α π

λ
θ≡ a

,

The diffraction factor’s shaped  depends upon the width a  of the 2 slits and has minima at:

Diffraction Factor Minima: α θ λ= ± ± ±sin ,  =    ,   =  1,   ,  . . .m
a

m 2 3

Interference factor: cos sin2

2
β β π

λ
θ ,      ≡ d

 ,

The interference factor’s shape depends on the separation d between center to center of the two

slits.  Figure 11 shows the shape of both factors as well as their products.  The interference factor

has maxima at:

Interference Factor Maxima: β θ λ= ± ±sin ,  =    ,   =  0,  1,   . . .m
d

m 2


