4.0 Design of Synchronous Counters

This section begins our study of designing an important class of clocked
sequential logic circuits-synchronous finite-state machines. Like all
sequentia circuits, a finite-state machine determines its outputs and its
next state from its current inputs and current state. A synchronous finite-
state machine changes state only on the clocking event.

4.1 General Model of a sequential Circuit

The following diagram shows the general sequential circuit that consists
of a combinational logic section and a memory section (flip-flops). The
Combinational logic module isfor us, as the designer, to match the design
specifications.
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4.2 Counter Design Procedure

3

Describe a general sequential circuit in terms of its basic parts and
its input and outputs.

Develop a state diagram for a given sequence.

Develop a next-state table for a specific counter sequence.

Create a FF trangition table.

Use K-map to derive the logic equations.

Implement a counter to produce a specified sequence of states.
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4.3. Design the 3-bit Gray code counter
Step 1: State Diagram

State Diagram for a 3-bit Gray code counter:
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State diagram for a 3 hit Gray code counier.

Step 2: Next-State Table

Next state table for a 3-bit Gray code counter
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Step 3: Flip-Flop Transition Table

Transtion table for a JK Hip-Flop
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Step 4: Karnaugh M aps

The following diagram shows the steps to create separate next states of
separate Jand K from the current states of Jand K.

Examplesof the mapping procedure for the counter sequence represented in Table 9-7 and Table 9-8.
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Karnaugh maps for present-state J and K inputs for the 3bit Gray code
counter.
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Step 5: Logic Expressionsfor Flip-flop Inputs

The next-state J and K outputs for a 3-bit Gray code counter.
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Step 6: Counter | mplementation

The hardware diagram of the 3-bit Gray code counter
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22 There are many more examples for the design of synchronous

counter. These can be found in any digital network related

textbooks.




4.4, Design —Examplel

Design a counter with the irregular binary count sequence shown in the
state diagram of Figure 4.1.

Step 1. State Diagram
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Step 2: Next-State Table

Present State | Next State
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Step 3: Flip-Flop Transition Table

Trangtion table for a JK Hip-Flop
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Step 4. Karnaugh M aps
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Step 5: Logic Expressionsfor Flip-flop Inputs

The expression for each J and K input taken from the maps is as follows:
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Step 6: Counter I mplementation




4.5. Example 2 - Design the 3 Up/down counter (Gray code

sequence)
Step 1. State Diagram
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Step 2: Next-State Table

Next-state table for 3-bit up/down Gray code counter.
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Step 3: Flip-Flop Transition Table

Transtion table for a JK Hip-Flop
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Step 4: Karnaugh Maps
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Step 5: Logic Expressionsfor Flip-flop Inputs
Jo = QY + B0\ F + 0.0, + 0,0,Y
Iy = 000 + 0:0Q0Y
Jy = Q0¥ + 0,0,

Ko = 0.0 + 0,0\¥ + 00,7 + 0,0,¥
Ki = Gs00F + Q:0Y
Ky = Q1Gu¥ + 010,Y

Step 6: Counter I mplementation
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5.0 Cascaded Counters

Counters can be connected in cascade to achieve higher-modulus
operation. Figure 5.1 shows an example of two counters, modulus-4 and
modulus-8 connected in cascade.
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Figure 5.1: 2 cascaded counters
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Figure 5.2: Timing diagram for the cascaded counters



5.1 Example 1: A modulus-100 counter

Figure 5.3 illustrates a modulus-100 counter using 2 cascaded decade
counters. This counter can be viewed as a frequency divider. It divides
the input clock frequency by 100.
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Figure 5.3: A modulus-100 counter using 2 cascaded decade counters

5.2 Example2: A modulus-1000 counter

If you have a basis clock frequency of 1 MHz and you wish to obtain
100kHz, 10Hz, and 1kHz, a series of cascaded decade counters can be
used. If 1 MHz signal is divided by 10, the output is 100kHz. Then if the
100 kHz signal is divided by 10, the output is 10kHz. Further division by
10 gives the 1 kHz frequency. The implementation is shown in Figure
5.4.

HIGH

00 kHz

CTEN

e
CTR DIV 10

l 1 CTEN

TC
CTR DIV 10

*r—

CTEN
CTR DIV 10

> o

T

| MHz T:a(--

|

Figure 5.4: A modulus-1000 counter using 3 cascaded decade counters



6. 0 Applications

Digital counters are very useful in many applications. They can be easily
found in digitad clocks and parale-to-serial data conversion
(multiplexing). In this section, we these two examples on how counters
are being used.

Example 1.

A group of bits appearing ssmultaneoudly on parale lines is called
parallel data. A group of bits appearing on a single line in a time
sequence is called serial data. Paralle -to-serial conversion is normally
accomplished by the use of a counter to provide a binary sequence for the
data-select inputs of a multiplexer, asillustrated in the circuit below.
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Paraifel-to-serial data conversion fogic.

The Q outputs of the modulus-8 counter are connected to the data-select
inputs of an eight-bit multiplexer. The first byte (eight-bit group) of
paralel data is applied to the multiplexer inputs. As the counter goes
through a binary sequence from 0 to 7, each bit beginning with DO, is
sequentially selected and passed through the multiplexer to the output
line.

After eight clock pulses, the data byte has been converted to a seria
format and sent out on the transmission line. Then, the counter recycles
back to O and converts another parallel byte sequentialy again by the
same process.



Example 2:

The following diagram shows the simplified logic diagram for a 12-hour
digital clock.

Drivide -by -6l

&0 Hz ac &0 He Hr
Wave- | CTR DIV 10 CIR DIV & L 1 I |-
WY —— shaping b= EN
circuit |—:=- ]
FF FHhowrs conmier Muinutes conmter (divide -by-60} Seconmbs comnter {divide-by-cdl)
s CTRINY 10 CTR DIV 6 CTR DIV 10 CTRINWY & CTRIY 1 gy
O O — EN — BN = EN — Ew =
C "::—| EY !’-:—L o {1 f iy -C.':j- =]
BTN Foseg B Tos g BT -seg B Toseg BN T-seg BT Teseg
W \{ [= L AL 2" EJ?IJTJ (=] I.-"T ALY ie EJ{L ") L L] - J“J(J
— — — — —
- -
l f ] I | I
- -
l [ o3 =t =1 !
fO—1) [y [0-5) (=4 (L5} (0-15)
“ . 5 4 s

S TEADTAS DSty el



