4.0 Design of Synchronous Counters

This section begins our study of designing an important class of clocked sequential logic circuits-synchronous finite-state machines. Like all sequential circuits, a finite-state machine determines its outputs and its next state from its current inputs and current state. A synchronous finitestate machine changes state only on the clocking event.

4.1 General Model of a sequential Circuit

The following diagram shows the general sequential circuit that consists of a combinational logic section and a memory section (flip-flops). The Combinational logic module is for us, as the designer, to match the design specifications.

4.2 Counter Design Procedure

?? Describe a general sequential circuit in terms of its basic parts and its input and outputs.
?? Develop a state diagram for a given sequence.
?? Develop a next-state table for a specific counter sequence.
?? Create a FF transition table.
?? Use K-map to derive the logic equations.
?? Implement a counter to produce a specified sequence of states.

4.3. Design the 3-bit Gray code counter

Step 1: State Diagram

State Diagram for a 3-bit Gray code counter:

Step 2: Next-State Table

Next state table for a 3-bit Gray code counter

Present State				Next State		
Q_{2}	Q_{1}	Q_{0}	Q_{2}	Q_{1}	Q_{0}	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	1	0	1	0	
0	1	0	1	1	0	
1	1	0	1	1	1	
1	1	1	1	0	1	
1	0	1	1	0	0	
1	0	0	0	0	0	

Step 3: Flip-Flop Transition Table

Transition table for a J-K Flip-Flop

Output Transitioas			Flip-Flop Inputs	
Q_{v}		$Q_{\text {v+1 }}$	J	κ
0	\longrightarrow	0	0	X
0	\longrightarrow	1	1	X
1	\longrightarrow	0	X	1
1	\longrightarrow	1	X	0
Q_{2} : presents sate. $\quad Q_{v+2}$: net state				
X : "don'tcare"				

Step 4: Karnaugh Maps

The following diagram shows the steps to create separate next states of separate J and K from the current states of J and K .

Examplesof the mapping procedure for the counter sequence represented in Table 9-7 and Table 9-8.

Karnaugh maps for present-state J and K inputs for the 3-bit Gray code counter.

Step 5: Logic Expressions for Flip-flop Inputs
The next-state J and K outputs for a 3-bit Gray code counter.

$$
\begin{aligned}
J_{o} & =Q_{2} Q_{1}+\bar{Q}_{2} Q_{1}=\bar{Q}_{2}+Q_{1} \\
K_{o} & =Q_{2} \bar{Q}_{1}-\bar{Q}_{2} Q_{1}=Q_{2}+Q_{1} \\
J_{1} & =\bar{Q}_{2} Q_{0} \\
K_{1} & =Q_{2} Q_{o} \\
J_{2} & =Q_{1} \bar{Q}_{o} \\
K_{2} & =\bar{Q}_{1} \bar{Q}_{\theta}
\end{aligned}
$$

Step 6: Counter Implementation

The hardware diagram of the 3-bit Gray code counter

?? There are many more examples for the design of synchronous counter. These can be found in any digital network related textbooks.

4.4. Design - Example 1

Design a counter with the irregular binary count sequence shown in the state diagram of Figure 4.1.

Step 1: State Diagram

Step 2: Next-State Table

Present State			Next State		
Q_{2}	$Q_{\mathbf{1}}$	$Q_{\mathbf{0}}$	$Q_{\mathbf{2}}$	$Q_{\mathbf{1}}$	$Q_{\mathbf{0}}$
0	0	1	0	1	0
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	0	0	1

Step 3: Flip-Flop Transition Table

Transition table for a J-K Flip-Flop

Output Transitions			MEp-Flop Inputs	
$Q_{\text {v }}$		$Q_{\text {n+1 }}$	J	κ
0	\longrightarrow	0	0	X
0	\longrightarrow	1	1	X
1	\longrightarrow	0	X	1
1	-	1	X	0
Q_{n} : present state.			, no	

Step 4: Karnaugh Maps

Step 5: Logic Expressions for Flip-flop Inputs
The expression for each J and K input taken from the maps is as follows:

$$
\begin{aligned}
\mathrm{J}_{0} & =1, \mathrm{~K}_{0}=\mathrm{Q}_{2} \\
\mathrm{~J}_{1} & =\mathrm{K}_{1}=1 \\
\mathrm{~J}_{2} & =\mathrm{K}_{2}=\mathrm{Q}_{1}
\end{aligned}
$$

Step 6: Counter Implementation

4.5. Example 2 - Design the 3 Up/down counter (Gray code sequence)

Step 1: State Diagram

Step 2: Next-State Table

Next-state table for 3-bit up/down Gray code counter.

Present State			$Y=0$ (DOWN) Next State				$Y=1(U P)$	
Q_{2}	Q_{1}	Q_{0}	Q_{2}	Q_{1}	Q_{0}	Q_{2}	Q_{1}	Q_{0}
0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	1	1
0	1	1	0	0	1	0	1	0
0	1	0	0	1	1	1	1	0
1	1	0	0	1	0	1	1	1
1	1	1	1	1	0	1	0	1
1	0	1	1	1	1	1	0	0
1	0	0	1	0	1	0	0	0

$Y=\mathrm{UP} / \overline{\mathrm{DOWN}}$ control input.
Step 3: Flip-Flop Transition Table
Transition table for a J-K Flip-Flop

Output Transitioas			Flip-Flop Inputs	
Q_{N}		Q_{N+1}	J	\boldsymbol{K}
0	\longrightarrow	0	0	X
0	\longrightarrow	1	1	X
1	\longrightarrow	0	x	1
1	\longrightarrow	1	X	0

Step 4: Karnaugh Maps

Floyd]

Step 5: Logic Expressions for Flip-flop Inputs

$$
\begin{aligned}
& J_{0}=Q_{2} Q_{1} Y+Q_{2} \bar{Q}_{1} \bar{Y}+\bar{Q}_{2} Q_{1} \bar{Y}+\bar{Q}_{2} \bar{Q}_{1} Y \\
& J_{1}=\bar{Q}_{2} Q_{0} Y+Q_{2} Q_{0} \bar{Y} \\
& J_{2}=Q_{1} \bar{Q}_{0} Y+\bar{Q}_{1} \bar{Q}_{0} \bar{Y} \\
& K_{0}=\bar{Q}_{2} \bar{Q}_{1} \bar{Y}+\bar{Q}_{2} Q_{1} Y+Q_{2} Q_{1} \bar{Y}+Q_{2} \bar{Q}_{1} Y \\
& K_{1}=\bar{Q}_{2} Q_{0} \bar{Y}+Q_{2} Q_{0} Y \\
& K_{2}=Q_{1} \bar{Q}_{0} \bar{Y}+\bar{Q}_{1} \bar{Q}_{0} Y
\end{aligned}
$$

Step 6: Counter Implementation

[Floyd]

5.0 Cascaded Counters

Counters can be connected in cascade to achieve higher-modulus operation. Figure 5.1 shows an example of two counters, modulus -4 and modulus-8 connected in cascade.

Figure 5.1: 2 cascaded counters

Figure 5.2: Timing diagram for the cascaded counters

5.1 Example 1: A modulus-100 counter

Figure 5.3 illustrates a modulus-100 counter using 2 cascaded decade counters. This counter can be viewed as a frequency divider. It divides the input clock frequency by 100 .

Figure 5.3: A modulus-100 counter using 2 cascaded decade counters

5.2 Example2: A modulus-1000 counter

If you have a basis clock frequency of 1 MHz and you wish to obtain $100 \mathrm{kHz}, 10 \mathrm{~Hz}$, and 1 kHz , a series of cascaded decade counters can be used. If 1 MHz signal is divided by 10 , the output is 100 kHz . Then if the 100 kHz signal is divided by 10 , the output is 10 kHz . Further division by 10 gives the 1 kHz frequency. The implementation is shown in Figure 5.4.

Figure 5.4: A modulus-1000 counter using 3 cascaded decade counters

6. 0 Applications

Digital counters are very useful in many applications. They can be easily found in digital clocks and parallel-to-serial data conversion (multiplexing). In this section, we these two examples on how counters are being used.

Example 1:

A group of bits appearing simultaneously on parallel lines is called parallel data. A group of bits appearing on a single line in a time sequence is called serial data. Parallel-to-serial conversion is normally accomplished by the use of a counter to provide a binary sequence for the data-select inputs of a multiplexer, as illustrated in the circuit below.

Parallei-to-serial data conversion logic.

The Q outputs of the modulus -8 counter are connected to the data-select inputs of an eight-bit multiplexer. The first byte (eight-bit group) of parallel data is applied to the multiplexer inputs. As the counter goes through a binary sequence from 0 to 7 , each bit beginning with D 0 , is sequentially selected and passed through the multiplexer to the output line.

After eight clock pulses, the data byte has been converted to a serial format and sent out on the transmission line. Then, the counter recycles back to 0 and converts another parallel byte sequentially again by the same process.

Example 2:

The following diagram shows the simplified logic diagram for a 12-hour digital clock.

