4.0 Design of Synchronous Counters

This section begins our study of designing an important class of clocked sequential logic circuits-synchronous finite-state machines. Like all sequential circuits, a finite-state machine determines its outputs and its next state from its current inputs and current state. A synchronous finite-state machine changes state only on the clocking event.

4.1 General Model of a sequential Circuit

The following diagram shows the general sequential circuit that consists of a combinational logic section and a memory section (flip-flops). The Combinational logic module is for us, as the designer, to match the design specifications.

4.2 Counter Design Procedure

- ?? Describe a general sequential circuit in terms of its basic parts and its input and outputs.
- ?? Develop a state diagram for a given sequence.
- ?? Develop a next-state table for a specific counter sequence.
- ?? Create a FF transition table.
- ?? Use K-map to derive the logic equations.
- ?? Implement a counter to produce a specified sequence of states.

4.3. Design the 3-bit Gray code counter

Step 1: State Diagram

State Diagram for a 3-bit Gray code counter:

Step 2: Next-State Table

Next state table for a 3-bit Gray code counter

Present State			Next State			
Q_2	Q_1	Q_{θ}	Q_2	Q_1	Q_{o}	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	1	0	1	0	
0	1	0	1	1	0	
1	1	0	1	1	1	
1	1	1	1	0	1	
1	0	1	1	0	0	
1	0	0	0	0	0	

Step 3: Flip-Flop Transition Table

Transition table for a J-K Flip-Flop

Step 4: Karnaugh Maps

The following diagram shows the steps to create separate next states of separate J and K from the current states of J and K.

Karnaugh maps for present-state J and K inputs for the 3-bit Gray code counter.

Step 5: Logic Expressions for Flip-flop Inputs

The next-state J and K outputs for a 3-bit Gray code counter.

$$J_{\theta} = Q_{2}Q_{1} + \overline{Q}_{2}Q_{1} = \overline{Q_{2} + Q_{1}}$$

$$K_{\theta} = Q_{2}\overline{Q}_{1} - \overline{Q}_{2}Q_{1} = Q_{2} + Q_{1}$$

$$J_{1} = \overline{Q}_{2}Q_{0}$$

$$K_{1} = Q_{2}Q_{0}$$

$$J_{2} = Q_{1}\overline{Q}_{0}$$

$$K_{2} = \overline{Q}_{1}\overline{Q}_{0}$$

Step 6: Counter Implementation

The hardware diagram of the 3-bit Gray code counter

?? There are many more examples for the design of synchronous counter. These can be found in any digital network related textbooks.

4.4. Design – Example 1

Design a counter with the irregular binary count sequence shown in the state diagram of Figure 4.1.

Step 1: State Diagram

Step 2: Next-State Table

Present State			Next State			
Q2	Q_1	Q_0	Q_2	Q_1	Q_0	
0	0	1.	0	1	0	
0	1	0	1	0	1	
1	0	1	1	1	1	
1	1	1	0	0	1	

Step 3: Flip-Flop Transition Table

Transition table for a J-K Flip-Flop

Step 4: Karnaugh Maps

Step 5: Logic Expressions for Flip-flop Inputs

The expression for each *J* and *K* input taken from the maps is as follows:

$$J_0 = 1, K_0 = Q_2$$

 $J_1 = K_1 = 1$
 $J_2 = K_2 = Q_1$

Step 6: Counter Implementation

4.5. Example 2 - Design the 3 Up/down counter (Gray code sequence)

Step 1: State Diagram

Step 2: Next-State Table

Next-state table for 3-bit up/down Gray code counter.

			Next State					
Present State		Y = 0 (DOWN)			Y = 1 (UP)			
Q ₂	Q_1	Q.	Q_2	Q_1	Q_0	Q2	Q_1	Q
0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	1	1
0	1	1	0	0	1	0	1	0
0	1	0	0	1	1	1	1	0
1	1	0	0	1	0	1	1	1
1	1	1	1	1	0	1	0	1
1	0	1	1	1	1	1	0	0
1	0	0	1	0	1	0	0	0

Step 3: Flip-Flop Transition Table

Transition table for a J-K Flip-Flop

Step 4: Karnaugh Maps

[

Step 5: Logic Expressions for Flip-flop Inputs

$$J_{0} = Q_{2}Q_{1}Y + Q_{2}\overline{Q}_{1}\overline{Y} + \overline{Q}_{2}Q_{1}\overline{Y} + \overline{Q}_{2}\overline{Q}_{1}Y$$

$$J_{1} = \overline{Q}_{2}Q_{0}Y + Q_{2}Q_{0}\overline{Y}$$

$$J_{2} = Q_{1}\overline{Q}_{0}Y + \overline{Q}_{1}\overline{Q}_{0}\overline{Y}$$

$$K_{0} = \overline{Q}_{2}\overline{Q}_{1}\overline{Y} + \overline{Q}_{2}Q_{1}Y + Q_{2}Q_{1}\overline{Y} + Q_{2}\overline{Q}_{1}Y$$

$$K_{1} = \overline{Q}_{2}Q_{0}\overline{Y} + Q_{2}Q_{0}Y$$

$$K_{2} = Q_{1}\overline{Q}_{0}\overline{Y} + \overline{Q}_{1}\overline{Q}_{0}Y$$

Step 6: Counter Implementation

5.0 Cascaded Counters

Counters can be connected in cascade to achieve higher-modulus operation. Figure 5.1 shows an example of two counters, modulus-4 and modulus-8 connected in cascade.

Figure 5.1: 2 cascaded counters

Figure 5.2: Timing diagram for the cascaded counters

5.1 Example 1: A modulus-100 counter

Figure 5.3 illustrates a modulus-100 counter using 2 cascaded decade counters. This counter can be viewed as a frequency divider. It divides the input clock frequency by 100.

Figure 5.3: A modulus-100 counter using 2 cascaded decade counters

5.2 Example2: A modulus-1000 counter

If you have a basis clock frequency of 1 MHz and you wish to obtain 100kHz, 10Hz, and 1kHz, a series of cascaded decade counters can be used. If 1 MHz signal is divided by 10, the output is 100kHz. Then if the 100 kHz signal is divided by 10, the output is 10kHz. Further division by 10 gives the 1 kHz frequency. The implementation is shown in Figure 5.4.

Figure 5.4: A modulus-1000 counter using 3 cascaded decade counters

6.0 Applications

Digital counters are very useful in many applications. They can be easily found in digital clocks and parallel-to-serial data conversion (multiplexing). In this section, we these two examples on how counters are being used.

Example 1:

A group of bits appearing simultaneously on parallel lines is called *parallel data*. A group of bits appearing on a single line in a time sequence is called *serial data*. *Parallel-to-serial conversion* is normally accomplished by the use of a counter to provide a binary sequence for the data-select inputs of a multiplexer, as illustrated in the circuit below.

Parallel-to-serial data conversion logic.

The Q outputs of the modulus-8 counter are connected to the data-select inputs of an eight-bit multiplexer. The first byte (eight-bit group) of parallel data is applied to the multiplexer inputs. As the counter goes through a binary sequence from 0 to 7, each bit beginning with D0, is sequentially selected and passed through the multiplexer to the output line.

After eight clock pulses, the data byte has been converted to a serial format and sent out on the transmission line. Then, the counter recycles back to 0 and converts another parallel byte sequentially again by the same process.

Example 2:

The following diagram shows the simplified logic diagram for a 12-hour digital clock.

An rights reserved.