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Reed-Solomon codes

In these notes we examine Reed-Solomon codes, from a computer science point of view.

Reed-Solomon codes can be used as both error-correcting and erasure codes. In the error-correcting setting,
we wish to transmit a sequence of numbers over a noisy communication channel. The channel noise might cause
the data sent to arrive corrupted. In the erasure setting, the channel might fail to send our message. For both cases,
we handle the problem of noise by sending additional information beyond the original message. The data sent is an
encoding of the original message. If the noise is small enough, the additional information will allow the original
message to be recovered, through a decoding process.

Encoding

Let us suppose that we wish to transmit a sequence of numbers b0,b1, . . . ,bd−1. To simplify things, we will
assume that these numbers are in GF(p), i.e., our arithmetic is all done modulo p. In practice, we want to reduce
everything to bits, bytes, and words, so we will later discuss how to compute over fields more conducive to this
setting, namely fields of the form GF(2r).

Our encoding will be a longer sequence of numbers e0,e1, . . . ,en−1, where we require that p > n. We derive the
e sequence from our original b sequence by using the b sequence to define a polynomial P, which we evaluate at n
points. There are several ways to do this; here are two straightforward ones:

• Let P(x) = b0 + b1x+ b2x2 + . . .bd−1xd−1. This representation is convenient since it requires no computation
to define the polynomial. Our encoding would consist of the values P(0),P(1), . . . ,P(n− 1). (Actually, our
encoding could be the evalution of P at any set of n points; we choose this set for convenience. Notice that we
need p > n, or we can’t choose n distinct points!)

• Let P(x) = c0 + c1x + c2x2 + . . .cd−1xd−1 be such that P(0) = b0, P(1) = b1, . . . , P(d − 1) = bd−1. Our
encoding e0,e1, . . . ,en−1 would consist of the values P(0),P(1), . . . ,P(n− 1). Although this representation
requires computing the appropriate polynomial P, it has the advantage that our original message is actually
sent as part of the encoding. A code with this property is called a systematic code. Systematic codes can
be useful; for example, if there happen to be no erasures or errors, we might immediately be able to get our
message on the other end.

The polynomial P(x) can be found by using a technique known as Lagrange interpolation. We know that
there is a unique polynomial of degree d −1 that passes through d points. (For example, two points uniquely
determine a line.) Given d points (a0,b0), . . . ,(ad−1,bd−1), it is easy to check that

P(x) =
d−1

∑
j=0

bj ∏
k �= j

x−ak

a j −ak

is a polynomial of degree d −1 that passes through the points. (To check this, note that∏k �= j
x−ak
a j−ak

is 1 when
x = aj and 0 when x = ak for k �= j.)

Note that in either case, the encoded message is just a set of values obtained from a polynomial. The important
point is not which actual polynomial we use (as long as the sender and receiver agree!), but just that we use a
polynomial that is uniquely determined by the data values.
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We will also have to assume that the sender and receiver agree on a system so that when the encoded information
ei arrives at the receiver, the receiver knows it corresponds to the value P(i). If all the information is sent and arrives
in a fixed order, this of course is not a problem. In the case of erasures, we must assume that when an encoded value
is missing, we know that it is missing. For example, when information is sent over a network, usually the value i is
derived from a packet header; hence we know when we receive a value ei which number i it corresponds to.

Decoding
Let us now consider what must be done at the end of the receiver. The receiver must determine the polynomial

from the received values; once the polynomial is determined, the receiver can determine the original message values.
(In the first approach above, the coefficients of the polynomial are the message values; in the second, given the
polynomial the message is determined by computing P(0), P(1), etc.)

Let us first consider the easier case, where there are erasures, but no errors. Suppose that just d (correct) values
e j1 ,e j2 , . . . ,e jd arrive at the receiver. No matter which d values, the receiver can determine the polynomial, just by
using Lagrange interpolation! Note that the polynomial the receiver computes must match P, since there is a unique
polynomial of degree d −1 passing through d points.

What if there are errors, instead of erasures? (By the way, if there are erasures and errors, notice that we can
pretend an erasure is an error, just by filling the erased value with a random value!) This is much harder. When there
were only erasures, the receiver knows which values they received and that they are all correct. Here the receiver
has obtained n values, f0, f1, . . . , fn−1, but has no idea which ones are correct.

We show, however, that as long as at most k received values are in error, that is fj �= e j at most k times, then the
original message can be determined whenever k ≤ n−d

2 . Notice that we can make n as large as we like. If we know a
bound on error rate in advance, we can choose n accordingly. By making n sufficiently large, we can deal with error
rates of up to 50%. (Of course, recall that we need p > n.)

The decoding algorithm we cover is due to Berlekamp and Welch. An important concept for the decoding is
an error polynomial. An error polynomial E(x) satifies E(i) = 0 if fi �= ei. That is, the polynomial E marks the
positions where we have received erroneous values. Without loss of generality, we can assume that E has degree k
and is monic (that is, the leasing coefficient is 1), since we can choose E to be∏i: fi �=ei

(x− i) if there are k errors, and
throw extra terms x− i in the product where fi equals ei if there are fewer than k errors.

Now consider the following interesting (and somewhat magical) setup: we claim that there exist polynomials
V (x) of degree at most d −1+ k and monic W (x) of degree at most k satisfying

V (i) = fiW (i).

Namely, we can let W (x) = E(x), and V (x) = P(x) ·E(x). It is easy to check that V (i) and W (i) are both 0 when
fi �= ei, and are both eiW (i) otherwise. So, if someone handed us these polynomials V and W , we could find P(x),
since P(x) = V (x)/W (x).

There are two things left to check. First, we need to show how to find polynomials V and W satisfying V (i) =
fiW (i). Second, we need to check that when we find these polynomials, we don’t somehow find a wrong pair of
polynomials that do not satisfy V (x)/W (x) = P(x). For example, a priori we could find a polynomial D that was
different from E!

First, we show that we can find an V and W efficiently. Let v0,v1, . . . ,vd+k−1 be the coefficients of V and
w0,w1, . . . ,wk be the coefficients of W . Note we can assume wk = 1. Then the equations V (i) = fiW (i) give n linear
equations in the coefficients of V and W , so that we have n equations and d +2k ≤ n unknowns. Hence a pair V and
W can be found by solving a set of linear equations.
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Since we know a solution V and W exist, the set of linear equations will have a solution. But it could also have
many solutions. However, any solution we obtain will satisfy V (x)/W (x) = P(x). To see this, let us suppose we
have two pairs of solutions (V1,W1) and (V2,W2). Clearly V1(i)W2(i) fi = V2(i)W1(i) fi. If fi does not equal 0, then
V1(i)W2(i) = V2(i)W1(i) by cancellation. But if fi does equal 0, then V1(i)W2(i) =V2(i)W1(i) since then V1(i) =V2(i)
= 0. But this means that the polynomials V1W2 and V2W1 must be equal, since they agree on n points and each has
degree d + 2k − 1 < n. But if these polynomials are equal, then V1(x)/W1(x) = V2(x)/W2(x). Since any solution
(V,W ) yields the same ratio V (x)/W (x), this ratio must always equal P(x)!

Arithmetic in GF(2r)
In practice, we want our Reed-Solomon codes to be very efficient. In this regard, working in GF(p) for some

prime is inconvenient, for several reasons. Let us suppose it is most convenient if we work in blocks of 8 bits. If we
work in GF(251), we are not using all the possibilities for our eight bits. Besides being wasteful, this is problematic
if our data (which may come from text, compressed data, etc.) contains a block of eight bits which corresponds to
the number 252!

It is therefore more natural to work in a field with 2r elements, or GF(2r). Arithmetic is this field is done
by finding an irreducible (prime) polynomial π(x) of degree r, and doing all arithmetic in Z2[π(x)]. That is, all
coefficients are modulo 2, arithmetic is done modulo π(x), and π(x) should not be able to be factored over GF(2).

For example, for GF(28), an irreducible polynomial is π(x) = x8 + x6 + x5 + x + 1. A byte can naturally be
though of as a polynomial in the field. For example, by letting the least significant bit represent x0, and the ith least
significant bit represent xi, we have that the byte 10010010 represents the polynomial x7 +x4 +x. Adding in GF(2r)
is easy: since all coefficients are modulo 2, we can just XOR two bytes together. For example

10010010+ 10101010 = 00111000

(x7 + x4 + x)+ (x7 + x5 + x3 + x) = x5 + x4 + x3.

Moreover, subtracting is just the same as adding!

Multiplication is slightly harder, since we work modulo π(x). As an example

(x4 + x) · (x4 + x2) = x8 + x6 + x5 + x3.

However, we must reduce this so that we can fit it into a byte. As we work modulo π(x), we have that π(x) = 0, or
x8 = x6 + x5 + x+ 1. Hence

(x4 + x) · (x4 + x2) = x8 + x6 + x5 + x3 = (x6 + x5 + x+ 1)+ x6 + x5 + x3 = x3 + x+ 1,

and hence
00010010 ·00010100 = 00001011.

Rather than compute these products on the fly, all possible 256 ·256 pairs can be precomputed once in the beginning,
and then all multiplications are done by just doing a lookup in the multiplication lookup table. Hence by using
memory and preprocessing, one can work in GF(28) and still obtain great speed.

Reed-Solomon codes work exactly the same over GF(2r) as they do over GF(p), since in both cases the main
reqiurement, namely that a polynomial of degree d −1 be uniquely defined by d points, is satisfied.
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