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– Power Dissipation in Logic ICs
• static and dynamic power dissipation

• input power

• internal power

• drive power

• output power

– Effective cycle frequency for bitstreams

IC Power Dissipation/Objectives
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• Power dissipation in a logic device is only indirectly related to the typical 
supply current specification on its data sheet (Pcc=Vcc*Icc)

• Datasheet specs often ignore additional power dissipation occuring at 
high speeds or high output loading

• Power dissipation categories of high-speed logic:
– Input power

– Internal dissipation

– Drive circuit dissipation

– Output power

• Each categorie has two sub-categories
– static / quiescent (power used to hold a circuit in one logic state or the other)

– dynamic (power used everytime a logic circuit changes state)

IC Power Dissipation/General
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• Static power dissipation
– Power used to hold a circuit in one logic state or the other
– Depending on situation use

» maximum (worst case) power dissipation
Assumption that IC spends all its time in worst case state

» average power dissipation
Assumption that IC spends equal time in either state

» weighted average power dissipation
Useful if statistical information on states is available…
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Static Power Dissipation?

IC Power Dissipation/Static
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Note: Regardless of values of Rc and Rd !

Equations valid only if
•Cload fully charged from 0V to Vcc
•Cload fully discharged from Vcc to 0V

IC Power Dissipation/Dynamic
Charging/discharging capacitors: Energy budget and power dissipation considerations



29/09/2005 EE6471 (KR) 154

Vcc

L
o

g
ic

 D
ev

ic
e

Rc

Rd

Cload
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IC Power Dissipation/Dynamic
Charging/discharging capacitors: Energy budget and power dissipation considerations
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Icc

Vin
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• Cross-Conduction common for totem-pole output stages
• During input transitions high-side and low-side switch of totem-pole 

output conduct simultaneously
• Complex trade-off between speed, output impedance, supply voltage 

range, etc.
• Particularly pronounced in bipolar TTL (saturated low-side BJT)
• Adverse effect of slow rise and fall times

Modern logic devices featuring 
very low supply voltages can 
even suffer from static cross-
conduction (significant sub-
threshold conduction)

VccE conductioncross ∝−

( )VccfP cycleconductioncross ,∝−

IC Power Dissipation/Dynamic/Cross-Conduction
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• Heat energy due to cross-conduction

( )cycledynamic fVccP ,2..1∝

VccE conductioncross ∝−

• Heat energy due to charge/discharge of circuit capacitances
2VccEcapacitive ∝

IC Power Dissipation/Dynamic

• Dependency of dynamic power dissipation

( )cycledynamic fVccP ,8.1∝

• more typically…
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• Static Input Power
– Required to bias and activate the input 

circuits

– Often negligible (especially for CMOS)
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TTL CMOS

Logic Family IIH (max) IIL (max)

74 40µA -1.6mA

74LS 20µA -0.4mA

74AS 20µA -0.5mA

74ALS 20µA -100µA

74F 20µA -0.6mA

4000 ±1µA ±1µA

74HC/HCT ±1µA ±1µA

74AC/ACT ±1µA ±1µA

74AHC/AHCT ±1µA ±1µA

IC Power Dissipation/Input Power/Static
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• Dynamic Input Power
– Due to input capacitance
– Causes only negligible power 

dissipation in input stage (i.e. causes 
power dissipation in output stage of 
driving circuit…)

Cin

Power Dissipation Here

Logic 
Family

Cin
(typ)

74AS 3.0pF

ECL 3.0pF

4000 5pF

74HC/HCT 3.5pF

74AC/ACT 4.5pF

74LCX 7pF

IC Power Dissipation/Input Power/Dynamic
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• Static and dynamic internal power dissipation
– Used to bias and switch nodes internal to a logic device (static and dynamic)

cycle

staticinternal
dynamic f

PP
K

−=

constantn dissipatioPower 

cycledynamicstaticinternal fKPP ⋅+=

• Knowning the power dissipation constant, the total internal power dissipation for 
an arbitrary operating frequency can be approximated

• Does not include extra energy dissipated in the driver caused by a connected load!

{ } Hz
WKdynamic =

IC Power Dissipation/Dissipation Constant
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• Static and dynamic internal power dissipation
• Some CMOS circuits operate over a wide range of supply voltages. Many 

datasheets therefore rate their power dissipation in terms of an equivalent 
capacitance CPD

cyclePDstaticinternal fVccCPP ⋅⋅+= 2
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Example Parameter:
•Fairchild 74HC00
•Icc=20µA (static)
•Vcc=2V..6V
•CPD=20pF

{ } V
AsCPD =

IC Power Dissipation/Dissipation Constant



29/09/2005 EE6471 (KR) 161

• Static driver power dissipation
– Power dissipation due to load (sink or source) 

current and the residual voltage across the 
conducting switch
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IC Power Dissipation/Driver Power/Static



29/09/2005 EE6471 (KR) 162

• Equivalent driver output impedances and 
maximum high/low state output currents
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Logic Family IOH (max) IOL (max)

74 -0.4mA 16mA

74LS -0.4mA 8mA

74AS -2mA 20mA

74ALS -0.4mA 8mA

74F -1mA 20mA

4000 -0.4mA 0.4mA

74HC/HCT -4mA 4mA

74AC/ACT -24mA 24mA

74AHC/AHCT -8mA 8mA

IC Power Dissipation/Driver Power/Static
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• Dynamic driver power dissipation due to
– charge/discharge of load capacitances

Vcc

Ic

Cload

Vcc

Id Cload
cycleloaddriver fVccCP

dyn
⋅⋅= 2

Cload is typically the sum of input capacitances 
of gates driven by the output.

IC Power Dissipation/Driver Power/Dynamic
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• Output power dissipation
– mainly in termination resistors

Don’t under-estimate power dissipation in termination resistors! Use 
termination resistor types which can handle the power. Consider worst 
case conditions for each resistor.
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IC Power Dissipation/Output Power
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• Worst case cycle 
frequency of bitstreams

– Regular pattern

– One transition per bit

t
1/bitrate = 1/fclock

Periodic Bitstream

1/fcycle

QD

bitrate

Periodic
Bitstream

fclock

22

fclockbitrate
fcycle == It takes two transitions  (i.e. 2 

bits) to complete a cycle !

Bitstreams/Effective Cycle Frequency/Max
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• Average cycle frequency 
of a random bitstreams

– Random pattern

– 0.5 transitions per bit 
(statistically)

It takes two transitions to complete 
a cycle ! On average it will take 4 
clock periods to complete a cycle.

44

fclockbitrate
f

avgcycle ==

QD
f

bitrate

Random
Bitstream

fclock

t
1/bitrate = 1/fclock

Random Bitstream

1/fcycleavg

Bitstreams/Effective Cycle Frequency/Average
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Worst case and average drive power dissipation:
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IC Power Dissipation/Driver Power
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– Thermal Basics
• Modes of heat transfer

• Thermal modelling

– IC Packaging
• Categories (PTH, SMT)

• Materials

• Electrical package modelling

– Measurement Techniques
• Scopes and scope probes

Thermals/Objectives
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– Exponential relationship between temperature 
of a device and its failure rate

– MTBF: Mean Time Between Failures
– Modes of heat transfer

• Conduction
Transfer through solid material

• Convection
Transfer through a medium of fluid (air for our purposes)

• Radiation
Transfer of heat through EM waves

Arrhenius Law for chemical processes near room temperature:
Failure rate of devices approx. doubles with every 10°C increase in its temperature…

Thermals/Basics
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Pdiss

Rth_chip

Rth_bond

Rth_pin

Rth_track

Rth_pcb_amb

Rth_pcb

Rth_chip_amb

Thermal arrangement:
Often complex pathes from heat source (e.g. power dissipation on an IC) to heat sink (e.g. 
ambient).

Thermals/IC Thermal Paths Junction-Ambient
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Complex thermal networks
Identification of significant thermal paths is difficult. Quantification of thermal resistances even 
more so. For proper analysis: Use appropriate SW tools (Thermal FEM Tools, e.g. Flotherm).

AmbJdissAmbJ RthPT __ ⋅=∆
PinJdissPinJ RthPT __ ⋅=∆
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Rth_chip
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Rth_track
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Rth_bond
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Rth_track
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Rth_pin

Rth_track
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(radiation)
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(direct convection)

∆∆∆∆T chip to pin

∆∆∆∆T chip to ambient

Tamb

Thermals/IC Thermal Paths Junction-Ambient
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• Highly simplified
– but often adequate for estimating the junction temperature

– Thermal resistances RthJC and/or RthJAmb specified in most IC 
datasheets

( )CAmbJCdissambJ RthRthPTT +⋅+=
RthJC

RthCAmb

∆∆∆∆TJC

∆∆∆∆TCAmb
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JCdissCJ RthPTT ⋅+=

Thermals/IC Thermal Paths Junction-Ambient
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( )CAmbJCdissambJ RthRthPTT +⋅+=

Example Parameter:
•Fairchild 74HC00
•RthJA=83.3K/W (still air)
•Tambmax=85°C
•Pdmax=500mW (SO14)
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Thermals/IC Thermal Paths Junction-Ambient
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Forced Air Convection:
Typical behavior thermal resistance versus air velocity in forced air convection:

In a typical system with forced air 
convection:

s

m

s

m
vair 2..5.0=

Air velocity often quoted in LFPM 
(linear feet per minute)…

s

m
LFPM 5.0 100 ≈vair

RthJA
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100%

50%

without heatsink
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Thermals/IC Thermal Paths Junction-Ambient
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• Watch Out!
– Definition of ambient temperature Tamb 

can be ambiguous (ambient temperature 
of a system vs local ambient of an 
electronic sub-assembly)

– IC manufacturers tend to specify 
RthJAmb. Read the small-print! 
RthJAmb is often specified using 
unrealistically large copper areas around 
the IC

– Always: Verify your thermal predictions 
through thermal measurements!

» IR camera
» no-contact Laser thermometer
» thermo-couples

RthJC

RthCAmb
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Thermals/IC Thermal Paths Junction-Ambient


