IC Power Dissipation/Objectives

- Power Dissipation in Logic ICs
 - static and dynamic power dissipation
 - input power
 - internal power
 - drive power
 - output power
- Effective cycle frequency for bitstreams

IC Power Dissipation/General

- Power dissipation in a logic device is only indirectly related to the typical supply current specification on its data sheet (Pcc=Vcc*Icc)
- Datasheet specs often ignore additional power dissipation occuring at high speeds or high output loading
- Power dissipation categories of high-speed logic:
 - Input power
 - Internal dissipation
 - Drive circuit dissipation
 - Output power
- Each categorie has two sub-categories
 - static / quiescent (power used to hold a circuit in one logic state or the other)
 - dynamic (power used everytime a logic circuit changes state)

IC Power Dissipation/Static

- Static power dissipation
 - Power used to hold a circuit in one logic state or the other
 - Depending on situation use
 - » maximum (worst case) power dissipationAssumption that IC spends all its time in worst case state
 - » average power dissipationAssumption that IC spends equal time in either state
 - » weighted average power dissipation
 Useful if statistical information on states is available...

IC Power Dissipation/Dynamic

Charging/discharging capacitors: Energy budget and power dissipation considerations

Dissipated in Rc per cycle

$$E_{Rc_{charge}} = \frac{1}{2} C \cdot Vcc^2$$

Dissipated in Rd per cycle

$$E_{Rd_{discharge}} = \frac{1}{2} C \cdot Vcc^2$$

Note: Regardless of values of Rc and Rd!

Thermal energy in IC per cycle

$$E_{IC_{cycle}} = C \cdot Vcc^2$$

Average IC Power Dissipation

$$P_{diss} = E_{diss} \cdot f_{cycle} = C \cdot Vcc^2 \cdot f_{cycle}$$

Equations valid only if

- •Cload fully charged from 0V to Vcc
- •Cload fully discharged from Vcc to 0V

153

EE6471 (KR)

IC Power Dissipation/Dynamic

Charging/discharging capacitors: Energy budget and power dissipation considerations

Watch out: Situation changes considerably if load capacitance is

pre-charged...

Dissipated in Rc per charge cycle

Energy transferred into Cload

$$E_{Cload} = \frac{1}{2} C \cdot \left(V_{end}^{2} - V_{start}^{2} \right)$$

EE6471 (KR)

IC Power Dissipation/Dynamic/Cross-Conduction

- Cross-Conduction common for totem-pole output stages
- During input transitions high-side and low-side switch of totem-pole output conduct simultaneously
- Complex trade-off between speed, output impedance, supply voltage range, etc.
- Particularly pronounced in bipolar TTL (saturated low-side BJT)
- Adverse effect of slow rise and fall times

conduction (significant sub-

threshold conduction)

29/09/2005 EE6471 (KR) 155

IC Power Dissipation/Dynamic

• Heat energy due to cross-conduction

$$E_{cross-conduction} \propto Vcc$$

• Heat energy due to charge/discharge of circuit capacitances

$$E_{capacitive} \propto Vcc^2$$

• Dependency of dynamic power dissipation

$$P_{dynamic} \propto (Vcc^{1..2}, f_{cycle})$$

• more typically...

$$P_{dvnamic} \propto (Vcc^{1.8}, f_{cvcle})$$

IC Power Dissipation/Input Power/Static

• Static Input Power

- Required to bias and activate the input circuits
- Often negligible (especially for CMOS)

Logic Family	I _{IH} (max)	I _{IL} (max)
74	40μΑ	-1.6mA
74LS	20μΑ	-0.4mA
74AS	20μΑ	-0.5mA
74ALS	20μΑ	-100µA
74F	20μΑ	-0.6mA
4000	±1μA	±1μA
74HC/HCT	±1μA	±1μA
74AC/ACT	±1μA	±1μA
74AHC/AHCT	±1μA	±1μA

EE6471 (KR) 157

IC Power Dissipation/Input Power/Dynamic

• Dynamic Input Power

- Due to input capacitance
- Causes only negligible power dissipation in input stage (i.e. causes power dissipation in output stage of driving circuit...)

Power	Dissipation	Here
I UNUI	Dissipation	11010

Logic Family	C _{in} (typ)
74AS	3.0pF
ECL	3.0pF
4000	5pF
74HC/HCT	3.5pF
74AC/ACT	4.5pF
74LCX	7pF

IC Power Dissipation/Dissipation Constant

- Static and dynamic internal power dissipation
 - Used to bias and switch nodes internal to a logic device (static and dynamic)

Power dissipation constant

$$K_{dynamic} = \frac{P_{internal} - P_{static}}{f_{cycle}}$$

$$\left\{ K_{dynamic} \right\} = W / HZ$$

- Knowning the power dissipation constant, the total internal power dissipation for an arbitrary operating frequency can be approximated
- Does not include extra energy dissipated in the driver caused by a connected load!

$$P_{internal} = P_{static} + K_{dynamic} \cdot f_{cycle}$$

IC Power Dissipation/Dissipation Constant

- Static and dynamic internal power dissipation
- Some CMOS circuits operate over a wide range of supply voltages. Many datasheets therefore rate their power dissipation in terms of an equivalent capacitance C_{PD}

$$P_{internal} = P_{static} + C_{PD} \cdot Vcc^{2} \cdot f_{cycle} \qquad \{C_{PD}\} = As/V$$

Example Parameter:

- •Fairchild 74HC00
- •Icc=20µA (static)
- •Vcc=2V..6V
- ${}^{\bullet}C_{PD}=20pF$

IC Power Dissipation/Driver Power/Static

- Static driver power dissipation
 - Power dissipation due to load (sink or source)
 current and the residual voltage across the
 conducting switch

$$P_{driver_{low}} = V_{ol} \cdot I_{ol}$$

$$P_{\textit{driver}_{\textit{high}}} = \left(Vcc - V_{\textit{oh}} \right) \cdot \left| I_{\textit{oh}} \right|$$

IC Power Dissipation/Driver Power/Static

• Equivalent driver output impedances and maximum high/low state output currents

Logic Family	I _{OH} (max)	I _{OL} (max)
74	-0.4mA	16mA
74LS	-0.4mA	8mA
74AS	-2mA	20mA
74ALS	-0.4mA	8mA
74F	-1mA	20mA
4000	-0.4mA	0.4mA
74НС/НСТ	-4mA	4mA
74AC/ACT	-24mA	24mA
74AHC/AHCT	-8mA	8mA

Vcc

IC Power Dissipation/Driver Power/Dynamic

- Dynamic driver power dissipation due to
 - charge/discharge of load capacitances

$$P_{driver_{dyn}} = C_{load} \cdot Vcc^2 \cdot f_{cycle}$$

 C_{load} is typically the sum of input capacitances of gates driven by the output.

IC Power Dissipation/Output Power

- Output power dissipation
 - mainly in termination resistors

$$P_{R1_{worstcase}} = \frac{Vcc^2}{R1} \qquad P_{R1_{average}} = \frac{1}{2} \frac{Vcc^2}{R1} \qquad P_{R1_{average}} \neq \frac{\left(Vcc\right)^2}{R1}$$

Don't under-estimate power dissipation in termination resistors! Use termination resistor types which can handle the power. Consider worst case conditions for each resistor.

Bitstreams/Effective Cycle Frequency/Max

- Worst case cycle frequency of bitstreams
 - Regular pattern
 - One transition per bit

$$f_{cycle} = \frac{bitrate}{2} = \frac{fclock}{2}$$

It takes two transitions (i.e. 2 bits) to complete a cycle!

Bitstreams/Effective Cycle Frequency/Average

- Average cycle frequency of a random bitstreams
 - Random pattern
 - 0.5 transitions per bit (statistically)

$$f_{cycle_{avg}} = \frac{bitrate}{4} = \frac{fclock}{4}$$

It takes two transitions to complete a cycle! On average it will take 4 clock periods to complete a cycle.

IC Power Dissipation/Driver Power

Worst case and average drive power dissipation:

Worst case
$$P_{diss_{wc}} = \frac{1}{2}Cload \cdot Vcc^2 \cdot bitrate$$

Average
$$P_{dissavg} = \frac{1}{4}Cload \cdot Vcc^2 \cdot bitrate$$

Thermals/Objectives

- Thermal Basics
 - Modes of heat transfer
 - Thermal modelling
- IC Packaging
 - Categories (PTH, SMT)
 - Materials
 - Electrical package modelling
- Measurement Techniques
 - Scopes and scope probes

168

Thermals/Basics

- Exponential relationship between temperature of a device and its failure rate
- MTBF: Mean Time Between Failures
- Modes of heat transfer
 - Conduction
 Transfer through solid material
 - Convection

 Transfer through a medium of fluid (air for our purposes)
 - Radiation
 Transfer of heat through EM waves

Arrhenius Law for chemical processes near room temperature: Failure rate of devices approx. doubles with every 10°C increase in its temperature...

Thermal arrangement:

Often complex pathes from heat source (e.g. power dissipation on an IC) to heat sink (e.g. ambient).

Complex thermal networks

Identification of significant thermal paths is difficult. Quantification of thermal resistances even more so. For proper analysis: Use appropriate SW tools (Thermal FEM Tools, e.g. Flotherm).

- Highly simplified
 - but often adequate for estimating the junction temperature
 - Thermal resistances RthJC and/or RthJAmb specified in most IC datasheets

Example Parameter:

- •Fairchild 74HC00
- •RthJA=83.3K/W (still air)
- •Tambmax=85°C
- •Pdmax=500mW (SO14)

$$T_{J} = T_{amb} + P_{diss} \cdot \left(Rth_{JC} + Rth_{CAmb}\right)$$

Forced Air Convection:

Typical behavior thermal resistance versus air velocity in forced air convection:

In a typical system with forced air convection:

$$v_{air} = 0.5 \frac{m}{s} ... 2 \frac{m}{s}$$

Air velocity often quoted in LFPM (linear feet per minute)...

$$100 LFPM \approx 0.5 \frac{m}{s}$$

Watch Out!

- Definition of ambient temperature Tamb can be ambiguous (ambient temperature of a system vs local ambient of an electronic sub-assembly)
- IC manufacturers tend to specify
 RthJAmb. Read the small-print!
 RthJAmb is often specified using unrealistically large copper areas around the IC
- Always: Verify your thermal predictions through thermal measurements!
 - » IR camera
 - » no-contact Laser thermometer
 - » thermo-couples