
Sta r t

Call RAM_INIT

Call PORT_INIT

Call Timer INIT

Call CHECK_INDEX

Call
DISPLAY_NOW

Call CHECK_KEYS

Call KEEP_TIME

End

Interrupt
Service
Routine

ÒnoblinkÓ Main Program Overview

Starts clock at 12:00:00.
Initializes all the variables used
in the program to appropriate

Sets which ports will be used
and what direction they are
(input or output).

Each CALL displays a single vertical LED column of a single digit only.

Checks if someone is trying to set the time with the key switches.

Increments the seconds, minutes and hours based on variables controlled by the
INTERRUPT SERVICE ROUTINE or as directed by CHECK_KEYS above.

This interrupt routine is run whenever

Enables interrupts.
Sets how crystal clock pulses
are counted by the internal timer

Clears timers.

values.

The following is my current understanding of the program.
I guarantee the previous sentence and nothing else contained herein!

Note:

the PIC internal timer completes a count
(no matter where in the program to the
left it happens to be) and returns when

(1:1 or every clock pulse in this case).

completed. It clears the watchdog timer
and keeps track of fractional seconds

and sets ßags when it has counted
out a second or a minute. It also

Blick Propeller Clock

increments the period_count which
is used to keep track of a rotational
period (used in CHECK_INDEX).

0x in front of a number simply means that number is in hex format
i.e. 0x19 is 19 hex (but 25 decimal).

Checks if ÒblinkerÓ has just cleared shade. If so
it resets digit and dot (column) indexes to initiate
a new display sequence and then checks how long it
took for a revolution (period_count & period_use)
in order to keep a stable display.

The width of the display is based on the value of Òperiod_useÓ.
The display sequence (successive calls) is initiated immediately by the blinker
clearing the shade (CHECK_INDEX). The sequence is run until digit &
dot (column) indexes have incremented to completion. After that
each call basically just returns having displayed nothing until the next
reset in CHECK_INDEX.

Sta r tInterrupt
Service
Routine Save 'W'

Save 'STATUS'

Clear WDT

Increment
Period_count

Period_count
= 0?

Decrement
Period_count

Increment
Bigt ick_lo

Bigtick_lo =
0 ?

Increment
Bigt ick hi

Bigtick_hi =
0 ?

Increment
Bigt ick_dbl

Bigtick_dbl =
0 ?

Bigtick_dbl = FC

Bigtick_hi = 6C

Bigtick_lo = 79

Increment
Sectick_lo

Sectick_lo =
0 ?

Increment
Sectick_hi

Sectick_hi =
0 ?

Set flags,1
(minutes)

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES
Sectick_hi = 6C

Sectick_lo = 79

Set flags,5
(seconds)

Return 'W'

Return 'STATUS'

Clear Interrupt
f lags,2

Return

Note:
This interrupt routine
is run every 256 instruction
cycles (256us or 256/1,000,000)
when timer overflows from
FF --> 00

256us x 3907 = 1.000192sec
256us x 234375 = 60 sec (1 min)

Note: first time Bigtick_lo
increments from 79 until 00,
thereafter it increments
from 01 (others are similar).

BD

F0

This interrupt routine is run every 256 instruction
cycles (256us or 256/1,000,000) when timer
overßows from FF --> 00.

Every 234375 times this interrupt routine is run the minute ßag
(bit 1) is set.

i.e. 256us x 234375 = 60 sec (1 min)

234375 = 0x039387
0x000000 - 0x039387 = 0xFC6C79 (the number to count up from).
Therefore bigtick_dbl is set to FC, bigtick_hi is set to 6C while
bigtick_lo is set to 79 and the interrupt routine increments from

Every 3907 times this interrupt routine is run the seconds ßag
(bit 5) is set.

i.e. 256us x 3907 = 1.000192 sec

3907 = 0x0F43
0x0000 - 0x0F43 = 0xF0BD (the number to count up from).
Therefore sectick_hi is set to F0 while sectick_lo is set to BD

Here period_count is incremented. It is not allowed
to ÒresetÓ if it gets toÒFFÓ i.e. it is held at ÒFFÓ. Hence,
256us/interrupt x 256 (FF max count) = 65.5msec maximum
(or 915.5 RPM is the minimum clock speed).
Slower speeds will hit max period_count FF while
faster speeds will have a lower period_count (but with

Here the number of interrupts is counted to keep track of minutes.

Here the number of interrupts is counted to keep track of seconds.

progressively lower ÒresolutionÓ).

this value (up to 0).

and the interrupt routine increments from this value (up to 0).

Sta r tRAM_INIT
Subroutine

KEYS=07 (111)

HOURS=12

MIN=0

SEC=0

DOT_INDEX=0

DIGIT_INDEX=0

BIGTICK_DBL=FC

BIGTICK_HI=6C

BIGTICK_LO=79

SECTICK_HI=F0

SECTICK_LO=BD

PERIOD_CALC=40

Return

Reset the time setting keys

Start the clock at 12:00:00

Reset the digit and column
index

Reset the 3 values that are
used to count out a minute

Reset the 2 values that are
used to count out a second

Reset the rotation time value

Sta r tPORT_INIT
Subroutine

Set all "B" ports to
outputs for LEDs

(0x00 -->TRIS PORTB)

Set "A" ports as
fo l lows;

b '00010111'

b0 = min
b1=10min
b2 = hrs

b3 = unused
b4 = rotation index

Return

A Ò0Ó sets a port to an
output while a Ò1Ó sets
it to an input.

b0-b2 for time-setting
key switch input.

b4 for ÒblinkerÓ input

Sta r tTIMER_INIT
Subroutine

CLR Timer flag

Enable global
Interupts

Return

Enable timer Interupt

Clear timer

Clear Watchdog timer

Set up timer as follows;

b '11011000'

b7 = port B pull-ups disabled
b6 = intruption on rising edge of INT pin

b5 = Internal instruction clock cycle (CLKOUT)
b4 increment on the H/L transistion on TOCK1 pin

b3 = prescaler assigned to WDT (bypassed)
b2, b1, b0 = prescaler 0,0,0 = 1:1

CHECK_INDEX
SUBROUTINE

Sta r t

Get state of port
A

Check for change
in rotation index

Falling
Edge?

Edge?

PERIOD_COUNT =
PERIOD_DUP

Clear PERIOD_COUNT,
DIGIT INDEX, DOT_INDEX

Increment
PERIOD_CALC

PERIOD_CALC³
PERIOD_DUP?

Difference
>2?

Difference
>2?

Decrement
PERIOD_CALC

PERIOD_CALC =
PERIOD_USE

Return

NO

NO

NO

YES

YES

YESYES

NO

NO

Clock is now set to update display

To minimize jitter, period_calc
is only recalculated if it has
changed +/- from the old value by
more than 3.

Clock has now swept completely through the ÒblinkerÓ. The period_count

and period_count has been reset for
interrupt service routine to start new count.

PERIOD_USE =
PERIOD_CALC

PERIOD_DUP =
PERIOD_COUNT

is immediately duplicated to protect the value from an interrupt.

The result is saved as period_use which is used in the DISPLAY_NOW
subroutine for setting display width.

Check the ÒblinkerÓ

Start

Display _now
Subroutine

Pattern for blank
column "FF"

Does dot_index
=5? (end of digit)

Clear carry and rotate
right (mult by 2)

PCL=Digit_index x 2

No

Yes

Swap Hours into W

(swap used for MSB)

Move Hours into W
(move used for LSB)

W = 0x0A
(first colon)

Swap Min into W
(swap used for MSB)

Move Min into W
(move used for LSB)

W = 0x0A
(second colon)

Swap Sec into W
(swap used for MSB)

Move Sec into W

(move used for LSB)

AND b'00001111' to strip
off the high bits. Store as

scratch

; - - - - - - - -
; CHARACTER LOOKUP TABLE
; ignore high bit. set=LED off, clear=LED on,
bit0=bottom LED, bit6=top LED
; - - - - - - - -

Char_tbl

dt 0xC1,0xBE,0xBE,0xBE,0xC1 ;"O"
dt 0xFF,0xDE,0x80,0xFE,0xFF ;"1"
dt 0xDE,0xBC,0xBA,0xB6,0xCE ;"2"
dt 0xBD,0xBE,0xAE,0x96,0xB9 ;"3"
dt 0xF3,0xEB,0xDB,0x80,0xFB ;"4"
dt 0x8D,0xAE,0xAE,0xAE,0xB1 ;"5"
dt 0xE1,0xD6,0xB6,0xB6,0xF9 ;"6"
dt 0xBF,0xB8,0xB7,0xAF,0x9F ;"7"
dt 0xC9,0xB6,0xB6,0xB6,0xC9 ;"8"
dt 0xCF,0xB6,0xB6,0xB5,0xC3 ;"9"
; dt 0xE0,0xDB,0xBB,0xDB,0xE0 ;"A"
; dt 0x80,0xB6,0xB6,0xB6,0xC9 ;"B"
; dt 0xC1,0xBE,0xBE,0xBE,0xDD ;"C"

; dt 0x80,0xBE,0xBE,0xBE,0xC1 ;"D"
; dt 0x80,0xB6,0xB6,0xBE,0xBE ;"E"
; dt 0x80,0xB7,0xB7,0xBF,0xBF ;"F"
dt 0xFF,0xFF,0xC9,0xFF,0xFF ;":"

Char_tbl_end

W = 5 x scratch

W = 0?

Yes

No

Save Digit_index

Make a blank ("FF")

10 hour digit a

leading 0?Yes

No

W = dot_index + scratch

Call Char_tbl (Pick up the
right column of the
appropriate digit)

Add W (offset)
to the PCL and
dive accordinly

into the table

Return (retlw)
with the

resultant

colum in W
Send W to Port B (i.e.
display the column)

Period_use = Period_use - 2C

Dot_index = Dot_index + 1
(Go to next column)

Dot_index = 6?
(a digit + a

space)

Yes

No

Clear Dot_index

Increment Digit_index

Return

Tick = 0?
(This delay for
width of digit)No Yes

W = tick - 1

W = tick

Delay

D_lookup3

D_lookup2

D_lookup

The Òdisplay a blank
column branchÓ

The Òdisplay nothing branchÓ. Used
repeatedly for approx 80% of each rotation.

W now has the appropriate program counter
(PCL) offset for the required digitÕs
column pattern.

Size (or direction) of this
jump is dependant on the
program counter (PCL).
2 x is used as each branch
requires 2 instruction cycles.

Tick = Tick - 1

W = Period_use

Tick = W

W = scratch = 5 x scratch

PERIOD_USE or TICK is used to set

 By default that will also determine
 LEDs within a digit. See also above right.

C B

B

 B C

1

0 0 0

1
1 1 1 1 1

0

 1 1 1

0

1 E

E

 E 1

0

 1 1 1

0

0

 1 1 1

0

0

 1 1 1

0

0

 1 1 1

0

1

0 0 0

1

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7 Not Displayed

Below is how the digit 0 (zero) is displayed.

1 = LED off, 0 = LED on, BIT 7 = no LED
One can see the 0's form a zero. The top
Bit 7 position is not displayed.

The box shows what

one

 DISPLAY_NOW
call might display. ÒBEÓ is returned from
the character table and sent to PORTB.

The TICK delay determines the width of
the column (the box).

Tick = 0?

A-F not used (turned into comments by Ò;Ó)
Therefore the colon Ò:Ó is after 9.

Note: The Òto be displayedÓ hours, min or sec value
here is a hex value, not a decimal value. See also the

i.e. 59sec = 0x59 = 89 decimal
note in KEEP_TIME subroutine.

Direction of display

the display width of a single column of

the overall display width.

1st call
2nd call

3rd call

4th call
5th call

¥ ¥ ¥ ¥

Sta r tCHECK_KEYS
Subroutine

Get state of port
'A'

Any keys
pressed?

Store keys

Scratch = 64

Tick = FF

Decrement Tick

Tick = 0?

Decrement
Scratch

Scratch =
0 ?

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

Minute key
pressed?

Tens key
pressed?

Scratch =
0 ?

Go to
INC_MINUTES
in KEEP_TIME

Subroutine

Scratch = 10 (A)
Go to

INC_MINUTES
in KEEP_TIME

Subroutine

Hour key
pressed?

Decrement
Scratch

Delay to eliminate
key bounce

Hours = 12?

in W test if hours +
7 causes a carry
i.e. hours = 9?

hours = hours + 1 hours = hours + 7 hours = 1

Return

INC_HOURS

From KEEP_TIME
Subroutine

YES

NO

YES

NO

YES

NO

Check the time setting key switches

Note:
Program is working in Hex but display
is interpreted as decimal hence jumps of 7.

Displayed
Hex

Decimal
Equivalent

08
09
10
11

.

.

.

19
20

08
09
16
17

.

.

.

25
32

Jump of 7

Jump of 7

StartKEEP_TIME
Subroutine

Change in sec
flag? (flag bit 5)

Clear seconds flag
(flag bit 5)

No

Yes

Seconds =
seconds + 7

Return

No

Yes

Carry bit set?

Yes

No

Seconds =
seconds - 6

Change in min
flag? (flag bit 1)

Clear minute flag
(flag bit 1)

No

Yes

Clear seconds

Sectick_hi = F0

Sectick_lo = BD

In W test minutes =
minutes + 7

Keep_t ime2

Carry?

Save minutes

Minutes =
60?

Yes
No

Clear minutes

Increment minutes

INC_MINUTES

Go to
INC_HOURS
subroutine (in

CHECK_KEYS)

From
CHECK_KEYS

subroutine

NO

YES

