B0L12 Infrared Sensor.

Centre Frequency Approx 38KHz.

Application.

Sony Remote control receiver, Using the Crownhill PICBASIC PLUS Compiler.
' Program SONY_RX.BAS

' This program reads signals from a Sony IR remote control, and displays them on a Serial LCD, connected to PORTA.3 at inverted 9600 Baud 8-N-1
' The infrared receiver module used is the MITSUMI B0L12.

' The infrared receiver module for this experiment should, be a type that is set for a 38 kHz carrier frequency.
' If another type is used, some reduction in range may be noticed.
' The output pin of the IR module connects to PORTA.2

' The remote control used, may be either a Sony manufactured unit, or one of the universal remotes that can be configured for Sony equipment.
' This is important since we are dealing with a specific signal protocol.

' With Sony’s SIRCS specification, a start pulse is initially sent to indicate the beginning of a frame of data. This pulse is approx 2.5 msec in length.
' Following this, are 7-bits of data, which represent the instruction being sent.
' Then an additional 5-bit command byte, which signifies the target device (TV, VCR, etc.).
' Data bits are sent with the least significant bit first.

 DEVICE 16F84
 REMARKS ON ' ** Setup the Crystal Frequency, in Mhz ** DECLARE XTAL 4

 ' ** Setup the RSOUT Parameters ** DECLARE RSOUT_PIN PortA.3 ' Rsout PortA.1 DECLARE SERIAL_BAUD 9600 ' Rsout Baud Rate *** DECLARE RSOUT_MODE Inverted ' Set Serial Mode to Inverted DECLARE RSOUT_PACE 50 ' Delay between characters sent

 ' ** Declare the Variables ** DIM Green_Led AS PORTA.1 ' Led flashes with a valid IR signal DIM IR_Sense AS PORTA.2 ' IR sensor is attached to this pin DIM ST AS WORD ' Header length, signal DIM IR_Word AS ST ' Double up the variable, to save ram DIM ID AS BYTE ' The sony bit length 600us = 0, 1200us = 1 DIM IR_Data AS BYTE ' The data byte returned DIM IR_DEV AS BYTE ' The command byte returned DIM Sony_LP AS BYTE ' Temporary variable used for a loop DIM IR_Valid AS BIT ' Flag to indicate valid signal received

 RSOUT CLS ' Clear the Serial LCD RSOUT AT 1,1,"Sony Data= " RSOUT AT 2,1,"Sony Command="

Main:
 LOW Green_Led ' Turn off the green LED GOSUB Sony_In ' Receive the remote control signal IF IR_Valid = 1 THEN HIGH Green_Led ' Turn on the green LED ' Display the data Byte (7-bit code), and the command byte (5-bit code) RSOUT AT 1,13,@IR_Data," ",AT 2,13,@IR_DEV," "

© Crownhill Associates Limited 2002
ENDIF
GOTO Main ' Loop Forever.
The subroutine "SONY_IN", receives the signal from a Sony remote control, and returns with the 7-bit data byte in the variable "IR_DATA", and the 5-bit command byte in the variable "IR_Dev".

Sony_In:

TRISA.4 = 1 ' Set the sensor pin to input
IR_Valid = 1 ' Initialize the valid data flag

' Are we already in the middle of a pulse? If so, exit
IF IR_Sense = 0 THEN IR_Valid = 0 : RETURN

IR_Word = 0
IR_Data = 0
IR_Dev = 0 ' Clear the variables used within the subroutine

ST = PULSIN IR_Sense, Low

' Verify a good start bit, should be approx 240-260, using a 4MHz Crystal
IF ST < 200 THEN IR_Valid = 0 : RETURN
IF ST > 270 THEN IR_Valid = 0 : RETURN

' Receive the 12 data bits (LSB first), and convert them into a 12-bit word,
' A high (1) should be approx 120, actual timing is 1200 us
' A low (0) should be approx 60, actual timing is 600 us
' We split the difference and say that < 100 is a low, >= 100 is a high
' These values are for use with a 4mhz crystal
FOR Sony_Lp = 0 TO 11 ' Do 12-bits
 ID = PULSIN IR_Sense, LOW ' Receive the IR bit pulse
 IF ID >= 100 THEN
 SET IR_Word.0 ' If greater than 100 then received a 1
 ELSE
 CLEAR IR_Word.0 ' If less than 100 we have received a 0
 ENDIF
NEXT

' Close the loop

' Split the 7-bit data byte, and the 5-bit command byte
IR_Data = IR_Word & %01111111 ' Mask the first 7 "DATA" bits
' Move down and mask the last 5 "COMMAND" bits
IR_Dev = %00011111 & (IR_Word >> 7)

RETURN ' Exit the subroutine