EECS150 - Digital Design

Lecture 18 - Counters

October 24, 2002 John Wawrzynek

Fall 2002 EECS150 - Lec18-counters

What are they used?

Page 1

- · Examples from this semester:
 - Clock divider circuits

- Network packet parser/filter control.
- Bit-serial multiplier control circuitry (from HW)
- In general: counters simplify controller design by
 - providing a specific number of cycles of action,
 - sometimes used in with a decoder to generate a sequence of control signals.

Fall 2002 EECS150 - Lec18-counters Page 3

Counters

- Special sequential circuits (FSMs) that sequence though a set outputs.
- · Examples:
 - binary counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, 001, ...
 - gray code counter:

000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, ...

- $-\,$ one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, \dots
- BCD counter: 0000, 0001, 0010, ..., 1001, 0000, 0001
- pseudo-random sequence generators: 10, 01, 00, 11, 10, 01, 00, ...
- Moore machines with "ring" structure to STD:

Fall 2002 EECS150 - Lec18-counters Page 2

Controller using Counters

· Bit-serial multiplier:

· Control Algorithm:

Fall 2002

```
repeat n cycles { // outer (i) loop
    repeat n cycles { // inner (j) loop
        shiftA, selectSum, shiftHI
    }
    shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control signal x means x=1. The absence of x means x=0.
```

EECS150 - Lec18-counters

Page 4

How do we design counters?

EECS150 - Lec18-counters

Page 5

For binary counters (most common case) incrementer circuit would work:

1 + register

- In Verilog, a counter is specified as: x = x+1;
 - This does not imply an adder

Fall 2002

- An incrementer is simpler than an adder
- And a counter is simpler yet.
- In general, the best way to understand counter design is to think of them as FSMs, and follow general procedure. But before that ...

Fall 2002 EECS150 - Lec18-counters Page 7

Register Summary

 All registers (this semester) based on Flip-flops:

· Load-enable is a popular option:

Xilinx flip-flops employ a clock enable (CE) for same purpose.

Page 17

Shift-registers

· Parallel load shift register:

- "Parallel-to-serial converter"
- Also, works as "Serial-to-parallel converter", if q values are connected out.
- Also get used as controllers (ala "ring counters")

Fall 2002 EECS150 - Lec18-counters Page 18