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CHARGE COLLECTION IN MOS STRUCTURES
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POTENTIAL WELLS AND BARRIERS
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CHARGE TRANSFER
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BURIED CHANNEL VS SURFACE CHANNEL CCD’S
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Depending on the doping profile in the channel the electrons (p-
type substrate) may be drawn toward the surface or tend to stay
dightly below the surface in alower energy channel. An n-type
iImplant that hasa peak dightly below the surface will result in a
buried channel device. Buried channel devicesarepreferred
because less electronswill belost at traps at the surface interface.

N

oamm

Buried Channd

R
—\:\*e .

Microelectronic Engineering

|
| > X

1um

[
| © January 5, 2005 Dr. Lynn Fuller, Motorola Professor |= Page 7




CCD and CID Technology

ﬁ

READOUT

#N

+15 +5 +5 +10

+15

0o ©

5]

Rochester | nstitute of Technology

Microelectronic Engineering

) |4 © © 00
© 0@
Le

p-type

+V

© January 5, 2005 Dr. Lynn Fuller, Motorola Professor |= Page 8

V out

\/

When electrons are emptied from thelast gatethe electric
field associated with the pn junction collects electronsthat
moveto +V and Vout will drop to alevel proportional to

Ve \\the number of electronsin that packet.
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CHANNEL STOP
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The channel stop definesthe width of the activeregion. The
built in electric fields from pn junctionsis such that electrons
will be forced under the gates. Potential barrierscreated by

Field Gate Electrodes can also keep electrons under channel
gates.
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OVERFLOW DRAINS (ANTI-BLOOMING)
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FOUR PHASE CLOCKING SCHEME
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THREE PHASE CLOCKING SCHEME

3-phase, 3 voltage levels
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TWO PHASE CLOCKING SCHEME
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CCD SENSOR ARCHITECTURE
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CCD SENSOR ARCHITECTURE
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FRAME TRANSFER CCD
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5000 ELEMENT LINEAR CCD IMAGER
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5000 ELEMENT LINEAR CCD IMAGER

The KLI-500 devices are high resolution linear arrays designed for scanned imaging
applications. Each device contains arow of 5000 active photo € ements, consisting
of high performance diodes for improved sensitivity and lower noise. Readout of the
pixel datais accomplished through the use of dual CCD shift registers, positioned on
either side of the diode array.

The sensors are positioned on 7 um centers with an associated 7 um aperture which
gpans the length of the array. A dark reference consisting of 24 light shielded
elementsis also located on each end of the arrgy. The architecture and operation of
the A and B versions are similar except the B device contains on-chip, correlated
double sampling circuitry.

The devices are manufactured using NMOS, buried channel processing, and utilize
dual layer polysilicon and dual layer metal technologies. The die sizeis 36.00mm X
1.12 mm and the chip is housed in a 24-pin 0.600” wide, dual-in-line package.
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1320 (H) x 1035 (V) EIEMENT FULL FRAME CCD IMAGER
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1320 (H) x 1035 (V) ELEMENT FULL FRAME CCD IMAGER

The KAF-1400 isa 1320(H) x 1035(V) element, solid state charge-coupled device,
full frame imager. It isdesigned for high resolution monochrome imaging and has
square pixels for robotic vision applications. The devices optically active area
measures 8.98(H) x 7.04(V) mm. Each element in the array measures 6.8um by
6.8um.

An image is obtained by collecting the el ectrons generated when incident image
photons create electron hole pairs within the silicon. The amount of charge stored
per pixel isalinear function of the localized light intensity and the integration time,
and a non-linear function of wavelength. The signal charge is then transferred out of
the image area by two-phase complementary clocking. The dark reference consists
of 20 columns, each spanning the entire height of the image area, and is located at
the left side of the sensor. The first and last row isalso dark. During integration the
rows are shifted vertically and read out horizontally.

i
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CMOS-1/CCD PROCESS CROSS-SECTIONAL VIEW

Buried Channel P+ Source
2 Level Poly Drain, Substrate
N-Channd FET CCD Contact

P-Channd FET Poly-to-Poly  Isolated Vertical NPN
N-Wéll Capacitor Bipolar Transistor
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CID'S
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Charge Injection Devices
Random readout of image information is possible
Nondestructive readout is also possible

Suitable for usein pattern recognition, target
tracking and other forms of image processing
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PHYSICAL STRUCTURE
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Each pixel consists of a pair of M OS capacitors

Thetwo capacitorsrun perpendicularly to each
other and are know as collection and sense pads
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CID ARCHITECTURE
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The collection pad iscommon for all the pixelsin arow.

The sense pad iscommon for all the pixelsin a column.

Both collection and sense
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PHOTON COLLECTION AND READOUT INA CID
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ZERO LEVEL SENSE AND SIGNAL SENSE
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INJECTION (DESTRUCIVE READOUT)
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RIT CID PROCESS

PM OS on n-type epitaxial substrate
6 micron gate, 4 micron contact cut
Double poly-silicon, one metal level
15V process, 50 nm gate oxide
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CELL LAYOUT
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ARRAY and CLOCKING WAVEFORM
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OUTPUT WAVEFORM
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DISPLAY OUTPUT BY COLUMN
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DISPLAY OUTPUT BY COLUMN

Wire blocking columnsin array
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NEW PI XEL DESIGN
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ACTIVE PIXEL ARRAY
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32 X 32 PIXEL ARRAY

32X 32 Array Fabricated at RIT
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128 x 128 PI XEL DESIGN
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FIRST PICTURESFROM RIT 128 X 128 CID

;N

April 16, 1999

Objectswer e placed
directly on the glass
cover over the CID chip

0.3 msec timed exposure

fromared LED

CID output stored in gif
format and then printed
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FIRST PICTURESFROM RIT 128 X 128 CID

April 16, 1999

| mages proj ected onto

CID from a 35 mm dide

using a50 mm lense

100 msec timed exposure

fromared LED

CID output stored in gif
format and then printed
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ROCHSTER

| @ Work improves on technology to protect
satellite-mounted cameras fmm radiation.

BY STAFF WRITER

it e

CORYDON IRELAND

When George Eastman in-
vented stable film and the box
camera to go with it, the idea
flew around the world.

A new imaging technology
being developed in Rochester
may soon fly around the world
as well — literally.

It would provide improved
| imaging devices that would
protect satellite-mounted
i cameras from the intense radi-
| ation of outer space.

An off-the-shelf version of
| such a “radiation-hardened”

Rochester | nstitute of "'I:é-cﬁ'r;ology

device could be ready in as lit-
tle as'two years, said Zoran
Minkeow, a professor of imaging
science at the Rochester Insti-
tute of Technology.

“Hardening” such a device
ensures that it will operate
normally when placed in the
intense radiation fields found
inouter space of inouclear re-
actors.,

A prototype will be inhangd
thisspring, said Ninkov. NASA
hag put about $350,000 a year
into the RIT project and relat-
ed improvements for less than
a decade.

Radiation-hardened . imag-

RIT boosts space 1mag1ng

ing sensors are already avail-
ahle the basic technology is 30
vears old. But the RIT work
could be a significant Jeap for-
watd, The new. radiation-
hardened devices would not
only protect the sensors from
radiation, but bé cheaper and
lighter and require less metal
shielding, which adds to the
weight of a spacecraft.

“The less (weight) you
have to lannch, the cheaper
your mission becomes,” said
Ninkov, one of NASA's chief
advisers on imaging sensor
technology. One zensor being
developed at RIT 15 about the
size of a nickel.

The RIT device also allows

RADIATION,

PAGE '1TOA

Hubnfsu:m:e | i

RIT is "a key player” in
developing technologies
used to caplure images in
outer space, says NASA
chief Daniel Goldin. RIT has
eight projecis panding worth
$2.5 million, inchading one to |
alum forest fires via sateflite |
images. :

RIT also gets funding
from New York's Centers for
Advanced Technology
program, which hetps about
20 high-tech research
programs in the area. Others |
invotved: the University of |
Hochester, Xerox Carmp., :
Eastman Kodak Co. and
Bausch & Lomb Inc.

Microelectronic Engineering
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AMDEEA MELENIYEL suff photopraphes

Clearer picture Zoran Ninkov, an RIT imaging sciente professor, displays a silicon wafer that may eventually help
scientists et a better view of outer space. "Our area of the country is a kind of hotbed” for such research, he says.

[
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Improving images sent from oute'r“spac.é

On Earth, digital cameras are protected from intense radiation by the
atmosphere. In outer space, that radiation degrades digital images
captured by telescopes and other satellite-mounted hardware. So
radiation-hardened sensor arrays are being designed at the Rochester
Institute of Technology and elsewhere.

The normal digital camera, based on a charge-coupled
device that gathers light, works this way:

' e - Light falls on a semiconductor,
;) S producing a charge and creating ;
Light { ( electrons proportional to the intensity
o, i e ) of light. The electronic charge is :
Blice. & ©€ isolated in tiny, square like “pixels,” or
¢ B picture units, which are millionths of a
meter across.

Each pixel gives up its electric
_charge, which moves through a grid
- of other pixels to an exitlike -
amplifier. The movement is orderly,
like spectators leaving a movie
 theater. In outer space, radiation
$ damages the bucketlike structure

Electrons

bein : Semiconductor
ANDREA MELENDEZ staff photographer '

Small, powerful The technology for the development of this - PRElR s S
silicon wafer, fabricated at RIT, has been possible only since 1995, ST i
‘Semiconductor ages
W : {  of the pixels and interrupts the
‘—j! = 2 orderly flow of electrons to the
- e amplifier. Result: a distorted or
: destroyed image.

At RIT, several strategies are being
- explored to provide detector arrays -
~ that are impervious to the effects of
1 radiation. In one of them, ,
researchers add an amplifier to each
pixel. This eliminates the need for
vulnerable electrons to travel long
distances. Result: reduced chances

o Pinels

._ S'n';'all i ' s S A i

/ \ : - of radiation damage.
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a cameta ta zoom in on a last-moy-
ing abject in space, by employing a
limited array of picture elements,
called pixels; Current digital imag-
ing sensors can only take pictures
using the whole pixel array.

“Things keep getting better,” said
Trwoma Flamme, who oversees simg-
lar technology development for
Hasrman Kodak Co,

Kodak is the largest manufactur-
er of digital imaging sensors of all
kinds in NMorth America Most are
used in digital cameras, which re-
guire no film and ara available for as
little as g100.

Kodak had its own radiation-
hardened imaging sensors in cam-
eras that were mounted on the Mars
Hover, the wheeled exploring de-
vice that successfully rambled over
the surface of Mars in1997.

Ninkov — teaming with gradu-
ute students, other universities and
local industry - has been working
since 1901 on ways to develop radia-
too-hardened imaging sensors,

N

i,

Rochester | nstitute of Technology

Existing sensors are called
charge-coupled devices, known as
CCDs. They are the clectronic heart
af digital cameras and camcorders.
Steady improvements now allow
CCDe — thin cookies of mprinted
silicon — ta produce images com-
parable in quality to 3smm film.

But ini outer space, such pictiire
quality is degraded by intense ioniz-
ing radiation, the same potent ener-
gy that makes nuclear fuel danger-
ous and X-rays powerful.

Radiation-damaged CCDs on the
Hubble Space Telescope had to be
replaced by a space shuttle crew,
like eye doctors changing a pair of
million-dollar glasses.

“CCDs will not take that level of
(outer space) radiation,” said digital
imaging expert Joe Carbone, engi-
neering vice president for CID
Technologies Inc. near Syracuse.

And future space missions will
need radiation-hardened imaging
devices more than ever.

The next generation of space
telescopes, to be launched by NASA
within a decade, will hover deep in
space, well out of range of repair
crews. The Hubble Space Telescope
orbits a modest and accessible 385
miles above Earth.

And within just a few years,
NASA will launch a deep space
probe to Europa, a frozen moon of

the planet Jupiter. Europa may har-
bor water under its outer surface of
ice — making it one day a sort of wet

oasis for outer space travelers.

To get to Jupiter, the probe will
need radiation-hardened sensors as
“star trackers,” to triangulate its tra-
jectory, much the way a sailor navi-
gates by stars. And once in orbit, the
space probe will take pictures to
beam back to Earth — while baking
for a month in Europa’s unusually
intense radiation.

NASA has bids out for the
probe’s star tracker and digital
imaging devices, said Carbone, who

‘works with Ninkov,

He called the RIT scientist “a re-
source person for NASA, someone
they use to screen technologies.”

Competition to make the NASA
devices is intense, and the Roches-
ter area appears to have an edge in
technology that provides sensors
impervious to radiation in space.

“Our area of the country is a kind
of hotbed” for working on radia-
tion-hardened imaging devices,
said Ninkov.

A normal CCD, found in com-
mercially available cameras, is vul-
nerable to radiation.

Microelectronic Engineering

Light from an image falls on a
semiconductor, producing an elec-
tric charge. The resulting electrons,
whose relative intensity represents
shadings in the image, gather under
the pixels. These tiny rectangular
areas are just a few millionths of a
meter across. The electrons move
“like water flowing into a series of
buckets,” said Ninkow. -,© .=
move in straight lines to a common
amplifier, which converts the elec-
tron information to a complex se-
ries of numbers. A computer con-
verts the numbers into an image, in
gradations of gray or color.

Outer-space radiation puts holes
in the buckets, and turns the domi-
nolike line of flowing electrons into
a diffuse stutter of impulses.

One RIT strategy for making
CCDs radiation-hardened adds an
amplifier to each pixel. These mi-
crotechnology products — dubbed
by RIT “active pixels sensors” —
have only been even theoretically
possible since about 1995. Before
then, said Ninkov, CCD makers —
laboring in what insiders call silicon
“foundries” — worked on a coarser
scale. “We only had big hammers,”
said Ninkow.

Since the Hubble and Chandra
space telescopes use conventional
CCDs, they are still vulnerable to ra-
diation.

“Both (telescopes) work, just not
as well as everyone imagined,” said
Ninkov. “We want detectors in
space to work as well as the ones on
the ground do.” &
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HOMEWORK - CCD'SAND CID’S

1. Describe how chargeisgenerated in a CCD.

2. How ischargetransferred in atwo phase CCD.

3. How doesa CID work?
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