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Why are we studying digital 
circuits?

• So that one day you can 
design something which is 
better than the  ...
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Why are we studying digital 
circuits?

• or something better 
than the...
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Why are we studying digital 
circuits?

• or even better ....
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Why are we studying digital 
circuits?

• in time, perhaps even....
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But .....

We have to start at the beginning....
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Number Systems

• Normally we use decimal (base or radix 10)
– e.g 123 = (123)10 = 1*102 + 2*101 +3 *100

• For computers it is more convenient to express 
numbers in binary (base or radix 2)
– e.g.  (101010)2 = (1*25 + 0*24 + 1*23 + 0*22 +1 *21 + 0*20)

= (32   +  0     +  8     + 0      +  2 + 0) 10
= (42) 10

• As binary leads to large strings of 1's and 0's, people 
often use hexadecimal (base 16) or octal (base 8) to 
write compact binary numbers
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Hexadecimal and Octal

• Conversion to Hex notation
– (101010)2 = (0010 1010)2 = 2A  (hex)
– Group into blocks of 4 and convert each block
– 0..9 is same as decimal; also A=10, B=11, C=12, 

D=13,E=14,F=15

• Conversion to Octal notation
– (101010)2 = (101 010)2 = 52  (octal)
– Group into blocks of 3 and convert each block
– Only use digits 0..7
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Digital Logic and Gates
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Analog vs. Digital waveforms
An analog signal assumes a 
continuous range of values:

A digital signal assumes 
discrete (isolated, separate) 
values.  Usually there are 
two permitted values:

t

v(t)    ANALOG

t

v(t)    DIGITAL
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In real life ...
A digital signal takes time to 
change from one value to another, 
and assumes intermediate values 
during transition.  Steady values 
are slightly inaccurate.  Voltages 
within certain ranges are 
guaranteed to be interpreted as 
certain permitted values (green 
regions). 

t

v(t)

0

Vs

Interpreted
as “HIGH”

Interpreted
as “LOW”

AMBIGUOUS

(Vs = supply voltage)

A digital signal transition
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The digital advantage
Because voltages within a certain range are interpreted as a single value, 
a digital signal can contain a certain amount of error (e.g. distortion, noise, 
interference) and still be read correctly.  As long as we regenerate the 
signal  (read it and reconstruct it with electronic circuits) before the error 
becomes too large, we can remove the error.
In an analog signal, we cannot tell whether the value is affected by error, 
because all values are permitted.

Digital signals can be copied, transmitted and 
processed without error.  Analog signals cannot.
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Combinational vs. Sequential
Digital circuits may be classified as combinational or sequential.
In a combinational circuit, the present outputs depend only on present 
inputs (subject to reaction times).
In a sequential circuit, the present outputs may also depend on past 
outputs and inputs.  Sequential circuits usually contain combinational
subcircuits.
The two classes of circuits have different topologies.  Sequential circuits 
contain feedback paths from the outputs to the inputs, while combinational 
circuits do not. 
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Asynchronous vs. Synchronous
Sequential digital circuits may be further classified as asynchronous or 
synchronous.
The outputs of a sequential circuit may be assembled into an ordered list 
called the state vector, or simply the state.
In an asynchronous circuit, the state can change at any time in response 
to changes in the inputs.
In a synchronous circuit, the state can change only at discrete times; 
these times are determined by a control signal called the clock.
We begin by studying combinational circuits ...
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Two-valued digital signals
Consider the statement:

THE TELEPHONE LINE IS BUSY.
This statement (or “condition”) is either true or false.  So we might 
represent the statement by a digital signal (or “logical variable”) called 
BUSY, which takes the value TRUE when the line is busy, and the value 
FALSE when it is not.  In other words, the value of BUSY expresses the 
truth or falsity of the statement represented by BUSY.
Note that “BUSY” means the same as “BUSY=TRUE” or “BUSY is TRUE”.  
The words “is TRUE” are redundant.
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Single-variable operation: NOT
The operation NOT (called negation or complementation) is defined as 
follows:  If A is any condition or statement,

“NOT A” means “A=FALSE”.
Notice that the definition is a literal interpretation of the word “NOT” :  
“NOT A” is equivalent to “NOT (A=TRUE)”, so if we take “NOT” literally, 
we conclude that A=FALSE.
Also notice that “NOT A” is just another statement, and is therefore either 
TRUE or FALSE.  When A is TRUE, NOT A is FALSE; when A is FALSE,
NOT A is TRUE.
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Two-variable operations:  OR, AND
We define the operations OR and AND by taking the words 
literally.
“X OR Y” means “X is true or Y is true”.  So “X OR Y” has the 
value TRUE when either X or Y is TRUE.
N.B.: The word OR is interpreted in the inclusive sense.  That 
is, “or” means “and/or”, and “X or Y” means “X or Y or both”.
“X AND Y” means “X is true and Y is true”;  that is,       X AND 
Y has the value TRUE when both X and Y are TRUE.
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Notation; Truth Tables (1)
For convenience, we define the 
following notations:

T = TRUE
F = FALSE
X’ = X = NOT X
XY = X.Y = X AND Y
X + Y = X OR Y.

Then the operations NOT, OR, 
AND can be defined using truth 
tables [right].

A A’

NOT : F T
T F

OR AND
A  B   A+B A  B   AB
F   F      F F   F     F
F   T      T F   T     F
T   F      T T   F     F
T   T      T T   T     T
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Notation; Truth Tables (2)
The values

TRUE and FALSE

may also be called
1 and 0,
IN and OUT,
YES and NO,
SET and CLEAR,
ON and OFF,
MARK and SPACE .

The truth tables have been 
rewritten using 1 and 0.

X Y’

NOT : 0 1
1 0

OR AND
X  Y    X+Y X  Y    XY
0   0      0 0   0     0
0   1      1 0   1     0
1   0      1 1   0     0
1   1      1 1   1     1
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Logic gates: OR, AND, NOT
If TRUE and FALSE      (or 1 and 
0) are represented by two different 
voltages, we can perform logical 
operations using circuits called 
logic gates.
An OR gate performs the OR (+) 
operation.  Its circuit symbol is:

An AND gate performs the 
AND (.) operation.  Its 
circuit symbol is:

A NOT gate or inverter
performs the NOT 
operation; its circuit 
symbol is:

X
Y Z = X+Y

X
Y Z = XY

X Z = X’
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Inversion bubbles, NAND & NOR

The circle in the NOT gate symbol 
is called an “inversion bubble”.  A 
bubble on the output (or input) of 
another symbol indicates 
inversion; e.g.:

means

In fact, an AND gate with 
output inversion is called a 
NAND gate (“Not AND”).

Similarly, an OR gate with 
inverted output is called a 
NOR gate (“Not OR”).

X Z = X’

X
Y Z = (XY)’

X
Y Z = (X+Y)’
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NAND and NOR truth tables
By inverting the output columns of 
the AND and OR truth tables, we 
obtain the following:

NOR NAND
X  Y   (X+Y)’ X  Y   (XY)’
0   0      1 0   0     1
0   1      0 0   1     1
1   0      0 1   0     1
1   1      0 1   1     0

For the NOR, the output is 
false iff (if and only if) 
either input is true; that is, 
the output is true iff both 
inputs are false.
For the NAND, the output 
is false iff both inputs are 
true; that is, the output is 
true iff either input is false.
In other words ...
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So what is really inside chips?
7400 7402

7404 7408

7432
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Summary

• Why we study digital circuits?
• Analog vs Digital
• Combinational and Sequential circuits
• Synchronous and Asynchronous circuits
• NOT, AND, OR, XOR, NAND, NOR gates
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De Morgan’s laws (1)
In a NOR gate, the output is TRUE
iff the inverses of both inputs are 
TRUE; that is, a NOR gate 
performs and AND operation on 
the inverses.  So there are two 
symbols for a NOR gate:

In a NAND gate, the 
output is TRUE iff the 
inverse of either input is 
TRUE; that is, a NAND 
gate does an OR operation 
on the inverses.  So there 
are two symbols for a 
NAND gate:
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De Morgan’s laws (2)
If we convert the two NOR symbols into algebraic expressions and equate 
them, we get

(X+Y)’ = X’ Y’ .
Doing likewise with the NAND symbols, we get

(XY)’ = X’+Y’ .
These equations are called De Morgan’s laws.  If they are not already 
obvious, try expressing them in words:

Not (X or Y)  =  neither X nor Y  =  (not X) and (not Y).
Not (X and Y)  =  not both X and Y  =  (not X) or (not Y).

Now omit the middle expressions.
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Positive and negative logic (1)
Suppose we represent logical variables using two voltages called HIGH
and LOW;  HIGH is the higher voltage.
Suppose we have a circuit with two inputs and one output, in which the 
output is HIGH iff both inputs are HIGH.     If HIGH means 1 and LOW 
means 0 (“positive logic”), this device is an AND gate.
The same circuit may be described equally well by saying that the output 
is LOW iff at least one input is LOW.  So if LOW means 1 and HIGH 
means 0 (“negative logic”) the same device is an OR gate.
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Positive and negative logic (2)
Consider another circuit with two inputs and one output, in which the 
output is HIGH iff at least one input is HIGH.  In positive logic, this device 
is an OR gate.
We can describe the same circuit by saying that the output is LOW iff both 
inputs are LOW.  So in negative logic, the same device is an AND gate.
In positive or negative logic, an inverter still inverts.
In summary, switching from positive logic to negative logic (or back) 
changes ORs to ANDs and ANDs to ORs.  This fact is known as the 
duality principle.
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Two theorems for the price of one!
Suppose two logical expressions are known to be identical (i.e. equal for 
all values of the variables).  We implement both expressions as electronic 
circuits, using positive logic.  By the duality principle, if we modify the two 
expressions by replacing all ORs in the expressions with ANDs, ANDs
with ORs, 1’s with 0’s, and 0’s with 1’s, we get the expressions 
implemented by the same circuits in negative logic; these expressions are 
also identical.
The second identity is called the dual of the first identity; the dual is 
obtained by interchanging ANDs and ORs, and 1’s and 0’s.
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Duality and De Morgan’s laws (1)
Recall that De Morgan’s laws are

(X+Y)’ = X’ Y’     and     (XY)’ = X’+Y’ .
First notice that each of these laws is the dual of the other.
The gate symbols introduced so far assume positive logic.  A negative-
logic gate is indicated by drawing triangles on the inputs and outputs, e.g.

Negative-logic AND gate; Negative-logic OR gate.
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Duality and De Morgan’s laws (2)
One way to make a positive-logic 
OR gate is to place inverters on 
the inputs and output of a 
negative-logic OR gate.

The inverters convert to negative 
logic before the OR, then back to 
positive.

By duality, the negative-
logic OR gate is a positive-
logic AND gate.  So we 
have:

Since this is an OR gate,
X+Y = (X’ Y’)’.

Inverting both sides gives 
the first De Morgan law:

(X+Y)’ = X’ Y’.
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Duality and De Morgan’s laws (3)
Similarly, a positive-logic AND 
gate can be made like this:

By duality, this is equivalent to

Since this is an AND gate, 
we have

XY = (X’+Y’)’.
Inverting both sides gives 
the second De Morgan law:

(XY)’ = X’+Y’.
Thus De Morgan’s laws 
are related by duality, and 
are consequences of 
duality.
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The Exclusive-OR (XOR) operation
The OR function in logic is 
inclusive; “X or Y” means “X or Y 
or both”.  The exclusive-OR 
function, as its name suggests, 
excludes the “or both” option:       
“X xor Y” means “X or Y but not 
both”.  In equations, X xor Y is 
often written

X    Y.

The truth table is
X Y X xor Y
0 0 0
0 1 1
1 0 1
1 1 0

and the gate symbol is
X

Y
X xor Y
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Exclusive-NOR/equivalence gate
Inverting the output of an XOR 
gate gives an exclusive-NOR 
(XNOR) or equivalence gate.
XNOR truth table:

X Y (X xor Y)’
0 0 1
0 1 0
1 0 0
1 1 1

XNOR gate symbol:

The truth table shows why 
the XNOR gate is called an 
equivalence gate: the 
output is true iff the inputs 
are the same.  (For the 
XOR, the output is true iff
the inputs are different.)

X

Y
(X xor Y)’
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AND-OR formulation of XOR
As we shall see, XOR gates 
are used in addition and 
subtraction circuits.  Hence it 
is of interest to see how such 
gates can be constructed.  
From the truth table, X xor Y 
is true iff (X is false and Y is 
true) or (X is true and Y is 
false).

More concisely, “X xor Y” 
means “([not X] and Y) or 
(X and [not Y])”.  That is

X xor Y = X’Y + XY’.
Note the priority of 
operators in the above 
equation: NOT (’) comes 
first, followed by AND, 
then OR.  (Cf. powers, 
multiplication, addition.)
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AND-OR and NAND-NAND forms
The function

X xor Y = X’Y + XY’
may be implemented using the 
circuit below.

Now let us introduce two inversion 
pairs [top right].

This circuit is equivalent to 
the previous one [left] 
because the inversions 
cancel out.  But now all the 
multiple-input gates are 
NAND gates.

X

Y

X xor Y

X

Y

X xor Y

X’Y

XY’
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Advantage of NAND-NAND form (1)
In the most widely used IC technologies (e.g. CMOS, NMOS, TTL), a 
NAND gate requires less silicon area than an AND or OR gate.  CMOS 
circuits for an invertor and a positive-logic NAND gate are shown below.

X X’

VDD

VDD

X

Y

XY’
p-channel

n-channel

(All transistors are enhancement-mode.)

NOT: NAND:
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Advantage of NAND-NAND form (2)
In most IC technologies, it is easier to make a gate with inversion than 
without, because the common-emitter or common-source transistor 
configuration gives an inversion.
In CMOS, an AND gate requires a NAND gate followed by an inverter.  A 
NOR gate is just as simple as a NAND, while an OR requires a NOR
followed by an inverter.
Exercise:  Sketch a circuit for a CMOS NOR gate in positive logic.  (Hint: What 
does the NAND circuit [previous slide] become if we use negative logic?  See the 
following slide for some useful information on MOS transistors.)
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Enhancement-mode MOS transistors
An enhancement-mode MOSFET (Metal-Oxide-Semiconductor Field-Effect 
Transistor) may be n-channel or p-channel:

For digital purposes, an MOSFET is a switch between the source and drain.  For 
the n-channel enhancement-mode MOSFET, the switch is closed (on) if the gate 
voltage is substantially more positive than both the source and drain voltages; it is 
open (off) if the gate voltage is not substantially more positive than at least one of 
the source and drain voltages.  Intermediate gate voltages are not used.  For the 
p-channel, write “negative” instead of “positive”.

p-channeln-channel

Source

Drain
Gate

Drain

Source
Gate
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NAND-NAND & De Morgan’s laws
Recall that

X xor Y = X’Y + XY’.

The first De Morgan law is
(A+B)’ = A’B’.

Inverting both sides gives
A+B = (A’B’)’.

Applying this to the OR in the top 
equation gives the NAND-NAND 
form:

X xor Y = [(X’Y)’ (XY’)’]’.

The two De Morgan laws 
and their inverted forms 
are contained in the rule
To make an x-gate, invert 

the inputs to a y-gate,
where one of x,y is an 
AND and the other is an 
OR, and only one is 
inverted.  There are four 
combinations.  List them!



ENG1030 Electrical Physics and Electronics    B.Lovell/T.Downs

School of Computer Science and Electrical Engineering

41

28/05/01

Lecture 14

Don’t forget truth tables!
In the preceding slides, De Morgan’s laws and the AND-OR formulation of 
the XOR function have been derived by translating verbal statements into 
logical equations.  This has been done to emphasise the connection 
between digital logic (AND/OR/NOT) and everyday logic (“and”, “or”, 
“not”).
But all the equations can be verified by constructing the truth tables for the 
left-hand and right-hand sides, and observing that the truth tables are the 
same.  Sometimes this is the most convenient method of proof.
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Commutative laws
The OR, AND and XOR functions 
are commutative; that is, for all 
X,Y,

X+Y = Y+X
XY = YX

X xor Y = Y xor X.
These laws are obvious because 
the verbal definitions of OR, AND 
and XOR use words like

“either”, “both” and “only 
one”, which do not 
distinguish between the 
two inputs.
The laws can be verified 
by swapping the input 
columns in the truth tables, 
and then reordering the 
rows to restore the original 
patterns of 1’s and 0’s.  
Try it.
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Associative laws
OR and AND are also associative; 
that is, for all X,Y,Z,

(X+Y)+Z = X+(Y+Z)
(XY)Z = X(YZ).

These laws can also be verified 
using truth tables.
The implication is that the 
expressions X+Y+Z and XYZ are 
unambiguous.

Repeated applications of 
the associative laws 
indicate that OR and AND 
combinations with 4 or 
more variables are also 
unambiguous.
The commutative law can 
be brought in to show that 
these multi-variable 
expressions can be written 
in any order. 
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Many-input gates
Expressions with three or more 
variables are implemented by logic 
gates with three or more inputs:

Their names and functions of 
these gates are obvious.  Of 
course the outputs may be 
inverted [top right].

In a multi-input AND gate, 
the output is true iff all of 
the inputs are true.  In a 
multi-input OR gate, the 
output is true iff any (one 
or more) of the inputs are 
true.  In multi-input NAND 
and NOR gates, the output 
is FALSE under the same 
input conditions.
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De Morgan’s laws - many inputs (1)
The verbal “proofs” of De Morgan’s laws [slides 14-16] can be modified for 
more than two inputs by writing “all” instead of “both”, and “any” or “one or 
more” instead of “either”.  (The same trick extends the verbal definitions of 
AND and OR to several inputs [previous slide].)
For a more rigorous proof, we can show algebraically that the three-input 
forms follow from the two-input forms:

(X+Y+Z)’ = ((X+Y)+Z)’ = (X+Y)’Z’ = (X’Y’)Z’ = X’Y’Z’.

... and similarly for the other law.  In the same way, the laws for n+1 
variables follow from those for n variables.
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De Morgan’s laws - many inputs (2)
The many-input forms of De Morgan’s laws, like the two input forms, yield
alternative symbols for logic gates:

NAND:

NOR:

The summary rule still holds: To make an x-gate, invert the inputs to a y-
gate, where one of x,y is an AND and the other is an OR, and only one is 
inverted.
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Other associative laws? (1)
Recall that the associative laws hold for OR and AND.  They do not hold 
for NOR or NAND.  ((X+Y)’+Z)’ is not identical to (X+(Y+Z)’)’, and neither 
is identical to the three-input NOR function

(X+Y+Z)’ = ((X+Y)+Z)’ = (X+(Y+Z))’.
Similarly, ((XY)’Z)’ is not identical to (X(YZ)’)’, and neither is identical to 
the three-input NAND function

(XYZ)’ = ((XY)Z)’ = (X(YZ))’.
The three-way equalities are of course based on the associative laws for 
OR and AND.



ENG1030 Electrical Physics and Electronics    B.Lovell/T.Downs

School of Computer Science and Electrical Engineering

48

28/05/01

Lecture 14

Other associative laws? (2)
The associative laws do hold for XOR and XNOR.
In fact, cascaded XOR or XNOR gates can be used as parity testers.  If 
we combine n inputs in arbitrary order using n-1 XOR gates, the output is 
TRUE (1) iff the number of TRUE inputs is odd.  If we do the same thing 
with XNOR (equivalence) gates, the output is FALSE (0) iff the number of 
FALSE inputs is odd.  (The symmetry between these statements reflects 
the fact that XNOR is the dual of XOR; that is, an XOR gate in positive 
logic is an XNOR in negative logic, and vice versa.)
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Parity-testing circuits
Each of the following circuits combines n inputs using n-1 XOR gates, and 
produces an output of 1 iff the number of input 1’s is odd.  Other gate 
arrangements are possible.

n = 3:

n = 6:
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Proof of parity-testing property (1)
Proof for XOR gates:  Suppose we combine n inputs in arbitrary order 
using n-1 XOR gates.  Any combination of inputs can be set up by first 
setting all inputs to 0, then toggling the inputs that are required to be 1.  
When the n inputs are 0, all the inputs and outputs of all the gates are 0, 
and the final output is 0.  If we toggle an input, this toggles the output of 
the gate to which the input is connected.  If that output is fed into another 
gate, its output also toggles, and so on.  So the final output is toggled for 
every input that is set to 1.  If the number of 1’s (and toggles) is odd, the 
output ends up being 1.
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Proof of parity-testing property (2)
Proof for XNOR gates: This is the same as the proof for XOR gates, 
except that we start with all the inputs and outputs of all the gates set to 1, 
and toggle the inputs that are required to be 0.
Alternatively, we can suppose that the XOR array is implemented in 
positive logic, and switch to negative logic.  Then the 0’s become 1’s, the 
1’s become 0’s, the XORs become XNORs, and the XOR property 
[proven on the previous slide] turns into the XNOR property.
It remains to prove that XNOR is the dual of XOR ...
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Proof of XOR/XNOR duality
An XOR gate gives an output of 1 iff the inputs are different.  An XNOR 
gives an output of 1 iff the inputs are the same.  For a given circuit, 
switching from positive to negative logic does not change the sameness or
differentness of the inputs, but it does invert the meaning of the output; the 
inversion changes XOR to XNOR and vice versa.
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Proof of XOR/XNOR associative law
We have proven that the function performed by a cascade of XOR (or 
XNOR) gates can be described in terms of the parity of the number of 1’s 
(or 0’s) among the inputs.  This description says nothing about the order in 
which the inputs and intermediate outputs are combined in pairs. So all 
such combinations must produce the same result; that is, the associative 
law must hold.

XOR parity testers are used in addition circuits (as we shall see) and in 
the detection of transmission errors.
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