Fall 2004 Physics 3 Tu-Th Section

Claudio Campagnari Lecture 14: 16 Nov. 2004

Web page: http://hep.ucsb.edu/people/claudio/ph3-04/

Electrical Current

• Electrical current is the net flow of electric charge in a material

➤ e.g., a wire

- Remember: a conductor contains free charges (electrons)
- The electrons are in constant motion
 - > In fact they move very fast ~ 10^6 m/sec
 - They bounce off the atoms of the lattice
 - > Ordinarily, they move in random directions
 - > Ordinarily, no net flow of charge

- Now imagine we set up an electric field inside the conductor
- The free charges (electrons) will feel a force F=qE
- They get accelerated in the direction opposite to the electric field

Opposite because electrons have –ve charge

- You would think that they should gain more and more velocity
- But they don't because they tend to quickly collide with the atoms of the lattice and their direction gets randomized
 3

 The net effect is that electrons in a conductor in the presence of an electric field tend to <u>drift</u> in the direction opposite the electric field

The drift velocity (= net velocity of the electrons) is quite small, typically less than mm/sec

Careful about electric field in a conductor!

- Up until today, we always said that there is no electric field inside a conductor
- But now we arguing about what happens when there is an electric field inside a conductor!
- Up until today, we have been concerned with <u>electrostatic</u> situations (= the charges do not move)
- Today we start to discuss <u>electrical</u> <u>current</u>, i.e., charges in motion

E-field in conductors (cont.)

 Our statement "no E-field inside a conductor" was based on the argument that if the E-field is not zero then the charges will move and rearrange themselves in such a way as to make E=0

- Convention: current is defined in the direction of drift of positive charges
- In a metal, the charges that drift are electrons, so current is in the opposite direction as the drift of electrons

> a bit awkward, and mostly historical

 In a chemical solution the charges can be both positive and negative (ions)

Definition of Current

 Net charge flowing through the <u>total area</u> per unit time

Units of Current

- $I=dQ/dt \rightarrow [I] = Coulomb/sec$
- 1 Coulomb/sec = 1 A (Ampere)
- The Ampere is one of the four fundamental units of the international system of units (SI)
 - ≻ meter
 - ≻ Kg
 - ➤ sec

> Ampere

• It is formally defined in terms of the force between two parallel wires

➤You'll see it in Physics 4

Relationship between I and v_d

 $\begin{array}{c} \begin{array}{c} & v_{d} dt \\ \rightarrow \mid \overleftarrow{k} \\ \end{array}$

- I = dQ/dt
- In time dt, every charge moves $dx = v_d dt$
- All the charges in a volume dV=Adx will flow through the area
- dQ = n q dV

n = number of charges/unit volume

- $dQ = n q A v_d dt$
- $I = dQ/dt = n q v_d A$

- $I = n q v_d A$
- Definition of current density: current per unit area
- $J = I/A = n q v_d$
- This can also be defined vectorially as

$$\vec{J} = nq\vec{v}_d$$

Note, if q<0 the vector current density and the vector drift velocity point in opposite direction
 > as they should!

What is n?

- n = number of charges / unit volume
- In metals, charges = electrons
- $n = n' N \rho$
 - N = number of atoms per Kg
 - $\succ \rho$ = density in Kg/m³
 - n' = number of free electrons per atom
- Example, Cu
 - ≻ n' = 1
 - $\blacktriangleright \rho = 9 \ 10^3 \ \text{Kg/m}^3$
 - Mass of Cu atom = 63.6 amu = 63.6 (1.7 10⁻²⁷ Kg) →1 Kg of Cu → N = 9.2 10²⁴ atoms
- Putting it together: $n = 8 \ 10^{28} / m^3$

Typical value of v_d

- $I = n q A v_d$
- Take I=1A, and 1 mm diameter wire

$$v_d = \frac{I}{nqA}$$

 $v_d = \frac{1A}{(8 \cdot 10^{28} \text{m}^{-3})(1.6 \cdot 10^{-19} \text{C})\pi (0.5 \cdot 10^{-3} \text{m})^2}$

$$v_d = 0.1 \text{ mm/sec}$$

Resistivity

- Current density $J = I/A = n q v_d$
- It is not surprising that the drift velocity depends on the electric field

> Higher drift velocity \rightarrow higher E-field

 For many materials and in many situations the drift velocity is proportional to electric field. Then

 $E = \rho J$ (Ohm's Law)

• $\rho = resistivity$

Resistivity (cont.)

- $E = \rho J$ or $J = (1/\rho)E$
- ρ is a property of the material
- For a given field, the smaller ρ the larger the current J
- ρ is a measure of how easy it is for a material to conduct electricity
 - > small ρ , good conductor
 - \geq large ρ , poor conductor

Units of Resistivity

- $\rho = E/J$
- $[\rho] = (V/m) / (A/m^2) = (V/A) m$
- 1 V/A = 1 Ohm = 1 Ω

Resistivity for some materials

metals (conductors)	AI	2.8 10 ⁻⁸ Ω-m
	Cu	1.7 10 ⁻⁸ Ω-m
	Au	2.4 10 ⁻⁸ Ω-m
semiconductors		
	Ge	0.6 Ω-m
	Si	2300 Ω-m
insulators	Quartz	8 10 ¹⁷ Ω-m
	Teflon	> 10 ¹³ Ω-m
	Glass	10 ¹⁰ -10 ¹⁴ Ω-m

17

Conductivity

- Simply defined as the inverse of resistivity
- $\sigma = 1/\rho$
- High conductivity = good conductor
- Low conductivity = bad conductor
- Measured in $(\Omega-m)^{-1}$

Resistivity vs Temperature (1)

- In a <u>conductor</u> the "resistance" to the flow of electrons occurs because of the collisions between the drifting electrons and the lattice
- When T increases, lattice atoms vibrate more violently
- Collisions more frequent
- Resistivity increases
- Approximate linear dependence near room temperature

$$\rho(T) = \rho_0[1 + \alpha(T - T_0)]$$

19

Resistivity vs Temperature (2)

- In a <u>semiconductor</u> as T increases more electrons are shaken loose from the atoms in the lattice
- The number of charge carriers increases with temperature
- The resistivity decreases with temperature

Resistivity vs Temperature (3)

 In some materials (<u>superconductor</u>s) the resistivity becomes ZERO below some "critical temperature" T_C

Table of T_C

Table 4. Critical temperatures of some superconductors.

Compound or Element	Тс (К)	Compound or Element	Тс (К)
Mercury	4	Nb3Sn	18
Vanadium	5.4	Nb3Ge	23
Lead	7.2	Ba0.6K0.4BiO3	30
Technetium	7.8	Cs2Rb@C60	33
Niobium	9.5	MgB ₂	39
Sulfur (at 93 Gpa)	10	La1.85Sr0.15CuO4	40
(CH ₃ CH ₂) ₂ Cu(NCS) ₂	11.4	Tl2Ba2CuO6	80
LiTi ₂ O ₄	12	YBa2Cu3O7	93
BaPb0.75Bi0.25O3	13	Tl2Ba2CaCu2O8	105
YNi2B2C	15.5	BiScCO (BiSr2Ca3Cu3O10)	110
NbN	16	Tl2Ba2Ca3Cu4O12	115
V3Ga	16.5	Tl2Ba2Ca2Cu3O10	125
Sulfur (at 160 Gpa)*	17	HgBa2Ca2Cu3O10	134
V3Si	17	HgBa2Ca2Cu3O10 (at 30 Gpa)**	164
Nb3Al	17.5		

*Highest reported Tc for an element **Highest reported T_C to date

Resistance

- Ohm's Law: $E = \rho J$
- Not very convenient because
 - We are more often interested in the current I rather than the current density J=I/A
 - > It is easier to use potential rather than field
- Consider cylindrical conductor

•
$$V_{ab} = V = E L$$

- I = J A
- Ohm's Law: $(V/L) = \rho (I/A)$ $V = \frac{\rho L}{A}I = RI$

R = resistance. Units: Ω

Ohm's Law

- The most "useful" (common?) way of writing down Ohm's law is I = V/R
- The current is proportional to the voltage
- Applies to many materials, but not all!

- Circuit elements of well-defined resistance
- They almost always have color-coded bands that allow you to read-off the resistance

Second digit	Multiplier	Color	Value as Digit	Value as Multiplier
	/ Tolerance	Black	0	1
First digit \setminus		Brown	1	10
\sim		Red	2	10^{2}
		Orange	3	10^{3}
(Yellow	4	10^{4}
		Green	5	10^{5}
		Blue	6	10^{6}
		Violet	7	107
		Gray	8	10^{8}
		White	9	10^{9}

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.