COSC 243

Introduction to Logic And Combinatorial Logic

COSC 243 (Computer Architecture)

Lecture 4 - Introduction to Logic and Combinatorial Logic

1

Overview

- This Lecture
 - Introduction to Digital Logic
 - Gates
 - Boolean algebra
 - Combinatorial Logic
 - Source: Chapter 20 (8th ed. online) or Appendix B (7th ed.)
 - Source: J.R. Gregg, Ones and Zeros
- Next Lecture
 - Sequential Logic
 - Source: Chapter 20 (8th ed. online) or Appendix B (7th ed.)
 - Source: Lecture notes

Internal Assessment Announcement

- Data representation test
- During tutorial time on 15-16 March
- 9.5% of final mark

A Bit of History

- Aristotle (384-322 B.C.)
- George Boole (1815-1864)
- Sought to characterise all of human intelligence in precise symbolic form
- Symbolic logic

Introduction to Digital Logic

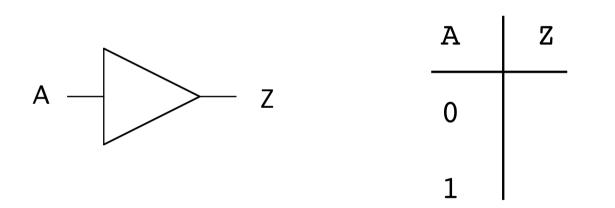
- What do we mean by digital?
- What are the advantages?
- TRUE = HIGH = ON = 1
- FALSE = LOW = OFF = 0

Basic Logic Gates

- Buffer
- Inverter or NOT
- AND
- NAND
- OR
- NOR
- EOR or XOR

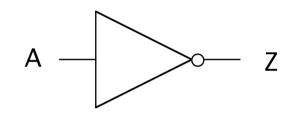
Buffer

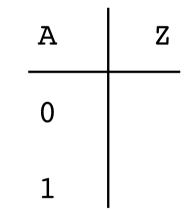
• Normally used to drive several gates or devices requiring higher drive requirements



Inverter or NOT

 $\mathbf{Z} = \mathbf{\overline{A}}$

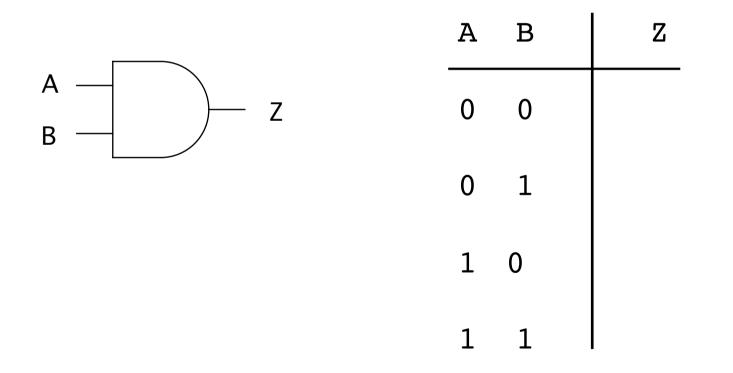




COSC 243 (Computer Architecture)

AND

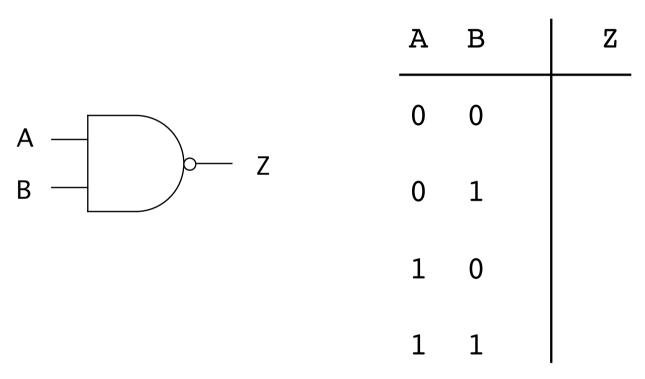
$Z = A \cdot B$ Can be extended: $Z = A \cdot B \cdot C \cdot ...$



COSC 243 (Computer Architecture)

NAND

 $\mathbf{Z} = \mathbf{A} \cdot \mathbf{B}$

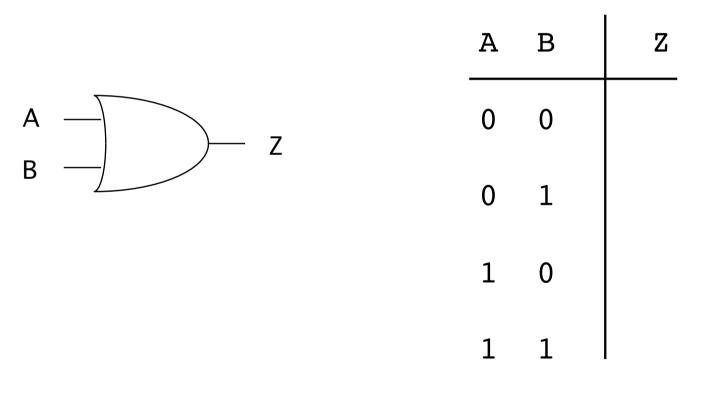


COSC 243 (Computer Architecture)

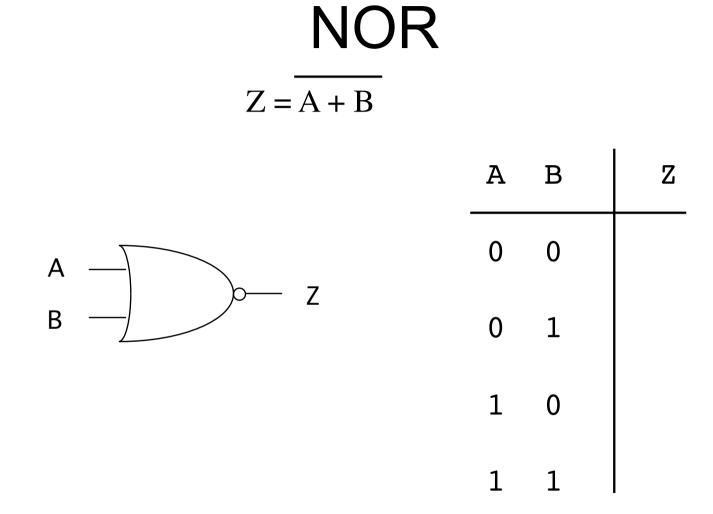
OR

 $\mathbf{Z} = \mathbf{A} + \mathbf{B}$

Can be extended $Z = A + B + C + \dots$

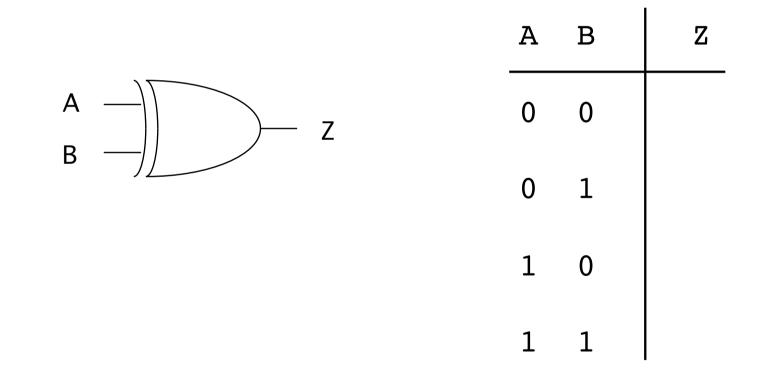


COSC 243 (Computer Architecture)

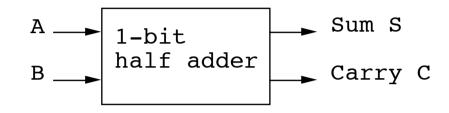


EOR or XOR

 $Z = A \oplus B$



1-Bit Half Adder



1-Bit Half Adder (cont)

A	В	S	С
0	0		
0	1		
1	0		
1	1		

		1-B	it I	Half Adder (cont)
A	В	S	С	$S = \overline{A} \bullet B + A \bullet \overline{B}$ $= A \text{ xor } B$
0	0	0	0	$C = A \bullet B$
0	1	1	0	$C - A \cdot B$
1	0	1	0	$\begin{array}{c} A \\ B \end{array} \\ \end{array} \\ \end{array} \\ S \\$
1	1	0	1	с

Boolean Algebra

Identity Proposition

(Special Properties of 0 and 1)

$$A + 0 = A$$

 $A + 1 = 1$
 $A \cdot 1 = A$
 $A \cdot 0 = 0$

Inverse Proposition $A + \overline{A} = 1$ $A \cdot \overline{A} = 0$

Boolean Algebra (cont)

Commutative Proposition

A	•	Β	=	Β	•	A	
Δ	+	R	=	R	∔	Δ	

Distributive Proposition $A \cdot (B + C) = A \cdot B + A \cdot C$ $A + B \cdot C = (A + B) \cdot (A + C)$

Law of Involution

$$\overline{\mathbf{A}} = \mathbf{A}$$

COSC 243 (Computer Architecture)

Boolean Algebra (cont)

Simplification Theorem

 $A + A \bullet B = A$ $A + \overline{A} \bullet B = A + B$

De Morgan's Theorem

$$\mathbf{A} + \mathbf{B} = \mathbf{A} \cdot \mathbf{B}$$

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

COSC 243 (Computer Architecture)

Proof by Truth Table

Use first version of De Morgan's theorem

 $A + B = A \cdot B$

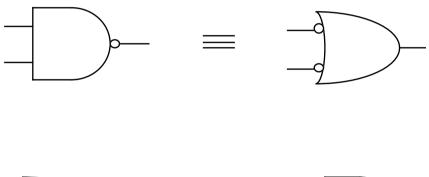
A	В	A+B	A+B	A	B	A	• B
0	0						
0	1						
1	0						
1	1						

COSC 243 (Computer Architecture)

NAND/NOR Logic

- Equations of 1-bit half adder requires 2 AND gates, 1 OR gate, and 2 NOT gates
- Inefficient since IC's contain groups of a single type of gate
- De Morgan's theorem states it is possible to convert a NOR into a NAND and vice versa

Equivalent Ways of Drawing NAND/NOR Gates



COSC 243 (Computer Architecture)

Introduction to Combinatorial Logic

- Combinatorial logic circuit one whose outputs are dependent only on the inputs
- Assume the outputs respond immediately.
- In real circuits, propagation delays must be considered

Introduction to Combinatorial Logic (cont)

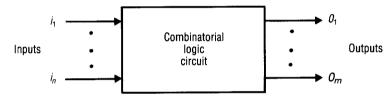


Fig. 3.1 Typical combinatorial logic circuit.

Defining a Combinatorial Circuit

- Truth table
 - For each of the 2ⁿ possible combinations of input signals, the binary value of each of the *m* outputs is listed
- Boolean equations
 - Each output signal is expressed as a Boolean function of its input signals
- Graphical signals
 - Interconnection of gates used to implement the circuit

3-Bit Parity Generator Example

- Add an extra bit to data such that the number of ones in the data is always odd.
- Output a single output (P)
- Inputs three inputs labelled A, B, C

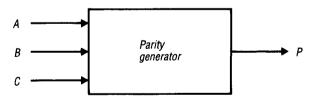


Fig. 3.2 Block diagram of parity generator circuit.

3-Bit Parity Generator Example (cont)

	A	В	С	P
		_		
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

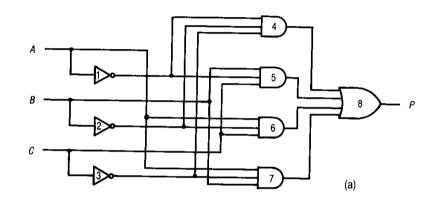
3-Bit Parity Generator Example (cont)

Boolean Equation

- In 'sum of products form'

 $P = \overline{A \bullet B \bullet C} + \overline{A \bullet B \bullet C} + A \bullet \overline{B \bullet C} + A \bullet \overline{B \bullet C}$

3-Bit Parity Generator Example (cont)



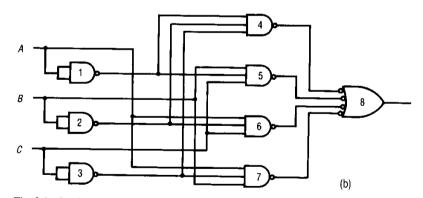


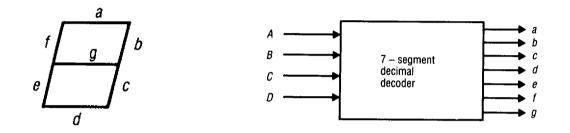
Fig. 3.3 Implementation of parity generator circuit using (a) basic gates; (b) only NAND gates.

COSC 243 (Computer Architecture)

How to Specify

- Method A
 - List the outputs required
 - List the inputs available
 - Write the Boolean functions required to obtain the outputs from the inputs
- Method B
 - Create a truth table
 - Label "don't cares" with an X
 - Account for "can't normally occur"
 - Can write the Boolean functions from the truth table

7-Segment Decimal Decoder Example

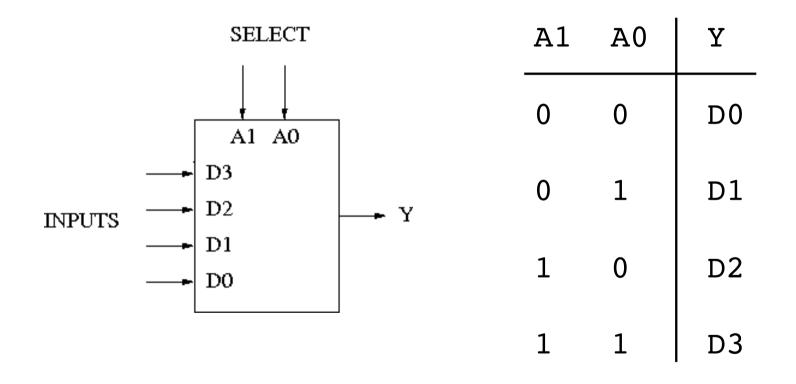


Decimal	Binary representation				Segments							
number	A	represe B	cniaiton C	D	а	b	с	d	е	f	g	
0	0	0	0	0	1	1	1	1	1	1	0	
1	0	0	0	1	0	1	1	0	0	0	0	
2	0	0	1	0	1	1	0	1	1	0	1	
3	0	0	1	1	1	1	1	1	0	0	1	
4	0	1	0	0	0	1	1	0	0	1	1	
5	0	1	0	1	1	0	1	1	0	1	1	
6	0	1	1	0	0	0	1	1	1	1	1	
7	0	1	1	1	1	1	1	0	0	0	0	
8	1	0	0	0	1	1	1	1	1	1	1	
9	1	0	0	1	1	1	1	0	0	1	1	

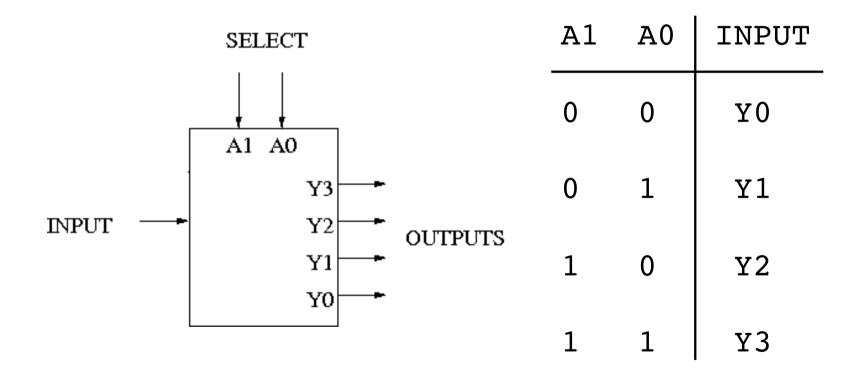
Some Things We've Skipped

- Minimisation
 - Using Boolean algebra properties and propositions
 - Karnaugh maps
 - Digital techniques

Multiplexer



Demultiplexer



Summary

- Learn gate
 - symbols
 - truth tables
- Learn Boolean algebra
 - Rules
- Equations from truth tables
- Combinatorial logic