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Abstract

We investigate two possibilities of detecting a minimum-shift keying
signal: either as a BFSK signal or as two BPSK signals. We also con-
sider how to allocate signals to information bits in order to avoid error
propagation.

1 Continuous-Phase FSK

In traditional FSK we use signals of two different frequencies f0 and f1 to
transmit a message m = 0 or m = 1 over a time of Tb seconds,

s0(t) =

√
2Eb
Tb

cos 2πf0t, 0 ≤ t < Tb;

s1(t) =

√
2Eb
Tb

cos 2πf1t, 0 ≤ t < Tb.

We assume that f0 > f1 > 0. If we choose the frequencies so that in each time
interval Tb there is an integer number of periods,

f0 =
k0

Tb
; f1 =

k1

Tb
,

with k0 and k1 integers, the signal is guaranteed to have continuous phase.
Figure 1 shows an example of a signal that is discontinuous, a signal with
discontinuous phase and a signal with continuous phase. As phase-continuous
signals in general have better spectral properties than signals that are not phase-
continuous, we prefer to transmit signals that have this property.

If either f0 or f1 are chosen such that there is a non-integer number of periods
the traditional FSK modulator will output a signal with discontinuities in the
phase. In order to maintain phase continuity, we can let the transmitter have
memory. We choose the signals for a general CPFSK transmitter to be

s0(t) =

√
2Eb
Tb

cos(2πf0t+ θ(0)), 0 ≤ t < Tb;
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Figure 1: Signals with different degrees of discontinuity.

s1(t) =

√
2Eb
Tb

cos(2πf1t+ θ(0)), 0 ≤ t < Tb.

We keep the phase continuous by letting θ(0) be equal to the argument of the
cosine pulse for the previous bit interval. For the signals over an arbitrary bit
interval, kTb ≤ t < (k + 1)Tb, the general phase memory term is θ(kTb).

As we are using two different frequencies, we can express the CPFSK signal as
a baseband signal with respect to an arbitrary center frequency fc. We choose
fc to be the arithmetic mean of f0 and f1. Define

fc =
f0 + f1

2
; fd =

f0 − f1

2
.

We have

s(t) =

√
2Eb
Tb

cos(2πfct+ θ(0)± 2πfdt), 0 ≤ t < Tb, (1)

where + corresponds to the transmission of f0 and − corresponds to the trans-
mission of f1. We expand equation (1) in its baseband quadrature components,

s(t) =

√
2Eb
Tb

cos(θ(0)± 2πfdt) cos 2πfct−
√

2Eb
Tb

sin(θ(0)± 2πfdt) sin 2πfct =

= sI(t) cos 2πfct− sQ(t) sin 2πfct, 0 ≤ t < Tb. (2)

We define the deviation ratio h of this system as

h = k0 − k1 = Tb(f0 − f1),

so that we have an alternative way of expressing the frequency difference

2πfdt =
πht

Tb
.

With these definitions we have a phase difference over one bit interval, with
respect to the phase of a signal with frequency fc,

θ(Tb)− θ(0) =

{
+πh, when transmitting f0;
−πh, when transmitting f1.

(3)
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Figure 2: Phase trellis for h = 1/2.
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Figure 3: Example of an MSK signal.

If we use (3) and count the phase modulo 2π, we can depict the phase variation
over time in a phase trellis, see Figure 2. In Figure 2 we have assumed h = 1/2
and θ(0) = 0 or θ(0) = π. We see that for every multiple of the bit time the
phase can only take on one of two values, the values being 0 and π for t = 2kTb,
and ±π/2 for t = (2k + 1)Tb).

Continuous-phase FSK with deviation ratio h = 1/2 is called minimum shift
keying, MSK. The frequency difference

f0 − f1 =
1

2Tb

that results from choosing h = 1/2 is the smallest possible difference if the
signals of the two frequencies are to be orthogonal over one bit interval. An
example of an MSK signal with k0 = 1 and k1 = 1/2 is given in Figure 3.

2 Detecting MSK as BFSK

We note that h = 1/2 implies that if

f0 =
k0

Tb
,
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Figure 4: Signal space diagram when decoding MSK as BFSK.

we have
f1 =

k0 − 1/2
Tb

.

Thus, if one of the signals is an integer number of periods, the other is an integer
number of periods plus one half period. From the phase-continuity requirement
we conclude that the system uses four signals, but the transmitter is restricted
to choosing one out of two signals in each bit interval. This is also indicated
by the phase trellis, as there are two possible phase values at the beginning of
each bit interval and from each of these there are two possible choices for the
phase: increasing or decreasing.

Assume that θ(0) ∈ {0, π} and assume for simplicity that k0 = 1. For the
analysis of BFSK detection of MSK, we define the signals

s0(t) =

√
2Eb
Tb

cos 2πf0t, 0 ≤ t < Tb;

s1(t) =

√
2Eb
Tb

cos 2πf1t, 0 ≤ t < Tb.

The transmitter uses one of the four signals ±s0(t − kTb) and ±s1(t − kTb) in
bit interval k, as indicated in Figure 3. We have the signal space diagram of
Figure 4, and we can choose decision areas as indicated, since we in each interval
either decide between s0(t− kTb) and s1(t− kTb) or between −s0(t− kTb) and
−s1(t − kTb) depending on the previously transmitted signal. For the details,
see Figure 4 and Table 1.

3 Detecting MSK as BPSK

BFSK detection of MSK is perhaps the most natural first choice for a detector
principle. However, we can do even better than that by using BPSK detection.
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Previous signal Frequency f0 Frequency f1

s0(t− (k − 1)Tb) s0(t− kTb) s1(t− kTb)
−s0(t− (k − 1)Tb) −s0(t− kTb) −s1(t− kTb)
s1(t− (k − 1)Tb) −s0(t− kTb) −s1(t− kTb)
−s1(t− (k − 1)Tb) s0(t− kTb) s1(t− kTb)

Table 1: Active signal set depending on the previous signal.

We choose to study the signal from equation (2) over two consecutive bitinter-
vals. Let ±(k) denote + if f0 is transmitted for kTb ≤ t < (k+ 1)Tb and − if f1

is transmitted in the same interval.

For −Tb ≤ t < Tb we have

sI(t) =



√
2Eb
Tb

cos(θ(0)±(−1) 2πfdt), −Tb ≤ t < 0;√
2Eb
Tb

cos(θ(0)±(0) 2πfdt), 0 ≤ t < Tb.

Thus, regardless of the specific signs chosen for ±(−1) and ±(0), we have

sI(t) =

√
2Eb
Tb

cos θ(0) cos 2πfdt, −Tb ≤ t < Tb,

where cos θ(0) = ±1 by assumption.

Similarly, for 0 ≤ t < 2Tb we have

sQ(t) =



√
2Eb
Tb

sin(θ(Tb)±(0) 2πfd(t− Tb)), 0 ≤ t < Tb;√
2Eb
Tb

sin(θ(Tb)±(1) 2πfd(t− Tb)), Tb ≤ t < 2Tb.

Regardless of the specific signs chosen for ±(0) and ±(1), we have

sQ(t) =

√
2Eb
Tb

sin θ(Tb) cos 2πfdt, 0 ≤ t < 2Tb,

where sin θ(Tb) = ±1 by assumption.

These results hold (with obvious modifications) for all intervals (2k − 1)Tb ≤
t < (2k + 1)Tb and 2kTb ≤ t < (2k + 2)Tb. This indicates that we can view
MSK as a way of signalling on the in-phase and quadrature components with
half-cycle sine pulses of length 2Tb, offset in time by Tb. See Figure 5.

Moreover, this signalling format keeps the in-phase and quadrature channels
orthogonal over any multiple of the bit time, since∫ Tb

0
cos 2πfdt cos 2πfct sin 2πfdt sin 2πfct dt =
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Figure 5: In-phase and quadrature components.

=
1
4

∫ Tb

0
sin 4πfdt sin 4πfct dt =

1
8

∫ Tb

0
cos 4πf1t− cos 4πf0t dt = 0.

The pulse transmitted on the in-phase channel does not affect the pulse on the
quadrature channel and vice versa. On each of the channels we send a positive
or negative half-sine pulse with energy Eb and thus we can detect them as BPSK
pulses independently for the in-phase and quadrature components.

4 Bit allocation and error probabilities

When transmitting traditional FSK signals we customarily use the signal s0(t)
for transmitting the message m = 0 and the signal s1(t) for transmitting the
message m = 1. Duplicating this, we might assign the signals ±s0(t) to m = 0
and assign ±s1(t) to m = 1. However, when detecting MSK as FSK, this
leads to problems with error propagation. From Figure 4 and Table 1 we see
that if the signal s0 is mistakenly detected as s1, this affects future decisions
as well. Assume that the last transmitted signal was s0 and assume that we
want to transmitt the two message bits m = (0, 0). This would correspond
to frequencies (f0, f0) and, by Table 1, to signals (s0, s0). If the first signal
is mistakenly detected as s1, a correct decision on the second signal will be
interpreted as −s1 instead of s0. The message estimate is (1, 1), and the error in
the first bit has propagated to the second. This error propagation will continue
until the next detection error.

A solution to this problem is to let s0 and −s1 correspond to m = 0 and s1 and
−s0 correspond to m = 1. This way, detection of a signal to the lower right of
the decision boundary in Figure 4 is always detected as m = 1, irrespective of
what has been transmitted previously. With this latter choice of bit encoding,
FSK detection of MSK has the same bit error probability as ordinary FSK,

Pe = Q

(√
Eb
N0

)
.
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−Tb ≤ t < 0 0 ≤ t < Tb θ(−Tb) θ(0) θ(Tb) cos θ(0) sin θ(Tb)
s0 s0 −π/2 0 +π/2 +1 +1
s0 s1 −π/2 0 −π/2 +1 −1
s1 −s0 −π/2 π −π/2 −1 −1
s1 −s1 −π/2 π +π/2 −1 +1
−s0 −s0 +π/2 π −π/2 −1 −1
−s0 −s1 +π/2 π +π/2 −1 +1
−s1 s0 +π/2 0 +π/2 +1 +1
−s1 s1 +π/2 0 −π/2 +1 −1

Table 2: BPSK detection result depending on transmitted signal.

For BPSK detection of MSK, we consult Table 2.

If we assign signals to bits according to the traditional FSK assignment, with
±s0 assigned to m = 0 and ±s1 assigned to m = 1, we see that the demod-
ulation mapping of cos θ(0) into m̂ = 0 or m̂ = 1 depends on the value of
θ(−Tb). If θ(−Tb) was incorrectly estimated, we will get error propagation into
the estimate of cos θ(0). Similarly the demodulation mapping of sin θ(Tb) into
m̂ = 0 or m̂ = 1 depends on a correct estimate of θ(0) and so on. With this
signal assignment we have the same problem with error propagation as in BFSK
detection.

With the suggested mapping of using s0 and −s1 for m = 0 and using s1 and
−s0 for m = 1, we find in Table 2 that the we have dependence only on the
current symbol. Furthermore, the demodulation mapping of θ values into m̂
becomes very simple.

With this latter choice of bit encoding, BPSK detection of MSK has the same
bit error probability as ordinary BPSK,

Pe = Q

(√
2Eb
N0

)
.
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