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Shot noise and thermal noise have long been considered the results of two distinct

mechanisms, but they aren't.

by Rahul Sarpeshkar, Tobias Delbr�uck, and Carver A. Mead

We live in a very energy-conscious era today. In the electrical engineering community, energy-

consciousness has manifested itself in an increasing focus on low-power circuits. Low-power circuits

imply low current and/or voltage levels and are thus more susceptible to the e�ects of noise. Hence,

a good understanding of noise is timely.

Most people �nd the subject of noise mysterious, and there is {understandably{much confusion

about it. Although the fundamental physical concepts behind noise are simple, much of this simplicity

is often obscured by the mathematics invoked to compute expressions for the noise.

The myriads of random events that happen at microscopic scales cause uctuations in the values

of macroscopic variables such as voltage, current and charge. These uctuations are referred to as

noise. The noise is called \white noise" if its power spectrum is at and \pink noise" or \icker noise"

if its power spectrum goes inversely with the frequency. In this article, we shall discuss theoretical

and experimental results for white noise in the low-power subthreshold region of operation of an MOS

transistor. A good review of operation in the subthreshold region may be found in Mead [1]. This
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region is becoming increasingly important in the design of low-power analog circuits, particularly in

neuromorphic applications that simulate various aspects of brain function [1]- [4].

A formula for subthreshold noise in MOS transistors has been derived by Enz [6] and Vittoz [7] from

considerations that model the channel of a transistor as being composed of a series of resistors. The

integrated thermal noise of all these resistors yields the net thermal noise in the transistor, after some

fairly detailed mathematical manipulations. The expression obtained for the noise, however, strongly

suggests that the noise is really \shot noise", conventionally believed to be a di�erent kind of white

noise from thermal noise.

We solve the mystery of how one generates a shot-noise answer from a thermal-noise derivation by

taking a fresh look at noise in subthreshold MOS transistors from �rst principles. We, then rederive

the expression for thermal noise in a resistor from our viewpoint. We believe that our derivation is

simpler and more transparent than the one originally o�ered in 1928 by Nyquist, who counted modes

on a transmission line to evaluate the noise in a resistor [5]. Our results lead to a unifying view of

the processes of shot noise (noise in vacuum tubes, photo diodes and bipolar transistors) and thermal

noise (noise in resistors and MOS devices).

In subthreshold MOS transistors, the white-noise current power is 2qI�f (derived later) where I is

the d.c. current level, q is the charge on the electron, f is the frequency and �f is the bandwidth. In

contrast, the icker-noise current power is approximatelyKI2�f=f whereK is a process and geometry-

dependent parameter. Thus, white noise dominates for f > KI=2q. For the noise measurements in this

paper, taken at current levels in the 100fA� 100pA range, white noise was the only noise observable

even at frequencies as low as 1Hz. Reimbold [8] and Schutte [9] have measured noise for higher

subthreshold currents (> 4 nA), but have reported results from icker-noise measurements only.

Our results (to our best knowledge) are the �rst reports of measurements of white noise in sub-

threshold MOS transistors. We will show that they are consistent with our theoretical predictions.

We also report measurements of noise in photoreceptors (a circuit containing a photo diode and an
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MOS transistor) that are consistent with theory. The photoreceptor noise measurements illustrate the

intimate connection of the equipartition theorem of statistical mechanics with noise calculations.

The measurements of noise corresponding to miniscule subthreshold transistor currents were ob-

tained by convieniently performing them on a transistor with W=L � 104. The photoreceptor noise

measurements were obtained by amplifying small voltage changes with a low-noise high-gain on-chip

ampli�er.

1 Shot Noise in Subthreshold MOS Transistors

Imagine that you are an electron in the source of an MOS transistor. You shoot out of the source,

and if you have enough energy to climb the energy barrier between the source and the channel, you

enter it. If you are unlucky, you might collide with a lattice vibration, surface state, or impurity

and fall right back into the source. If you do make it into the channel you will su�er a number of

randomizing collisions. Eventually, you will actually di�use your way into the drain. Each arrival of

such an electron at the drain contributes an impulse of charge.

Similarly, electrons that originate in the drain may �nd their way into the source. Thus, there

are two independent random processes occuring simultaneously that yield a forward current If , from

source to drain and a reverse current Ir, from drain to source. Since the barrier height at the source is

less than the barrier height at the drain, more electrons ow from the source to drain than vice-versa

and If > Ir.

I = If � Ir

Ir = Ife
�

Vds
UT

) I = If

�
1� e

�

Vds
UT

�

= Isat

�
1� e

�

Vds
UT

�
(1)

where I is the measured channel current, Vds is the drain-to-source voltage, and If = Isat is the
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saturation current of the transistor, and UT = kT=q is the thermal voltage.

Because the forward and reverse processes are independent, we can compute the noise contributed

by each component of the current separately and then add the results. Thus, we �rst assume that Ir is

zero, or equivalently that CD, the concentration of electrons at the drain end of the channel { is zero.

The arrival of electrons at the drain may be modelled by a Poisson process with an arrival rate �. A

small channel length L, a large channel width W, a large di�usion constant for electrons Dn, and a

large concentration of electrons at the source CS, all lead to a large arrival rate. Because the current

in a subthreshold MOS transistor ows by di�usion, the electron concentration is a linear function of

distance along the channel, and the forward current If and arrival rate � are given by,

If = qDnW
CS

L
(2)

� = If=q: (3)

Powerful theorems due to Carson and Campbell, as described in standard noise textbooks such as

[10], allow us to compute the power spectrum of the noise. Suppose we have a Poisson process with

an arrival rate of �, and each arrival event causes a response, F (t), in a detector sensitive to the

event. Let s(t) be the macroscopic variable of the detector that corresponds to the sum of all the

F (t)'s generated by these events. Then, the mean value of s(t) and the power spectrum, P (f), of the

uctuations in s(t) are given by

s(t) = �

Z
1

�1

F (t)dt (4)

�
s(t) � s(t)

�
2

= �

Z
1

�1

F 2(t)dt (5)

=
Z
1

0

P (f)df (6)

= 2�

Z
1

0

j (f)j
2

df (7)

where  (f) =
R
+1

�1
F (t)e�j2�ftdt is the Fourier transform of F (t). Each electron arrival event at the

drain generates an impulse of charge q that corresponds to F (t). Thus, we obtain

I = q� (8)
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�
I � I

�
2

= 2q2�
Z
�f

0

df (9)

= 2qI�f: (10)

where �f is the bandwidth of the system. Eq. (10) is the well-known result for the shot-noise

power spectrum. Thus, the noise that corresponds to our forward current is simply given by 2qIf�f .

Similarly, the noise that corresponds to the reverse current is given by 2qIr�f . The total noise in a

given bandwidth �f is given by

�I2 = 2q(If + Ir)�f

= 2qIf(1 + e
�

Vds
UT )�f

= 2qIsat(1 + e
�

Vds
UT )�f: (11)

where Isat = If = I0e
�Vg�Vs

UT corresponds to the saturation current at the given gate voltage. Note

that as we transition from the linear region of the transistor (Vds < 5UT ) to the saturation region, the

noise is gradually reduced from 4qIsat�f to 2qIsat�f . This factor of two reduction occurs because

the shot-noise component from the drain disappears in saturation. A similar phenomenon occurs in

junction diodes where both the forward and reverse components contribute when there is no voltage

across the diode; as the diode gets deeply forward or reverse biased, the noise is determined primarily

by either the forward or reverse component, respectively [11].

The atness of the noise spectrum arises from the impulsive nature of the microscopic events. We

might expect that the at Fourier transform of the microscopic events that make up the net macroscopic

current would be reected in its noise spectrum. Carson's and Campbell's theorems express formally

that this is indeed the case. The variance of a Poisson process is proportional to the rate, so it is not

surprising that the variance in the current is just proportional to the current. Further, the derivation

illustrates that the di�usion constant and channel length simply alter the arrival rate by Eq. (3). Even

if some of the electrons recombined in the channel { corresponding to the case of a bipolar transistor

or junction diode {, the expression for noise in Eq. (11) is unchanged. The arrival rate is reduced
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because of recombination. A reduction in arrival rate reduces the current and the noise in the same

proportion. The same process that determines the current also determines the noise.

Experimental measurements were conducted on a transistor withW=L � 104 for a saturation current

of 40nA (Fig. 1). A gigantic transistor size was used to scale up the tiny subthreshold currents to 10nA-

1uA levels and make them easily measurable by a low-noise o�-chip sense ampli�er with commercially

available resistor values. The shot noise scales with the current level, so long as the transistor remains

in subthreshold. The noise measurements were conducted with a HP3582A spectrum analyzer. The

data were taken over a bandwidth of 0-500 Hz. The normalized current noise power, �I2=(2qIsat�f),

and the normalized current I=Isat are plotted. The lines show the theoretical predictions of Eqs. (1)

and (11). Using the measured value of the saturation current, the value for the charge on the electron,

and the value for the thermal voltage we were able to �t our data with no free parameters whatsoever.

Notice that as the normalized current goes from 0 in the linear region to 1 in the saturation region, the

normalized noise power goes from 2 to 1 as expected. Fig. 2 shows measurements of the noise power

per unit bandwidth, �I2=�f , in the saturation region for various saturation currents Isat. Since we

expect this noise power to be 2qIsat, we expect a straight line with slope 2q which is the theoretical

line drawn through the data points. As the currents start to exceed 1�A-10�A for our huge transistor,

the presence of 1/f noise at the frequencies over which the data were taken begins to be felt. The noise

is thus higher than what we would expect purely from white noise considerations.

2 Shot Noise vs. Thermal Noise

We have taken the trouble to derive the noise from �rst principles even though we could have simply

asserted that the noise was just the sum of shot-noise components from the forward and reverse

currents. We have done so to clarify answers to certain questions that naturally arise:

� Is the noise just due to uctuations in electrons moving across the barrier or does scattering in

the channel contribute as well?
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� Do electrons in the channel exhibit thermal noise?

� Do we have to add another term for thermal noise?

Our derivation illustrates that the computed noise is the total noise and that we don't have to add

any extra terms for thermal noise. Our experiments con�rm that this is indeed the case. The scattering

events in the channel and the uctuations in barrier crossings all result in a Poisson process with some

electron arrival rate. Both processes occur simultaneously, are caused by thermal uctuations and

result in white noise. Conventionally, the former process is labelled \thermal noise" and the latter

process is labelled \shot noise". In some of the literature, the two kinds of noise are often distinguished

by the fact that shot noise requires the presence of a dc current while thermal noise occurs even when

there is no dc current [12]. However, we notice in our subthreshold MOS transistor, that when If = Ir,

there is no net current but the noise is at its maximum value of 4qIf�f . Thus a two-sided shot noise

process exhibits noise that is reminiscent of thermal noise. We will now show that thermal noise is

two-sided shot noise.

Let us compute the noise current in a resistor shorted across its ends. Since there is no electric �eld,

the uctuations in current must be due to the random di�usive motions of the electrons. The average

concentration of electrons is constant all along the length of the resistor. This situation corresponds

to the case of a subthreshold transistor with Vds = 0, where the average concentrations of electrons at

the source edge of the channel, drain edge of the channel and all along the channel, are at the same

value.

In a transistor, the barrier height and the gate voltage are responsible for setting the concentrations

at the source and drain edges of the channel. In a resistor, the concentration is set by the concentration

of electrons in its conduction band. The arrival rate of the Poisson process is, however, still determined

by the concentration level, di�usion constant and length of travel. This is so because, in the absence of

an electric �eld, the physical process of di�usion is responsible for the motions of the electrons. Thus,

the power spectrum of the noise is again given by 2q(If + Ir). The currents If and Ir are both equal
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to qDnA=L where D is the di�usion constant of electrons in the resistor, n is the concentration per

unit volume, A is the area of cross section and L is the length. Einstein's relation yields D=� = kT=q,

where � is the mobility. Thus, the noise power is given by

�I2 = 4qIf�f

= 4q �
qDnA

L
�f

= 4q � �kTn
A

L
�f

= 4kT (q�n)
A

L
�f

= 4kT (�)
A

L
�f

= 4kTG�f (12)

where G is the conductance of the resistor and � is the conductivity of the material. Thus, we have

re-derived Johnson and Nyquist's well-known result for the short circuit noise current in a resistor!

The key step in the derivation is the use of the Einstein relation D=� = kT=q. This relation expresses

the connection between the di�usion constant D, which determines the forward and reverse currents,

the mobility constant �, which determines the conductance of the resistor, and the thermal voltage

kT=q.

It is because of the internal consistency between thermal noise and shot noise that formulas derived

from purely shot noise considerations (this paper) agree with those derived from purely thermal noise

considerations [6].

3 The Equipartition Theorem and Noise Calculations

No discussion of thermal noise would be complete without a discussion of the equipartition theorem of

statistical mechanics, which lies at the heart of all calculations of thermal noise: Every state variable

in a system that is not constrained to have a �xed value is free to uctuate. The thermal uctuations

in the current through an inductor or the voltage on a capacitor are the ultimate origins of circuit
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noise. If the energy stored in the system corresponding to state variable x, is proportional to x2, then

x is said to be a degree of freedom of the system. Thus, the voltage on a capacitor constitutes a degree

of freedom, since the energy stored on it is CV 2=2. Statistical mechanics requires that if a system is

in thermal equilibrium with a reservoir of temperature T , then each degree of freedom of the system

will have a uctuation energy of kT=2. Thus, the mean square uctuation �V 2, in the voltage of a

system with a single capacitor must be such that

C�V 2

2
=

kT

2
;

) �V 2 =
kT

C
: (13)

This simple and elegant result shows that if all noise is of thermal origin, and the system is in thermal

equilibrium, then the total noise over the entire bandwidth of the system is determined just by the

temperature and capacitance [13]. If we have a large resistance coupling noise to the capacitor,

the noise per unit bandwidth is large but the entire bandwidth of the system is small; if we have a

small resistance coupling noise to the capacitor, the noise per unit bandwidth is small but the entire

bandwidth of the system is large. Thus, the total noise { the product of the noise per unit bandwidth

4kTR and the bandwidth of the circuit 1

RC
is constant, independent of R. We illustrate for the

particular circuit con�guration of Fig. 3, how the noise from various devices interact to yield a total

noise of kT=C.

Fig 3 shows a network of transistors all connected to a capacitor, C at the node Vs. We use the

sign convention that the forward currents in each transistor ow away from the common source node,

and the reverse currents ow toward the common source node1. The gate and drain voltages, Vgi and

Vdi, respectively are all held at constant values. Thus, Vs is the only degree of freedom in the system.

1Our sign convention is for carrier current, not conventional current. Thus, in an NFET or a PFET, the forward
current is the one that ows away from the source irrespective of whether the carriers are electrons or holes. This
convention results in a symmetric treatment of NFETs and PFETs
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Kircho�'s current law at the source node requires that in steady state

nX
i=1

I if =
nX
i=1

I ir: (14)

The conductance of the source node is given by

gs =
nX
i=1

I if

UT

: (15)

The bandwidth, �f , of the system is then

�f =
1

2�
�
�

2
�
gs

C
=

gs

4C
(16)

where the factor 1=2� converts from angular frequency to frequency and factor �=2 corrects for the

rollo� of the �rst-order �lter not being abrupt2. Thus, the total noise is

�I2 =
nX
i=1

2q
�
I if + I ir

� gs

4C

=
nX
i=1

4qI if
gs

4C
(17)

where we have used Eq. (14) to eliminate Ir. The voltage noise is just �I
2=g2s or

�Vs
2 =

q

C

Pn
i=1 I

i
fPn

i=1

Ii
f

UT

=
kT

C
: (18)

The fact that the total noise equalled kT=C implies that this circuit con�guration is a system in

thermal equilibrium. Typically, most circuit con�gurations yield answers for total voltage noise that

are proportional to kT=C.

2

Z
1

0

df

1 +
�

f

fc

�2 =
�

2
fc
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We obtained direct experimental con�rmation of the kT=C result from our measurements of noise in

photoreceptors: Fig. 4 shows a source-follower con�guration which is analogous to the case discussed

previously with two transistors connected to a common node. The lower current source is a photo diode

which has current levels that are proportional to light intensity. The voltage noise is measured at the

output node, Vs. The voltage Vg is such that the MOS transistor shown in the �gure is in saturation

and its reverse current is zero. The photo diode contributes a shot-noise component of 2qI�f . Thus,

we obtain equal shot-noise components of 2qI�f from the transistor and light-dependent current

source, respectively. The theory described above predicts that, independent of the current level, the

total integrated noise over the entire spectrum must be the same. We observe that, as the current

levels are scaled down (by decreasing the light intensity), the noise levels rise but the bandwidth falls

by exactly the right amount to keep the total noise constant. The system is a low pass �lter with a

time constant set by the light level. Thus, the noise spectra show a low pass �lter characteristic. The

voltage noise levels, �Vs
2 are proportional to �I2=gs

2 or to 1=I and the bandwidth is proportional to

gs and therefore to the photo-current I. Thus, the product of the noise per unit bandwidth and the

bandwidth is proportional to the total noise over the entire spectrum and is independent of I. Thus,

the area under all three curves in Fig 4 is the same. The smooth lines in Fig 4 are theoretical �ts

using a temperature of 300K and a value of capacitance estimated from the layout.

It is possible to extend our way of thinking about noise to the above-threshold region of MOS

operation as well. However, the mathematics is more di�cult because the presence of a longitudinal

electric �eld causes non-independence between the noise resulting from forward and reverse currents.

Further, the modulation of the surface potential by the charge carriers results in a feedback process

that attenuates uctuations in the mobile charge concentration| an e�ect that is referred to as space-

charge smoothing.
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4 Conclusion

The key ideas of our article begin with the derivation of a formula for noise, Eq. (11), that is valid

in the subthreshold region of operation of the MOS transistor. The noise is essentially the sum of

shot-noise components from the forward and reverse currents. This noise is the total thermal noise,

and no further terms need be added to model thermal noise. This view of thermal noise as a two-sided

shot noise process is fundamental, and we showed that Johnson and Nyquist's well-known expression

for thermal noise in a resistor may be viewed in the same way. Thus, this article developed a unifying

view of thermal noise and shot noise.

The predictions of the formula were con�rmed by experimental measurements. We discussed the

equipartition theorem of statisticalmechanics and its relation to noise calculations. We showed how our

theoretical calculations agreed with noise measurements in a photoreceptor. Finally, we concluded with

a brief discussion of the considerations involved in extending our ideas to above-threshold operation

in order to develop a single comprehensive theory of noise for the MOS transistor.
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Figure 1: Measured current and noise characteristics of a subthreshold MOS transistor. The lower curve

is the current, normalized by its saturation value Isat, so that it is 1.0 in saturation and zero when Vds is

0. The upper curve is the noise power, �I2, normalized by dividing it by the quantity 2qIsat�f , where �f
is the bandwidth and q is the charge on the electron. As the transistor moves from the linear region to

saturation, the noise power decreases by a factor of two. The lines are �ts to theory using the measured

value of the saturation current and the value for the charge on the electron q = 1:6� 10�19 C.
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Figure 2: The noise power per unit bandwidth, �I2=�f , plotted vs. the saturation current, Isat, for

di�erent values of Isat. The MOS transistor is operated in saturation. Theory predicts a straight line

with a slope of 2q = 3:2� 10�19 C, which is the line drawn through the data points. The small but easily

discernible deviations from the line increase with higher levels of Isat due to the increasing levels of 1/f

noise at these current values.
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Vd1

Vg1

Vd2 Vd3

Vd4

Vg2 Vg3

Vg4

C

Vs

Figure 3: A circuit with four transistors connected to a common node with some capacitance C. By

convention, the common node is denoted as the source of all transistors, and the forward currents of all

transistors are indicated as owing away from the node while the reverse currents of all transistors are

indicated as owing towards the node. Only the voltage Vs is free to uctuate, and all other voltages

are held at �xed values, so that the system has only one degree of freedom. The Equipartition theorem

of statistical mechanics predicts that if we add the noise from all transistors over all frequencies to

compute the uctuation in voltage, �Vs
2, the answer will equal kT=C no matter how many transistors

are connected to the node, or what the other parameters are, so long as all the noise is of thermal origin

and the system is in thermal equilibrium.
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Figure 4: Measured noise spectral density in units of dBV=
p
Hz (0 dBV = 1V, -20dB = 0.1V) for the

voltage Vs in the circuit above. The current source is light-dependent and the curves marked 0, -1 and -2

correspond to bright light (high current), moderate light and dim light (low current) respectively. The

intensity levels were changed by interposing neutral density �lters between the source of the light and

the chip to yield intensities corresponding to 1.7 W=m
2, 0.17 W=m

2 and 0.017 W=m
2 respectively. The

1/f instrumentation noise was negligible over most of the range of experimental data. The noise levels

and bandwidth of the circuit change so as to keep the total noise constant, so the areas under the curves

marked 0, -1 and -2 are the same. The theoretical �ts to the low-pass �lter transfer functions are for

a temperature of 300K and a capacitance of 310 fF, estimated from the layout. These results illustrate

that the kT=C concept, derived from the equipartition theorem in the text, is a powerful one.
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