CHAPTER 17: EXPONENTIAL AND LOGARITHM FUNCTIONS

1. Exponential Functions

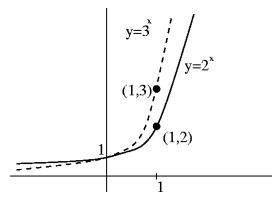
Definition 1.1. An exponential function is a function of the form

$$f(x) = A \cdot b^x$$
 (A, b constants)

(or $f(t) = Ab^t$ or $f(r) = Ab^r$...etc.) That is, it is a function with a variable exponent.

Example 1.1. The functions $f(x) = 2^x$, $g(x) = 3^x$, $h(x) = 100 \cdot 5^x$ are exponential functions.

Note the difference between the exponential function $f(x) = 2^x$ with fixed base and variable exponent or power, and the power function $f(x) = x^2$ with fixed exponent and variable base.



Exponential functions occur naturally:

- Radioactive decay
- unconstrained growth of a population

Example 1.2. The population of Mexico (1980-1983):

year	pop. (in millions)
1980	67.38
1981	69.13
1982	70.93
1983	72.77

The successive ratios are (approximately) the same:

$$\frac{69.13}{67.38} \approx 1.026$$

$$\frac{70.93}{69.13} \approx 1.026$$

In each year, the population increases by a factor of 1.026. Let P(t) denote the population at time t (where t is the number of years since 1980):

$$P(0) = 67.38 = P_0$$

$$P(1) = 67.38 \cdot (1.026)$$

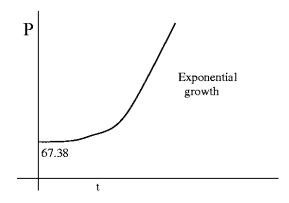
$$P(2) = 67.38 \cdot (1.026) \cdot (1.026) = 67.38 \cdot (1.026)^2$$

$$P(3) = 67.38 \cdot (1.026)^3$$

$$\vdots$$

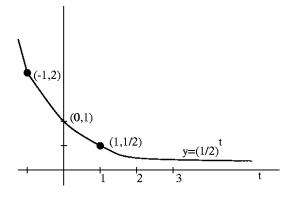
$$P(t) = 67.38 \cdot (1.026)^t = P_0 b^t$$

Thus the estimated population in 1990 is $P(10) = 67.38 \cdot (1.026)^{10} \approx 87.1$



Note: If $f(t) = Ab^t$, we get exponential growth if b > 1 and we get exponential decay if b < 1. (b is called the base of the exponential function.)

Example 1.3. Consider the exponential function $f(t) = (1/2)^t = 2^{-t}$:



This function exhibits exponential decay.

Example 1.4. For any given amount of radioactive potassium ($^{44}_{19}$ K), the amount remaining one second later is 99.97%. Find a formula for the amount at time t. (Let A_0 be the amount at time 0).

Solution:

$$A(t) = \text{amount at time } t$$

$$A(0) = A_0$$

$$A(1) = A_0 \cdot (0.9997)$$

$$\vdots$$

$$A(t) = A_0 \cdot (0.9997)^t$$

2. Half-Lives

Suppose that $A(t) = A_0 \cdot b^t$ with b < 1 (i.e., we have exponential decay).

Then there is a number h > 0 with

$$b^h = \frac{1}{2}$$

Thus, if t is any time, the amount at time t + h is

$$A(t+h) = A_0 \cdot b^{t+h}$$

$$= A_0 \cdot b^t \cdot b^h$$

$$= \frac{1}{2} A_0 b^t$$

$$= \frac{1}{2} A(t)$$

$$= \frac{1}{2} \text{ of the amount at time } t$$

The number h is called the *half-life* or 1/2-*life* of the process.

Example 2.1. The 1/2-life of $_{19}^{44}$ K is 22 mins.

Example 2.2. The 1/2-life of Carbon-14 is 5700 years.

A similar computation shows that if we have exponential growth

$$A(t) = A_0 b^t \qquad b > 1$$

then $b^d = 2$ for some d > 0.

This number d is called the *doubling time* for the process.

Example 2.3. The 1/2-life of carbon-14 is 5700 years. Find the formula for the amount at time t (t in years).

Solution: $A(t) = A_0 b^t$. What's b?

We know

$$A(5700) = A_0 b^{5700} = \frac{1}{2} A_0$$

So

$$b^{5700} = \frac{1}{2}$$

$$\implies b = \left(\frac{1}{2}\right)^{\frac{1}{5700}} = (0.5)^{0.000175} \approx 0.999878$$

So $A(t) \approx A_0 \cdot (0.999878)^t$.

Example 2.4. For a process of exponential decay

$$A(t) = A_0 b^t$$

determine the half-life.

Solution: We must solve

$$b^h = \frac{1}{2}$$

for h.

To do this, we need *logarithms*.

3. Logarithms

The logarithm function answers the question: What power of the number a is equal to the number c?

Definition 3.1. Suppose that a > 0 and $a^b = c$, then we say that b is the logarithm of c to the base a and write

$$\log_a(c) = b$$

Example 3.1.

$$2^{3} = 8 \implies 3 = \log_{2} 8$$

$$10^{4} = 10000 \implies 4 = \log_{10} 10000$$

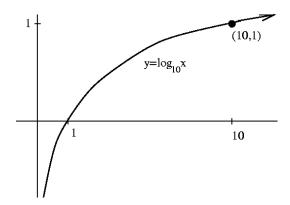
$$10^{-1} = \frac{1}{10} \implies -1 = \log_{10} \left(\frac{1}{10}\right)$$

$$a^{0} = 1 \implies 0 = \log_{a}(1)$$

Thus ' $\log_a c$ ' means the power that a must be raised to in order to get c.

Example 3.2. Thus if we ask: What power of 3 is equal to 47? we are asking for $\log_{3}(47)$. If we ask: what power of 10 is equal to 50?, we are asking for $\log_{10}(50)$.

Note that the 'input' in a logarithm must be a positive number; i.e., the domain of the function $f(x) = \log_a(x)$ is $(0, \infty)$. Graph of $y = \log_{10} x$:



Notation: In elementary texts (and in this course), $\log_{10} x$ is simply denoted $\log x$, and is called the 'common logarithm'. Thus $\log x = y$ means $10^y = x$.

Example 3.3. So $\log(5) = 0.69897...$ means $10^{0.69897...} = 5$.

4. Properties of Logarithms

Theorem 4.1. *Fix* a > 0.

- $(1) \log_a(1) = 0$
- (2) $\log_a(a) = 1$
- (3) $\log_a(c_1 \cdot c_2) = \log_a(c_1) + \log_a(c_2)$

(4)
$$\log_a \left(\frac{c_1}{c_2}\right) = \log_a(c_1) - \log_a(c_2)$$

(5)
$$\log_a(c^d) = d \log_a(c)$$

Proof:

- (1) Since $a^0 = 1$.
- (2) Since $a^1 = a$.
- (3) Let $b_1 = \log_a(c_1)$ and $b_2 = \log_a(c_2)$. Then $a^{b_1} = c_1$ and $a^{b_2} = c_2$. So $a^{b_1+b_2} = c_1 \cdot c_2$ (First Law)

$$\implies \log_a(c_1c_2) = b_1 + b_2 = \log_a(c_1) + \log_a(c_2)$$

(4)
$$\log_a(c_1) = \log_a\left(\frac{c_1}{c_2} \cdot c_2\right) = \log_a\left(\frac{c_1}{c_2}\right) + \log_a(c_2)$$

(using 3.). Now subtract $\log_a(c_2)$ from both sides.

(5) Let $b = \log_a(c)$. So $a^b = c$. Thus $a^{bd} = (a^b)^d = c^d$ (Second Law). So $\log_a(c^d) = bd = d\log_a(c)$

Note: Taking d = -1 in 5. gives

$$\log_a\left(\frac{1}{c}\right) = -\log_a(c)$$

Example 4.1. The formula for the amount of radioactive polonium is

$$A(t) = A_0(0.99506)^t$$
 (t in days)

What is the half-life?

Solution: We need to solve $.99506^h = 1/2$ for h:

$$\log(0.99506^{h}) = \log(1/2)$$

$$h \cdot \log(0.99506) = \log(1/2)$$

$$h = \frac{\log(1/2)}{\log(0.99506)}$$

$$\approx 140 \text{ (days)}$$

Thus for a process of exponential decay we have,

$$half-life = \frac{\log(1/2)}{\log(base)}$$

Similarly, for a process of exponential growth,

doubling time =
$$\frac{\log(2)}{\log(\text{base})}$$

Example 4.2. Estimate the doubling time of the Mexican population. **Solution:**

$$d = \frac{\log(2)}{\log(1.026)} = 27 \text{ (years)}$$

In general, logarithms are useful for solving equations where the unknown occurs as an exponent:

Example 4.3. Solve $7^x = 231 \cdot 5^x$ for x.

Solution: Take logs of both sides:

$$\log(7^x) = \log(231 \cdot 5^x)$$

$$x \log(7) = \log(231) + x \log(5)$$

$$x(\log(7) - \log(5)) = \log(231)$$

$$x = \frac{\log 231}{\log 7 - \log 5}$$

$$\approx 16.175$$

5. Derivatives of logarithms and exponentials

What are

$$\frac{d}{dx}(2^x)$$
 or $\frac{d}{dx}\log(x)$?

We will not be in a position to answer these questions until we have defined the *natural logarithm* function, and to define the natural logarithm we have to first develop the *theory of integration*.