7.1 Basic Trigonometric Identities

Now that you know the definitions of the six trig functions, we can now apply them to the Pythagorean Theorem. Recall that the Pythagorean Theorem is $a^2 + b^2 = c^2$. With this we can correlate the sides of a right triangle with the relationships of the definitions of the six trig functions.

Let's do some substitution:

$$a^2 + b^2 = c^2$$

$$(adj.)^2 + (opp.)^2 = (hyp.)^2$$
 Let's divide both sides by $(hyp.)^2$

$$\left(\frac{adj.}{hyp.}\right)^2 + \left(\frac{opp.}{hyp.}\right)^2 = 1$$
 Let's substitute parentheses with trig functions

$$(\cos \theta)^2 + (\sin \theta)^2 = 1$$
 This is a Pythagorean Identity

There are two other Pythagorean Identities that involve dividing by the other two parts.

$$(adj.)^2 + (opp.)^2 = (hyp.)^2$$
 Let's divide both sides by $(opp.)^2$

$$\left(\frac{adj.}{opp.}\right)^2 + \left(\frac{opp.}{opp.}\right)^2 = \left(\frac{hyp.}{opp.}\right)^2$$
 Let's substitute parentheses with trig functions

$$(\cot \theta)^2 + 1 = (\csc \theta)^2$$
 This is a Pythagorean Identity

$$(adj.)^2 + (opp.)^2 = (hyp.)^2$$
 Let's divide both sides by $(adj.)^2$

$$\left(\frac{adj.}{adj.}\right)^2 + \left(\frac{opp.}{adj.}\right)^2 = \left(\frac{hyp.}{adj.}\right)^2$$
 Let's substitute parentheses with trig functions

$$1 + (\tan \theta)^2 = (\sec \theta)^2$$
 This is a Pythagorean Identity

These three identities are **very** commonly used. Remember these.

In 6-3 we discussed how to find the other trig functions given one and its location. Let's make sure we remember how to do this.

Example Given $\cos \theta = -2/3$ and $\pi/2 < \theta < \pi$. Find $\tan \theta$ and $\sec \theta$.

First you want to draw a right triangle on a Cartesian graph representing the given

information.

Applying the Pythagorean Theorem we can find the length of the side opposite θ .

Now we are ready to find $\tan \theta$ and $\sec \theta$.

$$\tan \theta = \text{opp./adj.} = \sqrt{5} / -2 = -\sqrt{5} / 2$$

$$\sec \theta = \text{hyp./adj.} = 3/-2 = -3/2$$

Try the following:

Given $\tan \theta = -4/5$ and $3\pi/2 < \theta < 2\pi$. Find the values of the other five trig functions.

Answers:

$$\sin \theta = -4\sqrt{29}/29$$
; $\cos \theta = 5\sqrt{29}/29$; $\cot \theta = -5/4$; $\sec \theta = \sqrt{29}/5$; $\csc \theta = -\sqrt{29}/4$