

Robot Design Mobility

ity Controls

Pneumatics

Competition

Pneumatics

- Introduction to Pneumatics
 Pneumatic Components
 Pneumatic Mechanisms
- •Resources

Ian Mackenzie

- 8 years FIRST experience
- Co-General Manager for Team 1114 in 2004, winning 8 FRC awards
- Lead designer for two revolutionary FIRST drive systems (Hexadrive 2002, SimSwerve 2004)
- Specific Areas of Mentorship
 - Mechanical Design, Competition Strategy
- 3rd year Systems Design Engineering student at the University of Waterloo
- Current member of the Waterloo Regional Planning Committee

Mobility

Controls **Pneumatics**

Competition

Introduction to Pneumatics

Pneumatic Principles

Introduction solenoid valve compressor Components cylinder Mechanisms hose Resources reservoir tank

Pneumatic Principles

Why Use Pneumatics?

Introduction

• Weight

Components

- Much lighter than motors (as long as several used)
- Simple

Mechanisms

- Much easier to mount than motors
- Much simpler and more durable than rack and pinion
- More rugged
 - Cylinders can be stalled indefinitely without damage
 - Resistant to impacts
- Disadvantage: All the way in or all the way out

FIRST Robotics Competition Waterloo Regional

Pneumatics Board

Introduction	FIRST 2002 Demonstration Board
Components	
Mechanisms	
Resources	

Mobility

Controls **Pneumatics**

Competition

Pneumatic Components

FIRST Robotics Competition Waterloo Regional Waterloo Regional

Compressor

- Introduction
- Generates pressure of 120 psi
- Components
- Mechanisms
- Always run off relay module, in forward
- Resources

- Do not use to generate a vacuum!

Reservoir(s)

- Introduction
- Up to two
- Components
- Store compressed air at 120 psi
- Top up before each match
- Mechanisms

Slow leaks can decrease pressure between pit and field

Resources

- Tether robot beside field to top up pneumatics

Regulator

• Allows air

- Introduction
- Components
- Mechanisms
- Resources
- system
 Limits pressure in valves, cylinders to 60 psi

from reservoirs

to flow to rest

of pneumatic

Pressure Sensor

Introduction

Components

Mechanisms

- Detect pressure in pneumatic system
 - Indicate whether system is above or below a set pressure
 - Can be calibrated

- Resources
- Usually two (one set for 115 psi, one set for 105 psi)
 - Pressure below 105 psi: compressor on
 - Pressure above 115 psi: compressor off

Solenoids

Introduction

Single Solenoid Valve

- Introduction
- Components
- Mechanisms
- Resources

- When energized, cylinder goes to one state
 - When de-energized, cylinder always returns to rest state
 - When power is cut at the end of the match, cylinder will return to rest state
 - Each valve powered by one relay module (only in forward)

Resources

Double Solenoid Valve

- One solenoid pulsed to move cylinder one Introduction way, other solenoid pulsed to move cylinder the other way **Components**
- Mechanisms
- Results unpredictable if both pulsed
 - Valve will stay in either state when neither solenoid energized
 - Can use one relay for each solenoid or one relay and two diodes

Cylinders

Introduction	• Force = Pressure \times Area
Components	- 2" diameter piston
	- Area = $3.14 \times 1^2 = 3.14$ in ²
Mechanisms	– Pressure = 60 psi
Resources	$-3.14 \text{ in}^2 \times 60 \text{ psi} = 188 \text{ lbs}$
	– Force while extending

- Force while extending greater than while retracting
- Main decisions: Length and diameter
 - Diameter based on required force
 - Larger diameter: more force, but more air

Cylinder Tips

- Introduction
- If you need the piston to stay extended or retracted, add a mechanical latch
- Components
- Mechanisms

- Be careful to ensure the piston rod cannot get bent
- Hard to get locknuts/lock washers in large sizes, so nuts on pistons likely to come loose

Flow Controls

- Introduction
- Regulate flow of air into and out of a cylinder
- Components
- Mechanisms

- Used to control speed of a pneumatic cylinder
- If used, attach directly to cylinder (only one end needed)
- Seems to regulate air flowing in both directions, but one direction is restricted a little more

FIRST Robotics Competition Waterloo Regional

Fittings

Introduction

Components

Mechanisms

- Put Teflon tape on all threads to ensure a good seal
 - Do not put tape on first two threads, as it may come loose and clog up a valve
- Tubing attached simply by pushing it into connector
 - If you have a leak, try cutting off the last couple centimeters of tubing; if it is damaged, it will not seal properly
 - To detect leaks, put soapy water on suspect connections and watch for bubbling

Exhaust Valve

Introduction

• Use to release pressure (especially at the end of a match)

Mechanisms

Components

Resources

• Useful if you need to be able to release a grabber after a match is over

Mobility

Controls **Pneumatics**

Competition

Pneumatic Mechanisms

Linear Motion

Introduction

• Much simpler, easier, more durable than rack and pinion

Components

• Can maintain constant force

Mechanisms

Short Rotation

- Introduction
- Arm joints
- Grabbers
- Components
- Mechanisms
- Resources

Short Rotation

Introduction

Components

• May want to keep joint in position at end of match (whatever position it's in)

Constant Force

- Introduction
- Gear shift
- Components
- Mechanisms
- Resources

Running a Team

Robot Design

Mobility

Controls **Pneumatics**

Competition

Resources

- Introduction www.firstroboticscanada.org
- Components

- Grippers, Joints galleries in 'Resources' section
- www.chiefdelphi.com/forums/papers.php
- Mechanisms

- White papers on many topics
- www.chiefdelphi.com
 - Very active and helpful FIRST forums

Questions?

Introduction

• Ian Mackenzie (ian.e.mackenzie@gmail.com)

Components

Mechanisms