Chromosome mutations

are variations in:

1. Chromosome structure (chromosomal rearrangements)

- deletions
- duplications
- translocations
- inversions
- transpositions
- 2. Chromosome number
 - aneuploidy
 - abnormal euploidy

Chromosomal rearrangements

consequence of chromosome breaks

possible causes:

- 1. high-energy (ionizing) radiation
 - X-rays
 - α , β , and γ emissions (from man-made or natural radioactive sources)
 - cosmic rays
- 2. "spontaneous"
 - unequal crossing over
 - mitotic recombination

Unequal crossing-over

Deletions

- = deficiencies = losses of chromosome segments
- can occur terminally or internally, e.g. caused by...

Consequences of deletions

- almost always lethal when homozygous
- often also lethal when heterozygous
- example of a viable deletion in humans: *Cris-du-chat* syndrome
 - terminal deletion of short arm of one chromosome #5
 - can be seen in karyotype analysis as loss of bands/interbands
 - leads to mental retardation

How deletions can be identified....

by finding a visible change in chromosome structure:

Mapping genes with deletions

fa = facet

Duplications

Consequences of duplications

- most duplications have no phenotypic consequence
- sometimes effects can be seen due to increased gene dosage
- play a very important role in evolution:
 - increase gene number
 - evolution of new genes (paralogs!)

Inversions

result from insertion of a chromosome fragment in reverse orientation:

- usually no phenotypic consequences
- can sometimes lead to a mutant phenotype:

Inversions suppress genetic recombination by crossing-over

Inversions are used to "balance" chromosomes

Translocations

- = attachments of chromosome fragments to non-homologous chromosomes
- reciprocal translocations arise from exchange of chromosome fragments between non-homologous chromosomes:

 non-reciprocal translocations arise from attachment of chromosome fragment to a non-homologous chromosome; lead to duplications and deletions in progeny

Consequences of translocations

• usually none in homozygotes; genetic material is neither lost nor gained:

 none in heterozygotes if translocation chromosomes segregate together ("balanced" translocation); if translocation chromosomes are separated, genetically imbalanced gametes result with deletions or duplications; zygotes produced by these gametes are not viable

→ semisterility

Robertsonian translocation or centric fusion

= fusions of two acrocentric chromosomes after short arms broke off

How a Robertsonian translocation can lead to Down syndrome

Transposition

= movement of DNA elements from one site in the genome to another

• transposable elements = transposons:

- some related to viruses (transposons & viruses: mobile genetic elements)
- found in all organisms (bacteria to humans)
- have no obvious function (are dispensible)

→ are considered as "selfish" DNA

- impact on evolution of genomes
- can be used as transformation vectors and for mutagenesis
- 2 main classes:
 - 1. retrotransposons (= retroposons)
 - **2. DNA-only transposons**

Life cycle of a retrovirus

Retrotransposons (retroposons) transpose via RNA intermediate

DNA-only transposons

P-elements in Drosophila

Changes in chromosome number

Aneuploidy

= change in the number of single chromosomes (but not in the number of sets)

	Karyotype	Examples (humans)
Monosomy	2n - 1	Turner (45, XO); loss of an autosome is lethal
Trisomy	2n + 1	Trisomy 21 (Down syndrome), 18, 13; Klinefelter (47, XXY), Triple-X (47, XXX), XYY males (47, XYY)
Nullisomy	2n - 2	not viable in diploids

(abnormal) Euploidy

= change in the number of chromosome sets Diploid 2n

Polyploid (Triploid, Tetraploid etc.) 3n, 4n etc.

• is not viable in humans; many plants polyploid

Turner Syndrome (45, X)

sterile females

1 in 3000 female births

Klinefelter Syndrome (47, XXY)

2 in 1000 male births

Down Syndrome (47, +21)

