Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University

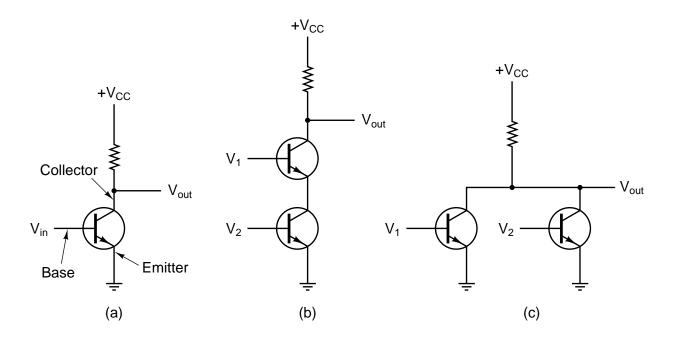
Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

The computer's real hardware.

- Basic elements: gates.
- Basic logic: Boolean algebra.
- Combinatorial Circuits.
- Arithmetic Circuits.
- Memory.
- CPUs and buses.

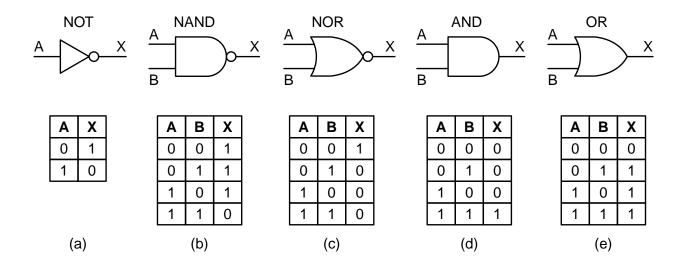
Boundary between computer science and electrical engineering.


Gates

A gate is a device that computes a function on a two-valued signal.

- Fundament: transistor can operate as a binary switch.
 - Three connections to the outside: collector, base, emitter.
 - Input voltage V_{in} < critical value: transistor becomes infinite resistance.
 - * Output voltage V_{out} becomes externally regultated voltage V_{cc} (5V).
 - Input voltage $V_{in} >$ critical value: transistor becomes a wire.
 - * Output voltage V_{out} is pulled to ground (0V).
- Interpret voltages as logical values.
 - "High" voltage (V_{cc}) is a logical 1.
 - "Low" voltage (ground) is a logical 0.

Transistor acts like a logical inverter (NOT).


Basic Gates: Construction

NAND and NOR gates can be constructed by wiring two transistors in parallel respectively in series.

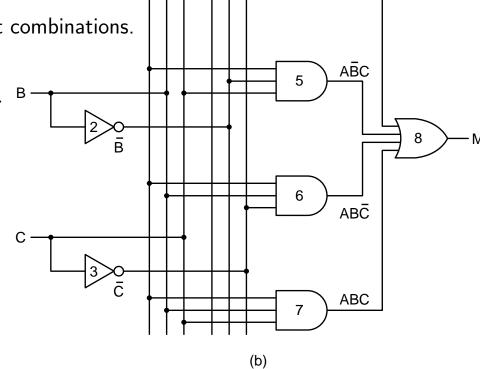
3

Basic Gates: Logic

Most computers are based on NAND and NOR gates.

Boolean Algebra

Algebra of boolean functions.


• Inputs and results are logical values.

— Boolean function of n variables has 2^n input combinations.

- Representation by truth table with 2^n rows.

 $-\,2^{2^n}$ Boolean functions with n variables exist. $^{\rm B}$

Α	В	С	M	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	
(a)				

ĀBC

ABC ĀBC

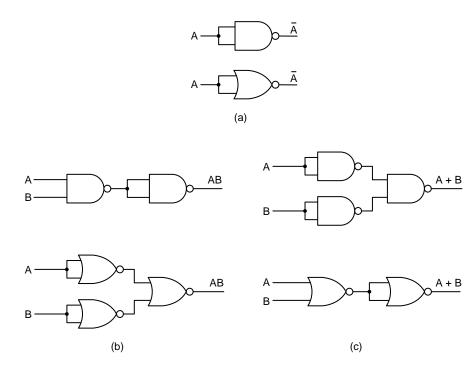
Other Notation

Truth tables are too clumsy too handle.

- Suffices to specify which combinations of inputs gives output 1.
 - Let \bar{A} denote negation, AB denote conjunction, A+B denote disjunction.
 - $-M = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC.$
 - A function of n variables can be descried by a sum of at most 2^n product terms of n variables.

Linear representation of Boolean functions.

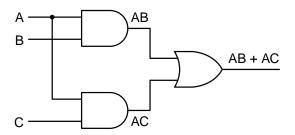
Implementation of Boolean Functions

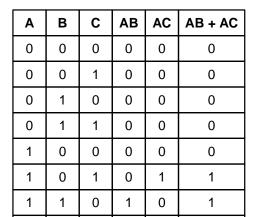

Construct circuit for a given Boolean function.

- Systematic process:
 - 1. Write down the truth table for the function.
 - 2. Provide inverters to generate the complement of each input.
 - 3. Draw and AND gate for each term with a 1 in the result column.
 - 4. Wire the AND gates to the appropriate inputs.
 - 5. Feed the output of all AND gates into an OR gate.
- Further transformations possible:
 - 1. Replace multi-input gates by two-input gates (A + B + C + D = (A + B) + (C + D)).
 - 2. Replace NOT, AND, OR gates by NAND gates (or by NOR gates).

Circuit is not necessarily the simplest one.

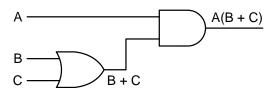
Construction of NOT, AND, OR


Any Boolean function can be constructed from NAND or NOR only.



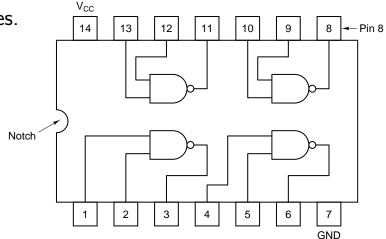
NAND gates and NOR gates are complete.

Circuit Equivalence


Try to reduce the number of gates in a circuit.

(a)

1

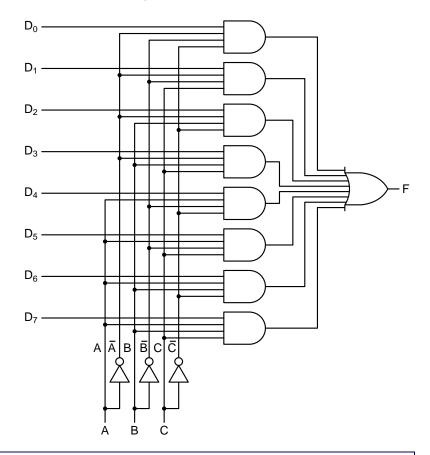

Α	В	С	Α	B + C	A(B + C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

(b)

Integrated Circuits

Gates are manufactured in units called Integrated Circuits (ICs).

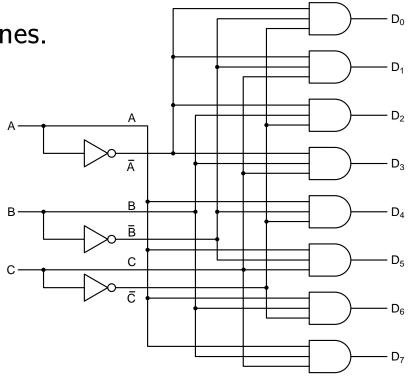
- Square piece of silicon (5 mm \times 5 mm).
 - Gates are deposited on these "chips".
 - Multiple chips are mounted in packages of e.g. 15 mm imes 50mm.
 - Two parallel rows of pins are placed on long edges.
- Various integration scales.
 - SSI (Small Scale Integrated): 1–10.
 - MSI (Medium Scale Integrated): 10–100.
 - LSI (Large Scale Integrated): 100–100.000.
 - − VLSI (Very Large Scale Integrated): >100.100.


Today: up to 10 million transistors per chip.

Combinatorial Circuits

Multiplexers

- \bullet 2ⁿ data inputs, one data outputs, 1 control input.
 - Control input selects one of the data inputs.
 - Selected input is routed to the output.
- Inverse is demultiplexer.
 - -1 data inputs, 2^n outputs, 1 control input.
 - Input is routed to the selected output.


Fundamental routing operations.

Decoders

- n-bit number as input, 2^n output lines.
 - Input selects output line which is set to 1.
- Example application:
 - Memory of eight 1MB chips.
 - − 0−1MB, 1-2MB, . . .
 - Address is presented to memory.
 - High-order 3 bits are used to select one chip.

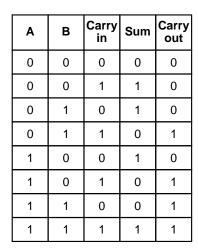
Fundamental control operations.

Arithmetic Circuits

Adders

- Half adder.
 - Two inputs, two outputs.
 - Sum of inputs in one output.
 - Carry in other output.

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

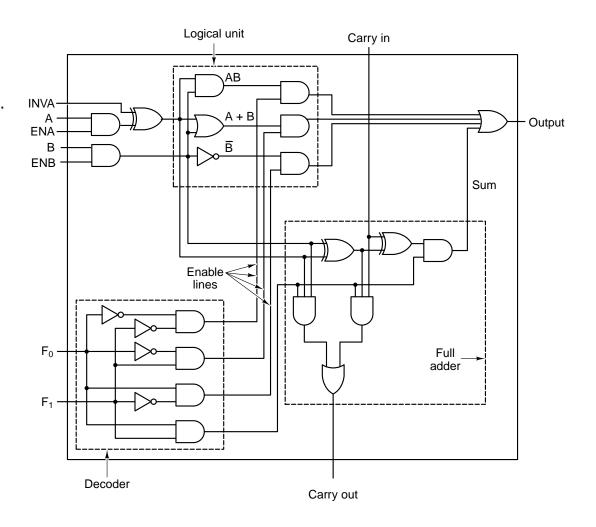

E	exclusive OR gate
A B	Sum
	Carry in
Carry	
A B	Sum

Carry out

• Full adder.

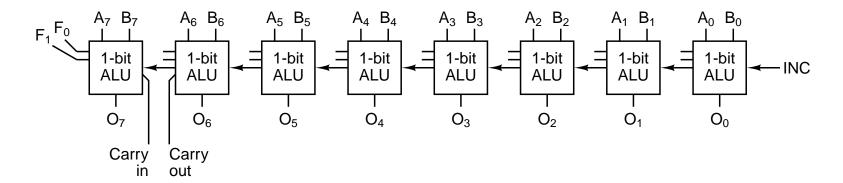
- Three inputs, two outputs.
- Sum of inputs in one output.
- Carry but in other output.

Basis of 1 bit ALU.



(a) (b)

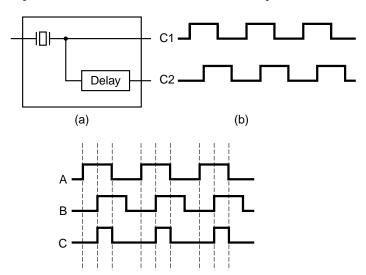
Arithmetic Logic Units


- 1 bit ALU.
 - Inputs enabled or not (set to 0).
 - Control input selects operation.
 - AND, OR, NOT, Addition.

Basis of n bit ALU.

Arithmetic Logic Units

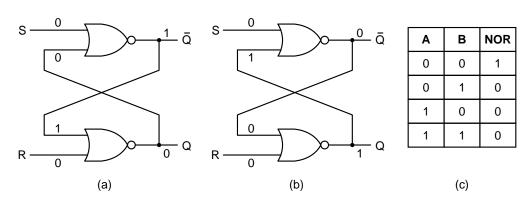
- 8 bit ALU.
 - Connection of 1-bit ALU slices.


n-bit ALUs can be constructed from 1-bit slices.

Memory

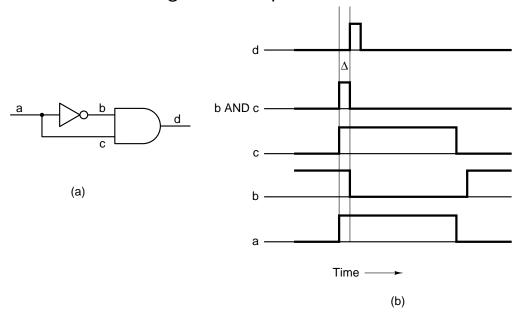
Clocks

In digital circuits, timing relations must be controlled.


- Clock: circuit that emits sequence of pulses (crystal oscillator).
 - Precise pulse width; precise interval between pulses (clock cycle time).
- Derived clock signals can be constructed by delays.
 - By combination, clock cycle can be divided in subcycles.

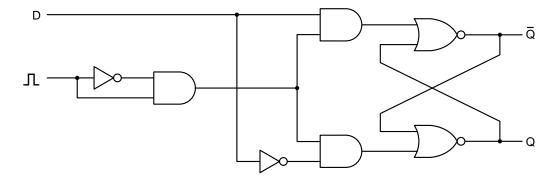
Latches

Circuits that remember "previous" input values.


- SR latch.
 - -S input: sets the latch; R input: resets the latch.
 - $-\operatorname{If} S$ is 1 and R is 0, Q gets 1.
 - $-\operatorname{If} R$ is 1 and S is 0, Q gets 0.
 - $-\operatorname{If} R$ and S are 0, Q remains unchanged.
 - $-\bar{Q}$ is inverse of Q.

Pulse Generators

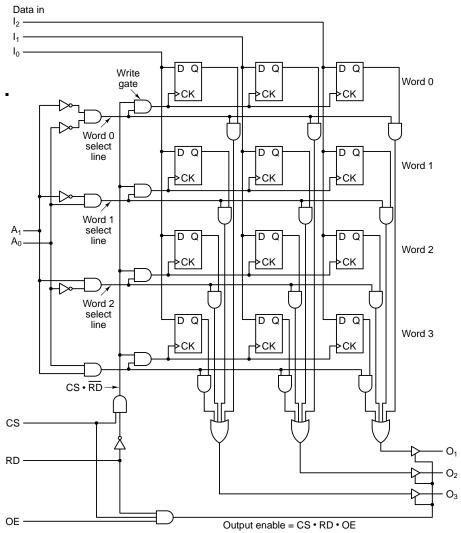
Circuits which generates very short pulses.


- ullet A signal a and its negation b are fed into an AND gate.
 - When signal a is set, negation b is slightly delayed.
 - For a short period, there is a signal on output d.

Flip-Flops

Circuit which stores a data value at a precise time.

- Combination of a pulse generator and a latch.
 - Inputs of latch are D AND \bar{D} (no inconsistency may occur between R and S).
 - Inputs are conjoined with output of pulse generator (input is read at well-defined time).


Current value of D is read and stored a fixed time after clock signal.

Memory Organization

Individual words must be addressed.

- \bullet 4 imes 3 memory.
 - Input lines I_i .
 - Address lines A_j .
 - Chip select signal CS.
 - -RD signal for read/write.
 - -OE signal for output enable.

Simple regular structure.

RAMs: Random Access Memories

- SRAM: Static RAM.
 - Constructed from flip-flops.
 - Content is retained as long as power is kept on.
 - Very fast (few nanoseconds access time), used for caches.
- DRAM: Dynamic RAM.
 - Each cell consists of transistor and capacitor only.
 - Capacitor can be charged or discharged (0 or 1).
 - Charge leaks out, bit needs to be refreshed every few milliseconds.
 - Rather slow (tens of nanoseconds access time), used for main memory.
- SDRAM: Synchronous DRAM.
 - Hybrid of SRAM and DRAM.
 - Access driven by synchronous clock.
 - Used for main memory today.

ROMs: Read Only Memories

- Content is inserted during manufacture.
 - Content cannot be changed or erased, is retained even if power is switched off.
 - Data are etched via mask into silicon surface.
- PROM: Programmable ROM.
 - Content can be written once.
 - Contains array of tiny fuses that can be blown out by high voltage.
- EPROM: Erasable PROM.
 - Data can be erased by exposure to ultraviolet light.
- EEPROM: Electric EPROM.
 - Data can be erased by electric pulses.
- Flash Memory: memory is block erasable and rewritable.
 - Compact Flash card, Smartmedia card, . . .

CPU Chips and Buses

CPU Chips

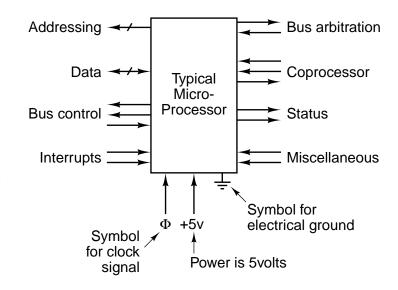
All modern CPUs are contained on a single chip.

- Ineraction with outside world through set of pins.
 - Input signals, output signals, bidirectional signals.
 - Connected to similar pins on memory chips and I/O chips via bus.

Address pins:

- CPU puts memory address on its address pins to load a memory cell.

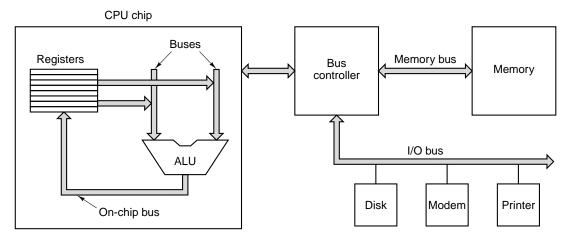
Data pins:


- Memory replies by putting requested word on the CPU's data pins.

• Control pins:

- CPU asserts via some control lines when it wants to read data.
- Memory asserts via some control lines when data are available.

Control Pins


- Bus control.
 - CPU tells bus whether it wants to use it.
- Interrupts.
 - -I/O devices tell CPU to interrupt current program.
- Bus arbitration.
 - Used for regulating traffic on the bus.
- Coprocessor signaling.
 - Used for making/granting requests to auxiliary processors.
- Status.
 - Accept or provide status information.

Computer Buses

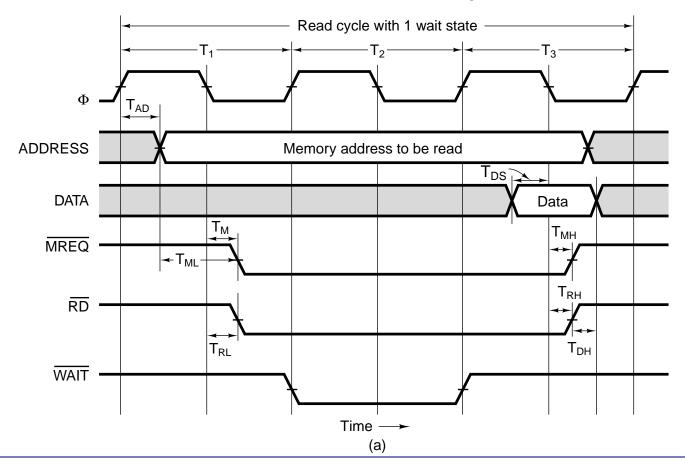
Electrical pathways shared between multiple devices.

- Various functions.
 - Internal to CPU: transport data to and from ALU.
 - External to CPU: connect it to memory or to I/O devices.
- Multiple external buses with special properties.
 - Memory bus, I/O bus, graphics bus, . . .

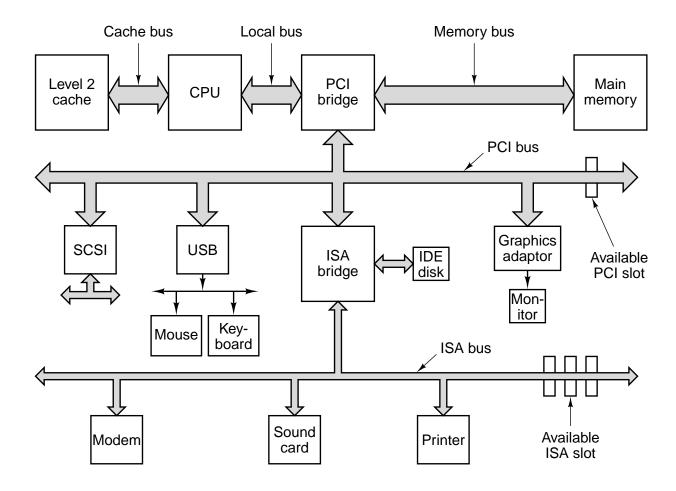
Computer Buses

- Various types of buses:
 - PCI bus (PCs), SCSI bus (PCs and workstations), Universal Serial Bus (USB, PCs), FireWire (consumer electronics), . . .

Bus Protocols:

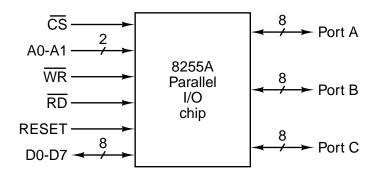

- Sets of rules that devices must obey to use the bus.
- Masters: active devices that can initiate bus transfers.
- Slaves: passive devices that wait for requests.
 - * CPU master, I/O device slave: initiate data transfer.
 - * I/O device master, memory slave: DMA (Direct Memory Access).

Design parameters:


- Bus width: number of address and data lines (e.g. 64 bits).
- Bus cycle time: number of transfers per second (e.g. 100 MHz).
- Bus bandwidth = data width * cycle time (781 MB/s).

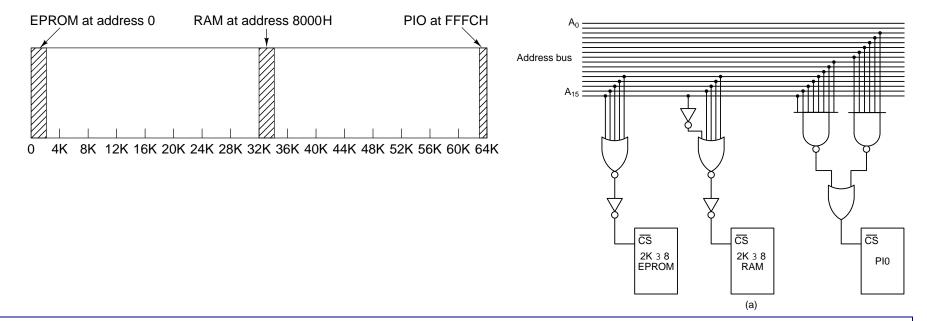
Synchronous Buses

All activities take a fixed number of bus cycles.



Example: Pentium PC

I/O Controllers


- UART: Universal Asynchronous Receiver Transmitter.
 - Can read a byte from data bus and output it bit by bit on a serial line.
 - Can read a byte bit by bit from a serial line and put it on the data bus.
- PIO: Parallel Input/Output chip.
 - Chip that connects to the parallel interface of a computer.
 - Computer writes 8 bit number into a register of the chip.
 - Chip puts 8 bit number on the output lines until register is rewritten.

Memory Mapped I/O

I/O registers are assigned part of the memory address space.

- CPU reads/writes corresponding memory locations.
 - Chip Select (CS) pin of PIO chip is wired to bus address lines.
 - If corresponding address is issued, data pins of PIO chip take value from bus data lines.

