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Abstract. This review article summarizes the basic knowledge from the field of sleep research. 
The emphasis is on the exploration of the rules of polysomnographic recording and scoring 
sleep stages as well as on results and opinions about the nature of sleep EEG. History of 
sleep research, sleep physiology, functions of sleep and mostly used experiments are briefly 
mentioned. Relevant spectral methods and methods inspired by dynamical systems theory are 
listed.  
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1. Introduction 
 
The importance of sleep research is both in medicine and in theoretical area. There are many 
sleep disorders, e.g., the most frequent are insomnia, narcolepsy, sleep apnoea; many other 
disorders manifest themselves through sleep disturbances (e.g. depression, schizophrenia, 
Alzheimer disease [1], etc.). After the pain, sleep disturbances are the second most frequent 
indicator of illness. 
 
During sleep, human brain goes through several psychophysiological states that are relatively 
stable. Many nervous centres are inactive, so brain becomes a less complex system and is a 
suitable object for mathematical modelling. 
 
The beginning of modern sleep research dates back to the 1930s and is closely connected with 
the invention of the electroencephalography. In 1937, Loomis was the first to observe that 
sleep is not a homogeneous state during the whole night and described different stages of 
sleep based on EEG [2]. In 1953, Aserinsky and Kleitman observed a special state of sleep - 
rapid eye movement (REM) sleep, during which rapid, binocularly symmetrical eye 
movements occur, EEG pattern is similar to the one observed during wakefulness, and both 
respiratory and heart rates are increased in contrast to other sleep stages. Their experiments 
resulted in a relationship between REM sleep and dreaming: majority of people awakened 
from REM sleep reported dreams, whereas people awakened during nonREM sleep did not 
recall dreams [3]. From overnight recording of EEG and electrooculogram (EOG), Kleitman 
with Dement [4] specified the cyclic pattern of REM-nonREM sleep. One cycle of REM-
nonREM lasts about 90-100 minutes and during the night, 4-5 cycles occur. Aserinsky and 
Kleitman also divided nonREM sleep into four stages: 1 through 4, ranging from the lightest 
sleep in stage 1 to the deepest sleep in stage 4. 
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Figure 1: Placement of electrodes of polysomnographic measurement 

 
 
 

2. Sleep Stages and the Rules of Rechtschaffen and Kales 
 
The main states of vigilance are wakefulness, REM sleep and nonREM sleep. NonREM sleep 
is further divided into four Stages from the lightest Stage 1 to the deepest Stage 4. Stages 3 
and 4 are referred to as slow wave sleep (SWS). The frequency of sleep Stages alters during 
the night - in the early hours of sleep SWS dominates, whereas REM sleep occurs more often 
in the second part of sleep. The portion of REM sleep during night alters with age - in new-
born babies REM sleep lasts for 50%, in adults for 20%. 
 
An essential method in human clinical and basic sleep research is polysomnography. It is 
composed of measuring electroencephalogram (EEG), electrooculogram (EOG) and 
electromyogram (EMG), see Figure1. Electroencephalography is the basic method with an 
excellent temporal resolution and lower spatial resolution of electrical activity of cerebral 
cortex. The quality of EEG recording depends on some technical parameters, see [5] for 
details. 
 
Sleep Stages are scored according to “A Manual of Standardized Terminology, Techniques 
and Scoring System for Sleep Stages of Human Subject”, which was elaborated in 1968 by a 
committee co-chaired by A.Rechtschaffen and A.Kales [6]. The purpose of these uniform and 
standard criteria was to increase the comparability and replicability of results from different 
laboratories. The Manual involves parameters, techniques and wave patterns of 
polysomnographic recordings. One channel of EEG, two channels of EOG and one channel of 
EMG are recorded. The EEG derivations are C4/A1 or C3/A2 according to the 10-20 
electrode placement system (see Fig.2). The potentials for eyes movements recording are 
measured from 1 cm above and slightly lateral to the outher canthus of one eye and 1 cm 
below and lateral to the outer canthus of the second eye. The reference electrodes for both 
eyes are placed on the same ear lobe or mastoid. The EMG is recorded beneath the chin 
(mental, submental). The placement of electrodes of polysomnographic recording is 
illustrated on Fig. 1. The Stages are scored epoch-by-epoch in 20-30 s intervals. 
 
Waking (Stage W) 
There is a low voltage (10 − 30µV) and mixed frequency EEG during wakefulness (see Fig. 
3). Possible features are alpha activity in EEG and relatively high tonic EMG. 
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Movement Time 
If in more than half an epoch of the EEG or EMG signals are unclear due to amplifier 
blocking or muscle activity, the epoch is counted neither with sleep nor with waking, but is 
labelled as movement time. It is not the same as discrete body movements, which could be 
very short. Body movements can be a part of a sleep Stage or the movement time. 
 
 

 
Figure 2: 10-20 electrode placement system for EEG measurement 

 
Stage 1 
Stage 1 is characterized by low voltage, mixed frequency EEG with the highest amplitude in 
2-7 Hz range (see Fig. 3). The vertex sharp waves may occur; their amplitude can reach the 
value of about 200 µV. In Stage 1 after wakefulness slow eye movements can be present. The 
EMG level is lower than in the wakefulness. Stage 1 is also scored when the epoch is 
characterized with alpha activity combined with mixed frequency EEG and the amount of 
alpha activity is less than 50% of an epoch. 
 
Stage 2 
Stage 2 is characterized by wave patterns sleep spindles and K complexes and the absence of 
slow waves (see Fig. 3). K complex is a sharp negative wave followed by a slower positive 
one. Sleep spindles occur in 12-14 Hz frequency range. The duration of these patterns should 
be 0.5 s at minimum. If the time between two succeeding occurrences of sleep spindles or K 
complexes is lower than 3 min, this interval is scored as Stage 2, unless there are movement 
arousals or increased tonic activity. If the time interval is 3 min or more, it is scored as Stage 
1. 
 
Stage 3 
20%-50% of the epoch of EEG record should contain waves with 2 Hz or slower and with the 
amplitudes above 75 µV if the epoch is scored as Stage 3, see Fig. 3. Sleep spindles and K 
complexes may occur during Stage 3. 
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Stage 4 
Stage 4 has the same attributes as Stage 3, but waves with 2 Hz and slower with the 
amplitudes greater than 75 µV 50 appear more than 50% of the epoch. 
 
Stage REM 
Stage REM shows low voltage and mixed frequency (similarly to Stage 1) of EEG, sawtooth 
wave pattern is often present (see Fig. 3). EMG reaches the lowest level and episodic rapid 
eye movements occur (REMs). 
 

 
Figure 3: Wave pattern of different sleep Stages 

 
 
There exist cases when no movement arousals are present, EEG exhibits a relatively low 
voltage and mixed frequency, and sleep spindles (K complexes) characteristic for Stage 2 
alternate with typical features of Stage REM (REMs, the lowest EMG level). Then scoring 
follows these rules: 
 
1. Stage REM: EMG is at the lowest Stage REM level or the rapid eyes movements are 
present. 
 
2. Stage 2: interval between two sleep spindles or K complexes is less than 3 minutes. The 
rules of Rechtschaffen and Kales have been used for more than 35 years, but they have some 
dearths and disadvantages [7]: 
 

• They ignore events shorter than 30 seconds. If the interval contains features from more 
than one Stage, it is scored as the Stage whose features have the longest duration. 

• They are designated for healthy adult people and hence, it is not possible to score 
atypical patterns in cases of ill people or children. 

• Some wave patterns (sleep spindles or K complexes) are not well defined, especially 
with respect to automated sleep scoring. 
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3. Cyclic alternating pattern 
 
The alternation of the above defined sleep Stages represents the macrodynamics of brain. In 
the concrete sleep Stage the level of arousal is assumed to be stable [8]. Different approach 
gives the idea of cyclic alternating pattern (CAP). CAP is a “periodic EEG activity of 
nonREM sleep, characterized by sequences of transient electrocortical events that are distinct 
from the background EEG activity and recur at up to 1 min intervals” [9]. CAP is functionally 
connected with fluctuation of arousal. CAP sequences occur in all Stages 1, 2, 3 and 4 and in 
preference to 4 sleep onset, after awakeness during sleep and before the transition from 
nonREM to REM sleep [8]. In normal REM sleep CAP does not occur. The rate time 
(CAP)/time(NREM) in young adults is about 23% and increases with age [8]. 
 
 

 
Figure 4: Cyclic alternating pattern (C) in sleep Stage 2. 

A - phase A, B - phase B. 
EEG derivations after international electrode placement: top 6 channels from top to bottom: 

FP2-F4, F4-C4, C4-P4, P4-O2, F8-T4, T4-T6. 
OCULOG - oculogram. 

bottom 7 channels: FP1-F3, F3-C3, C3-P3, P3-O1, F7-T3, T3-T5, F2-C2. 
EKG - electrocardiogram1 

 
CAP is composed of two phases - phase A and phase B (see Fig. 4). At least two CAP cycles have 
to occur consecutively to be regarded as CAP sequence. Phase A represents events clearly 
outstanding from the background rhythm - abrupt changes in frequency and/or amplitude. Phase 
B is an intervening interval between phases A. 
 

                                                 
1 Reprinted from Sleep Medicine 2, Terzano M. G. et al.: Atlas, rules, and recording techniques for the scoring 
of cyclic alternating pattern (CAP) in human sleep., 537-553, 2001 with permission from Elsevier 
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According to American Sleep Disorders Association CAP, sequences and microarousals may 
indicate instability or sleep disturbances with detrimental effects on sleep. Halász, Terzano et al. 
[10] presented an opposing idea: microarousals and CAP sequences are natural parts of the sleep 
texture. The physiological function of CAP could be protecting of reversibility of sleep and also in 
connection between the sleeping brain and his surrounding space to adapt to potential changes and 
danger. 
 
4. Physiology of sleep 

 
Sleep-wake cycle is regulated by multiple sleep and wake promoting systems, which are spread 
all over in the brain. Sleep begins with activation of the preoptic area of the anterior 
hypothalamus. Sleep promoting neurons project to wake-promoting centers and inhibit them with 
γ-aminobutyric acid (GABA) as neurotransmitter. The inhibition of wake-promoting neurons 
works on other sleep-promoting neurons and activates them, which results in intensifying the 
sleep process [11]. 
 

 
Figure 5: Sleep and waking centres. S - suprachiasmatic nucleus in hypothalamus, G – 

lateral geniculate nucleus in thalamus, LDT - laterodorsal tegmental nucleus, PPT – 
pedunculopontine tegmental nucleus, LDT, PPT in brain stem 

 
REM sleep is regulated mostly by the brain stem; the two most important nuclei are laterodorsal 
(LDT) and pedunculopontine (PPT) tegmental nuclei. LDT and PPT project to thalamus, basal 
forebrain and the cortex, which output the desynchronized EEG pattern. The descending 
pathways to α motor neuron cause the skeletal muscle atonia [12]. Typical neuronal activity 
before the rapid eyes movements - PGO waves - rises from the pons and spreads through LGN 
(lateral geniculate nucleus) in thalamus to the occipital lobe [13, 12]. 
 
The waking and arousal promoting centers are located in the posterior hypothalamus, basal 
forebrain, mesopontine tegmentum and contain cholinergic, noradrenergic, serotonergic and 
histaminergic neurotransmitters [11]. The arousal starts in reticular activating system (RAS), 
which receives collateral inputs from visceral, motor and sensory systems. RAS projects to the 
forebrain and cortex via thalamic and extrathalamic neural pathways. 
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5. Function of sleep 
 
For long time people were interested why sleep is so essential for the life. There are many 
theories, which try to explain functions and the purpose of sleep. Some of them satisfactorily 
interpret several facts, but broadly accepted theory that would explain all phenomena and 
experiments, does not exist till now. Here only the main theories are mentioned: 
 

1. Conservation of energy: the main arguments for the purpose of sleep as reservation of 
energy are that during the sleep deprivation the energy consumption is increased and vice 
versa during sleep the basal metabolism is decreased about 5-25% [14].  

 
2. Restoration of tissues and growth: during the first hours of sleep growth hormone 

excretion, cell mitosis and protein synthesis are increased. In the time of growth or after 
more laboured day the amount of NREM sleep is increased during the night. However J. 
Horne [15] criticized this theory. According to him cell mitosis occurs a few hours after 
food intake and has a circadian rhythm, the decreasing metabolic rate is in discrepancy 
with the protein synthesis that needs higher energy cost and the increased temperature of 
head after physical activity is the cause of increased rate of SWS. 

 
3. Thermoregulation: in experiments with rats, long-term sleep deprived rats showed the 

temperature increased in about 10 degree [16], so sleep probably decreases the 
temperature. 

 
4. Regulation of emotions [17]: in humans the sleep deprivation causes the disturbances of 

emotional behavior (such as concentration, interest for distinct goal, etc.), particularly 
SWS deprivation induces depressive or hypochondriacal states. So NREM sleep is likely 
to be involved in adjusting and regulating these emotions. This theory is supported by 
clinical observations that depressed patients show lower duration of NREM sleep as well 
as that metabolic rates and neuronal discharge are higher in brain regions that take control 
of emotions (limbic structures) during NREM sleep in contrast with waking state. 

 
5. Neural maturation: one part of theories about sleep functions is concerned with REM 

sleep. The percentage of REM sleep of total sleep time decreases with age - in about 6. 
month of prenatal phase the children spend about 80% of sleep in REM sleep, but young 
adult people only 25% [14]. So it is assumed that during REM sleep the maturation of 
brain and myelinization of nerve fibers proceed.  

 
6. Memory and learning: both types of sleep NREM and REM play a key role in memory 

consolidation and learning. There is an information transfer between cortex and 
hippocampus during the sleep that realizes the fixation of memory traces or during REM 
sleep the insignificant bindings are abolished [18]. With this reprocessing of information 
also the learning process is related. Several papers refer the improvement of performance 
perceptual or motor task after sleep [19, 20]. The improvement is due to sleep and not due 
to time interval or circadian factors. 
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6. Experiments 
 
In research and also in medical care, it is necessary to perform investigations and experiments. In 
most experiments people are asked to refrain from alcohol, caffeine and other drugs that influence 
sleep during the study and have a regular sleep regime some time before.  
 
Polysomnographic recordings of EEG, EOG, EMG are taken during the whole night to score the 
sleep Stages and the course of the sleep. In clinical practice ECG, blood pressure, blood 
oxygenation and breath rate are also measured.  
 
Typical features of many sleep disorders are extreme fatigue and sleepiness during the day. In 
order to reveal the tendency to sleep during the day, the Multiple Sleep Latency Test (MSLT) is 
used. After a normal night person is lying in a dark quiet room and is asked to fall asleep. Time 
from the beginning of the test to the first epoch of sleep - the latency of the sleep – is measured. 
This procedure is repeated 4-5 times in two hour intervals during the whole day. The sleep onset 
is obtained on the basis of the polysomnographic measurements. The average sleep latency is 
evaluated. The value of average sleep latency less than 5 min is regarded as pathological [21]. In 
conditions similar to MSLT, the Maintenance of Wakefulness Test (MWT) is performed, but 
people are asked to remain awake during soporific circumstances. Again, the average sleep 
latency is evaluated and the value less than 11 min is taken as pathological [22].  
 
Other types of experiments are also used in research of sleep regulation. Effects of sleep 
deprivation or daytime naps are investigated and forced desynchrony experiments are arranged. 
The night after sleep deprivation (or daytime naps) is compared with the baseline night, and the 
variation in EEG between them is evaluated. The most significant difference is in the amount of 
slow wave sleep. In the forced desynchrony protocol people are exposed to artificial length of the 
day, different from 24 hour cycles. They are deprived of external periodic light/dark cycle. During 
one third of the artificial cycle, the lights are turned off and people have the opportunity to sleep 
[23, 24].  
 
Let us mention another type of experiments - from theoretical area - models of artificial neural 
networks (ANN), which are inspired by nervous system. Originally, the ANN were developed to 
solve problems in technical area, but today they can also be applied to physiological data. In sleep 
research, ANN are used in automated scoring of sleep Stages [25, 26] and in classifying artefacts 
in EEG [27]. 
 
 
7. Models of sleep regulation 
 
Today it is generally accepted that there are three processes that regulate sleep: a homeostatic 
process, a circadian process and an ultradian process [28].  
 
The homeostatic process takes control of the amount of sleep and wakefulness, so that the 
homeostasis is reached. It increases the fatigue and sleep propensity during wakefulness and 
decreases it during sleep. The indicator of homeostatic process is SWS, which occurs more in the 
first part of sleep and its presence during the night gradually decreases. The SWS activity is 
significantly enhanced during the recovery night after sleep deprivation [29]. In contrast, daytime 
naps cause the attenuation of SWS [28]. Until now, physiological centre of the homeostatic 
process has not been identified.  
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Circadian process reflects the influence of external events which oscillate with circadian rhythm. 
Circadian process represents the alternation of sleep propensity with cca 24 hours rhythm. Also, 
some other processes show circadian behavior - for example the core body temperature, plasma 
melatonin or cortisol concentration [24]. In the forced desynchrony protocol the circadian and 
homeostatic processes can be unlike the homeostatic process, the brain structure of the circadian 
pacemaker is known - it is the suprachiasmatic nuclei of the hypothalamus [24] (see Fig. 5). 
 
Ultradian process administers the variation of nonREM and REM phases during the sleep.  
 
One of the basic models is the two-process model of sleep regulation [23, 28]. It assumes the 
interaction of the homeostatic and circadian processes. The homeostatic variable S (sleep 
propensity) rises exponentially during wakefulness until it reaches the upper threshold H – the 
beginning of the sleep. During sleep, S decreases, un till it reaches the lower threshold L 
characteristic for the arousal. Both thresholds H and L change according to the phase of the day. 
The exponential function is fitted through 3 data points: the relative slow wave activity at the end 
of a normal night, after normal waking and after 40 hours of sleep deprivation.  
 
Other models of sleep regulation propose variant interaction between homeostatic and circadian 
process or add other components, for review see [28]. 
 
 
 
8. Linear and nonlinear measures 
 
Spectral theory is conventional and the most used linear tool in the analysis of biosignals. Spectral 
analysis is used to investigate the signal’s power in the various frequency bands and also the 
mutual relationships between more signals. It is based on Fourier transform which displays signal 
in the frequency domain [30]:  
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where x1, ..., xi, ...xN is the measured signal in the time domain, Xk is the amplitude corresponding 
to the kth frequency and N is the number of values. 
 
The power of particular frequency band is computed as the sum of modulus-square amplitudes 
belonging to this band. Here is an example of the power in alpha band (8Hz-12Hz): 
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where k8Hz is the lower limit of alpha band and k12Hz is the upper limit of alpha band.  
 
Another often computed index is coherence that reflects the degree of synchrony between signals 
from different derivations (brain areas). It is calculated as the ratio between crossspectrum of two 
signals and a product of their autospectra: 
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where PAB is the cross-spectral density of signals A,B and PA, PB are the autospectral density of 
these signals.  
 
The principal assumption for using spectral theory in stochastic processes is the stationarity of the 
process. This property is never exactly fulfilled in the case of EEG [31], but can be approximated 
on very short time intervals (several seconds). For more details about assumptions and algorithms 
from spectral theory see [30, 31]. Some results of applying spectral analysis to sleep EEG are 
incorporated in the Rechtschaffen and Kales rules for scoring sleep Stages [6].  
 
Dumermuth et al. [32, 33] have computed power and coherence spectra of all-night sleep EEG. In 
accordance with their results the integrated power and integrated coherence (0.1-7.0 Hz and 7.1-
12.0 Hz) increases during SWS with regard to wakefulness. During REM phase the power 
decreases, but the coherence between hemispheres increases or maintaines at the same level, it is 
most evident in the biparietal area [32]. The average power in frequency band 0-6 Hz is maximal 
in Stage 4; in the band 6-10 Hz it is in Stage 4 or in the Stage 3; in 12-14 Hz band in Stage 2 and 
in the band 14-30 Hz it is in the Stage 1 [33], see Figure 6. The shape of power spectra is similar 
in every Stage - the higher power is in the lower frequencies and vice versa. The range of power, 
e.g. the difference between highest and lowest power, varies with Stages, the lowest range is in 
Stage 1 (12-14 dB) and increases with the depth of sleep to Stage 4 (29-32 dB). In Stage REM the 
range of power is between Stages 1 - 2 and in waking it is similar as in Stage 1. Coherence in the 
low frequencies (0-8 Hz) is maximal in REM sleep, in the middle frequencies (8-14 Hz) in Stage 
3 or 4 and in the highest frequencies (14-30 Hz) again in REM sleep, it is most pronounced 
between symmetrical interhemisferic derivations.  
 
Achermann et al. have done more precise coherence analysis of sleep EEG [34]. They have 
evaluated Stage-dependent and topographic-dependent (intrahemisferic, interhemisferic - 
homologous and non-homologous comparisons) coherence spectra. Coherence spectra between 
homologous derivations have declining frequency-dependent shape, in contrast with all others 
derivations with flat, low-level spectra. In NREM sleep the coherence spectra show outstanding 
peak in sigma band (13-14 Hz) in all derivations and smaller peaks in alpha and low delta bands. 
In coherence spectra in REM sleep these peaks are attenuated.  
 
Merica and Blois [35] have compared the power in different frequency bands in NREM versus 
REM sleep episodes within sleep cycle as well as during the course of the night. Within NREM 
episode the power in β(14.75Hz-30Hz) band changes reciprocally to the slower bands (δ (0.5 Hz-
3.75 Hz), θ (3.75 Hz-6.75 Hz)). In the last quarter before REM phase powers in all bands but β 
decreases and β power increases. The decrease of α (6.75 Hz-12.5 Hz), σ (12.5 Hz-14.75 Hz), θ 
and δ powers persists also on the first 30 % of time of REM phase and then the powers are stable. 
β power remains at the same level as on the end of NREM phase. The power of slower frequency 
bands (α, θ and δ) in NREM decreases during the night. Power of delta band decreases in 
accordance with the homeostatic process. The evolution of beta and sigma powers during the 
night differ from the slower bands: after the second episode of NREM sleep their power increase. 
The course of powers of all bands in REM sleep is similar - it increases in all cases.  
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Figure 6: Power spectra density in different sleep Stages and in wakefulness, the EEG 
derivation is Fpz-Cz, all signals are from the first episode of NREM-REM sleep cycle.  

0dB = 1µV2/0.25Hz. In the low-frequency part of the spectra (0-10 Hz) the maximal power 
is in the SWS, in the 12-14 Hz band the power is maximal in the Stage 2 and in the fast-

frequency band the power is maximal in wakefulness. 
 
Ferri et al. [36] have focused on the analysis of high-frequency bands: β(15-25 Hz), γ1 (25-35 Hz) 
and γ2 (35-45 Hz). The powers in these frequency bands do not show significant changes, but the 
peaks of ratios of β/γ2 and γ1/γ2 are highly correlated with occurrence REM sleep, during the 
NREM phases these ratios decrease. The delta power displays reciprocal activity with these two 
ratios.  
 
However, brain as the highest control system with many feedbacks appears to be a suitable object 
for nonlinear theory. Many methods of nonlinear theory are based on reconstruction of the phase 
space. According to Taken’s theorem [37] it is possible to reconstruct a phase space topologically 
equivalent with the original one from a single observable variable. The reconstruction is done by 
time delay embedding (or related methods). From single variable X we obtain vectors in m-
dimensional phase space: xi = (Xi,Xi+τ¿ ,Xi+2τ , ...,Xi+(m−1)τ ) , τ is the time delay, m is the 
embedding dimension. Since we have only limited amount of data, the proper choice of m and τ is 
crucial for the good reconstruction. The irregular nonperiodic time series that are nevertheless 
deterministic and are just slightly predictable are called chaotic time series. Two main properties 
of chaotic systems are self-similarity and sensitive dependence on initial conditions. These 
features can be treated by computing correlation dimension D2 and Lyapunov exponent λ. 
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First attempts to apply variables from nonlinear theory to EEG appeared after publication of the 
Grassberger-Procaccia algorithm (GPA) for computing the correlation dimension D2. D2 is a 
measure of a complexity of the system. For deterministic systems D2 reaches finite values 
(suffcient embedding dimension must be specified), especially for chaotic systems it is noninteger 
value and for stochastic systems it is determined as high as the embedding dimension m. The 
finite estimate of D2 determines the number of effective degrees of freedom of the deterministic 
dynamical system. GPA is based on computation of the correlation sum [38]: 
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where xi, xj are vectors in the phase space, N is the number of vectors and Θ(ε−||xi − xj||))| is the 
Heaviside function, which is equal one if the pair of vectors xi, xj are less than a geometrical 
distance ε and zero otherwise. D2 is defined as: 
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C2 is computed for several values of embedding dimension m. For deterministic signals C2(ε) 
shows a power-law behavior, so if we take the local slope of ln C2 against ln ε, then the value of 
the plateau is taken as the estimate of D2. In the case of EEG there are some factors which 
influence the exactness of the result: the number of the data, the signal to noise ratio and the 
stationarity of the data. It is necessary to find a compromise of the data size, which is of sufficient 
length, but the stationarity can be assumed. Another characteristic, often used in analyses of 
physiological data, is the largest Lyapunov exponent λ - the measure of the exponential 
divergence of trajectories in the phase space [38]:  
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where δ0 is the beginning distance between two close trajectories in the phase space and δ∆n is this 
distance after ∆n time steps. Positive value of λ implies the presence of chaos behind the time 
series. Likewise as D2, the precise value of λ is not easy to compute for EEG, there are the same 
sources of problems, including stationarity level and noise corruption.  
 
In 1985, Babloyantz et al. [39] predicted the existence of the low-dimensional chaotic attractor in 
the sleep Stages 2 and 4 (for Stage 2, D2 = 5.03, for Stage 4 D2 = 4.05, λ ∈ (0.3, 0.8)). Other 
results also conclude that D2 in sleep are smaller than in awake EEG. D2 seems to be highest in 
REM sleep and smallest in the Stage 4 [40, 41]. Similarly, the deeper the sleep, the lower the 
values of λ [42]. However, the finite estimates of D2 of EEG were received with skepticism by 
many researchers from the area of nonlinear dynamics [41]. They pointed to some crucial details 
of the algorithm and assumptions, which may not hold (e.g. stationarity, the sufficient data size, 
proper embedding). Theiler et al. [43] have demonstrated that also for time series with insufficient 
length from autocorrelated Gaussian noise GPA gives spurious estimations of D2 and proposed to 
omit those pairs of vectors which are closer than autocorrelation time. The re-examination of the 
previous results using this correction [44] showed that the low-dimensional estimate of D2 in EEG 
was the artefact of the temporal autocorrelation. 
 
Another approach to investigate the nonlinear nature of signals is to compare them with surrogate 
data. Surrogate data are created by preserving one discriminatory property, while other properties 
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are changed. It is a statistical test that aims at finding out whether the data from different classes 
of processes could give similar values of the chosen property [41]. If the nonlinearity of the signal 
is assumed, the null hypothesis is stated that it is linear stochastic process and a set of stochastic 
surrogate data is made. If the value of computed property of the original signal is significantly 
different from the values of surrogates, the null hypothesis can be rejected. In opposite case it is 
possible to look for a new discriminatory property. More information about surrogate data method 
can be find in [45, 41, 38]. In testing the surrogate data, D2 does not appear to be the best 
discriminatory measure to distinguish between deterministic and stochastic nature of EEG [41]. 
Pereda et al. [46] have computed the fractal exponent β and the D2 of sleep Stages using surrogate 
data in order to reveal whether finite estimates of D2 are due to the nonlinear character of EEG, or 
whether EEG is better described as linearly-correlated noise. The power spectra of stochastic 
processes show the power-low decrease with frequency (1/fβ). Following their results, only SWS 
displays nonlinear structure (D2 of original EEG differs significantly from surrogate data), EEG 
spectra of the Stages 1, 2 and REM sleep show a frequency power-low dependence 1/fβ with β 
between 1 and 3. For β holds the more complex signal the lower value of β. Between β and D2 
there is a negative linear relationship in Stages I, II, REM and in wakefulness. Both indexes 
estimate the complexity of signal, however β is preferable to D2 due to its less time demanding 
computation.  
 
Olbrich et al. [47] used autoregressive modeling of EEG during sleep and surrogate testing. The 
null hypothesis of linearly correlated noise has to be rejected if less than 2 % of segments have 
length of 1s for every Stage of sleep. As a consequence of nonstationarity, the percentage of 
rejection rose with the length of segments.  
 
For detection of mutual relationship between more signals nonlinear methods can be used as well. 
Pereda et al. [48] have applied multivariate nonlinear time series analysis to investigate the 
interdependencies between channels C3/A2 and C4/A1 during all sleep Stages. The results were 
very sensitive to used parameters, the significance of results were checked by surrogate data. 
According to their results the interdependencies between these channels increased with depth of 
sleep and were mostly of linear type.  
 
The question whether EEG is deterministic or chaotic is still open, although the chance that the 
process behind EEG is low-deterministic is small. However, nonlinear measures could be 
beneficial in effort to find appropriate variables for characterizing and describing various 
psychophysiological states of the brain. Today we do not expect that the values of D2 will tell us 
the number of differential equations needed to describe the dynamical system. D2 is interpreted as 
a measure of the system ”complexity”.  
 
Fell, Röschke et al. [49] used several spectral and nonlinear measures in order to find the 12 best 
variables for discriminating the sleep Stages. The best discrimination is achieved with the 
combination of spectral entropy, λ, entropy of amplitudes, D2 and spectral edge. If the number of 
variables is limited to 2 or 3, the lowest error is obtained by combining λ, entropy of amplitudes 
and D2. Complexity measures related to the concept of entropy rates estimation were reported by 
Rosipal [50] as appropriate indicators in classification of brain states. This suggests that nonlinear 
measures may offer additional information about the brain state.  
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5. Conclusion  
 

Sleep is traditionally classified into sleep Stages that are scored after a system of rules of 
Rechtschaffen and Kales (RKS). It is based on wave patterns and characteristics of 
polysomnographic recordings. RKS has been used from 1968 and became the basic method for 
visual sleep analysis.  
 
In current research, big effort is spent on developing new systems suitable for automated scoring 
of sleep Stages. Many variables are tested for describing subtle changes in psychophysiological 
state of the brain. In the community of EEG researchers there are supporters of classical spectral 
methods and also their opponents from nonlinear group. It is unlikely that EEG can be regarded as 
stemming from a purely deterministic system, although brain certainly must contain deterministic 
features. In spite of some unresolved problems, the new nonlinear measure seems to be 
successful, if the main demand is to distinguish between normal and pathological states. In this 
effort the simultaneous usage of linear and nonlinear approaches appears to be more powerful 
than preferring only one of them. 
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