
Chapter 2—Ideal Capacitors 2–1

IDEAL CAPACITORS

Capacitors are used in almost every activity of electrical engineering, yet information on
capacitor characteristics is scattered through a variety of textbooks, databooks, and manu-
facturers literature. The following is an attempt to organize some of this information.

A typical capacitor is a two-terminal device consisting of two conductors separated by a
dielectric. When a voltage difference Vo is applied to the conductors, a charge of +Q will
appear on one conductor and an equal and opposite charge −Q on the other conductor. The
capacitance C is defined as the ratio of the charge on one conductor to the potential difference.

C =
Q

Vo
(1)

where C is in farads, Q is in coulombs, and Vo is in volts. Actually, one farad is a rather
large capacitance, so capacitance values are usually expressed in terms of µF (10−6F) or pF
(10−12F).

The total energy stored in a capacitor is

WE =
1
2

∫
vol

εE2dv =
1
2
CV 2

o =
1
2
QVo =

1
2

Q2

C
(2)

where WE is in joules, E is the electric field in V/m, and ε is the permittivity. The integral
expression shows that the energy stored in a capacitor with a fixed voltage difference across
it increases as the permittivity of the material increases.

The permittivity is usually expressed as the product of a relative permittivity εr and the
permittivity of free space εo.

ε = εrεo (3)

where

εo = 8.854 × 10−12F/m (4)

The relative permittivity is unity for a vacuum and typically in the range of 2 to 6 for
most dielectrics, as we shall discuss in more detail later.

Capacitors are frequently used in series in a circuit, as shown in Fig. 1. There will be no
actual charge transfer through the dielectric material. However, the electric fields will cause
a movement of charge within the series string. The battery supplies a positive charge to the
left plate of C1. This positive charge attracts an equivalent negative charge on the right plate
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of C1. The movement of this negative charge leaves behind a positive charge of the same
amount, which the electric field will force onto the left plate of C2. The process continues
until each capacitor has the same charge Q = Qs on its left plate. That is,

Qs = Q1 = Q2 = Q3 (5)

The total voltage across the series combination is

V = V1 + V2 + V3 (6)

and since

V =
Q

C
(7)

Q

Cs
=

Q

C1
+

Q

C2
+

Q

C3
(8)

which can be solved for the series capacitance Cs.

Cs =
1

1
C1

+ 1
C2

+ 1
C3

(9)
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Figure 1: Capacitors in Series

A circuit of parallel capacitors is shown in Fig. 2. The voltage on each capacitor is the
same and the amount of stored charge on each capacitor will be proportional to the individual
capacitance values. It is not hard to show that the total parallel capacitance Cp is given by

Cp = C1 + C2 + C3 (10)
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Figure 2: Capacitors in Parallel

1 Capacitance of Common Geometries

The ratio of Q to Vo depends on the geometrical arrangement of the conductors and on the
electrical characteristics of the dielectric. The capacitance of a parallel plate capacitor, as
illustrated in Fig. 3, is

C =
εA

d
(11)

where A is the area in m2 and d is the separation between plates. This formula is accurate
only when fringing can be neglected, that is, when d is small in comparison with A.
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Figure 3: A Parallel Plate Capacitor

Later on, we will be interested in the capacitance of geometries where there are two
different dielectrics. The simplest case is shown in Fig. 4. There is a layer of dielectric with
relative permittivity εr > 1 of thickness x, and a second layer of air, with thickness y. The
boundary between the two dielectrics can be considered a floating electrode. In fact, we can
place a conducting plate on the boundary without changing the results at all. We basically
have two capacitors in series. When we solve for the series capacitance, we get

C =
εoA

y

εr

(εr + x/y)
(12)
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Figure 4: Capacitor with Different Dielectrics

Another important geometry is that of a coaxial cable of inner radius a, outer radius b,
and length �, which has capacitance

C =
2πε�

ln(b/a)
(13)

The geometry for the coaxial cable is shown in Fig. 5.
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Figure 5: Coaxial Cable

The common 50 Ω coaxial cable 213/U (RG-8A/U) has a nominal capacitance of 29.5
pF/ft (96.8 pF/m). The small 75 Ω video cable 59B/U has a nominal capacitance of 21.0
pF/ft (68.9 pF/m). Most other 50 and 75 Ω cables will have capacitance values very close to
these. Physically larger cables capable of carrying more power will have b and a increased in
the same proportion so the ratio b/a and the capacitance will remain the same as that of a
smaller cable.

Another geometry of great practical interest is the twin conductor transmission line, shown
in Fig. 6a. This is composed of two conductors of radius r, with separation 2h between
conductor centers. The conductor-to-conductor capacitance Ccc is given by

Ccc =
πε�

ln[(h +
√

h2 − r2)/r]
=

πε�

cosh−1(h/r)
(14)

If the two conductors have a small radius and are located far apart, the expression for
capacitance becomes
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Ccc =
πε�

ln(2h/r)
(15)

The error in the approximate expression is only 5.26% when h = 2r and 1.16% when
h = 3r so the latter equation really has a wide range of usefulness.

The conductor-to-plane capacitance Ccp between a cylindrical conductor of radius r and a
conducting plane a distance h from the cylinder, as shown in Fig. 6b, is twice the value given
by the previous two equations.

Ccp =
2πε�

cosh−1(h/r)
≈ 2πε�

ln(2h/r)
(16)

This equation can be used to find the capacitance between two unequal conductors. We
find the capacitance of each conductor to an imaginary ground plane, and then combine the
two values for Ccp using the formula for capacitors in series.
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Figure 6: Twin Conductor Transmission Line

Another geometry of interest is that of a spherical capacitor of two concentric spheres with
radii a and b (b > a) as shown in Fig. 7. It is not practical to actually build capacitors this
way, but the symmetry allows an exact formula for capacitance to be calculated easily. This
is done in most introductory courses of electromagnetic theory. The capacitance is given by
[4, Page 165]

C =
4πε

1/a − 1/b
(17)

If the outer sphere is made larger, the capacitance decreases, but does not go to zero. In
the limit as b → ∞, the isolated or isotropic capacitance of a sphere of radius a becomes

C∞ = 4πεa (18)
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Figure 7: Spherical Capacitor

C∞ gives us a lower bound for the capacitance of a spherical top loading element of a
Tesla coil with respect to ground. One way of arriving at a reasonable estimate of the actual
capacitance is to start with the isotropic capacitance C∞ and add a correction term, as we
shall see in the next section.

We will also be interested is isotropic capacitances of shapes other than spheres. Some will
be difficult to impossible to calculate analytically, so we will use the isotropic capacitance of
a sphere as a starting point for making an estimate. Rectangular boxes and short cylinders,
for example, will have similar isotropic capacitances to a sphere. We just need to find an
equivalent radius (or diameter) for these nonspherical shapes. Several different equivalents
could be used, such as a geometrical mean equivalent, an arithmetic mean equivalent, or the
radius of a sphere with the same surface area as the other shape. It turns out that the simplest
method, the arithmetic mean, does quite well [2]. Consider a rectangular box with orthogonal
edge dimensions a, b, and c. Define an equivalent sphere diameter �e where

�e =
a + b + c

3
(19)

For other shapes we use the dimensions of the box in which the other shape can be placed.
Making the change from radius to diameter, the isotropic capacitance is now

C∞ = 2πε�e (20)

This approach will give acceptable results in many cases. But, of course, there is no way
of knowing the amount of error, or when some other approach would yield better results. It
will get us in the right ballpark, however, and sometimes allow us to determine lower bounds
of acceptable values obtained from other techniques.

Suppose, for example, that we wanted the capacitance between two spheres separated
by several diameters. We suspect that the parallel plate capacitor formula will not be very
accurate and are unable to locate a better formula. What can we do? The lower bound for the
capacitance between two spheres is just half of C∞, the isotropic capacitance for one sphere,
as can be argued from Fig. 8.

The dark point at the center of the figure is obviously ‘the’ point at infinity that math-
ematicians love to talk about. If the capacitance of each sphere with respect to this ‘point’
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Figure 8: Capacitance Between Two Spheres

is C∞, then the capacitance between spheres has a lower bound of C∞/2, from the formula
for two capacitors in series. Bringing the spheres closer together will increase the capacitance
but they cannot be separated far enough to reduce the capacitance below C∞/2.

2 Toroid Capacitance

An important emphasis of this book is the analysis of the Tesla coil. Among other things we
will be interested in the capacitance of the top element (usually a ‘fat’ toroid) with respect
to ground. We will also need the capacitance between adjacent turns (which look like ‘thin’
toroids) and finally the capacitance of a turn with respect to ground. As usual, we will use
the published results as much as possible and leave the derivations to others.

The dimensions of a toroid are shown in Fig. 9.
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Figure 9: Toroid Dimensions

There are other coordinate systems besides rectangular, cylindrical, and spherical in which
variables can be separated and Laplace’s equation solved. One of these is toroidal coordinates.
Moon and Spencer use this coordinate system to solve for the capacitance of an isolated toroid
[3, Page 375] as
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CMS = 8aε

[
Q−1/2(cosh η0)
P−1/2(cosh η0)

+ 2
∞∑

n=1

Qn−1/2(cosh η0)
Pn−1/2(cosh η0)

]
(21)

where P and Q are Legendre functions of first and second order and a and η0 will be discussed
later. The subscript ‘MS’ refers to Moon and Spencer, to distinguish the capacitance obtained
from the value to be obtained from some empirical formulas later.

Note that Eq. 21 is the corrected version. Godfrey Loudner [1] found that Moon and
Spencer had an extra π in their expression (second equation from the top on p. 375), and also
in Eq. 13.29 and Eq. 13.29a. There is also a typo on p. 373, second equation from the top,
where V/2 should be replaced by V/π. Even the great ones can make a mistake!

The Legendre functions can be written in many different forms, as integrals or infinite
series, converging for arguments greater than unity or less than unity, and so on. The non-
integer subscript (n−1/2) adds another layer of complexity. Many math books do not mention
the non-integer case, so one must be diligent in finding the correct expressions. The order of
difficulty is much greater than for the sphere. Our mothers warned us that there would be
days like this, but let us proceed.

Moon and Spencer give us an expression for Qn−1/2(cosh η0) [3, Page 373]

Qn−1/2(cosh η0) =
1√
2

∫ π

0

cos nθ dθ√
(cosh η0 − cos θ)

(22)

For some reason, they do not give a similar expression for Pn−1/2(cosh η0). However, they
do give plots for both functions, which is convenient for checking computational results.

Smythe [6, Page 159] gives an expression for P in the form

πPm
n′ (x) = (n′ + 1)(n′ + 2) · · · (n′ + m)

∫ π

0
[x +

√
x2 − 1 cos θ]n

′
cos mθ dθ (23)

This expression is valid for x > 0 and for any n′, including 1/2, 3/2, etc. We are only
interested in the case m = 0. If we interpret the product of terms ahead of the integral sign
as a factorial with zero entries (that is with a value of unity), the expression becomes

Pn′(x) =
1
π

∫ π

0
[x +

√
x2 − 1 cos θ]n

′
dθ (24)

These expressions for P and Q can be numerically integrated using any scientific program-
ming language (QuickBasic, etc.).

We now return to our discussion of a and η0. These are coordinate values in toroidal
coordinates, hence need to be translated into a more familiar coordinate system. The major
toroid radius w and the minor radius r are given by
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w = a coth η (25)

r =
a

sinh η
(26)

Eliminating a between the two equations yields

w = r sinh η coth η = r cosh η (27)

so
w

r
= cosh η = x (28)

We then solve for η as

η = cosh−1 w

r
= ln

(
w +

√
w2 − r2

r

)
(29)

and for a as

a = r sinh η =
r

2
(εη − ε−η) (30)

This ‘exact’ formulation is of most interest to EM theorists and computer programmers. It
will seem like overkill to most Tesla coil enthusiasts who just need to get in the right ballpark
with a capacitance estimate. For this reason empirical formulas have been developed which
yield an approximate value, adequate for most purposes, but obtained with much less effort.
Empirical formulas for the capacitance of a toroid are given by [5]

CS =
1.8(D − d)

ln(8(D − d)/d)
(d/D < 0.25) (31)

CS = 0.37D + 0.23d (d/D > 0.25) (32)

where D is the toroid major diameter, outside to outside, in cm, d is the toroid minor diameter
in cm, and the capacitance is given in pF. Table 1 gives some isotropic capacitance values,
both from the Moon and Spencer numerical integration and the empirical formulas. The
deviation or error of CS with respect to CMS is given in the last column in percent.

We see that the empirical formulation agrees with Moon and Spencer to within 1% for the
case of fat toroids, but gets progressively worse as the toroid gets thinner. The error is within
5% for d down to about 0.5 cm (4 gauge wire). Toroids this thin do not have the mechanical
strength necessary to serve as top loading elements of a Tesla coil, so we can conclude that
the empirical formulas are quite adequate for most purposes.
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Table 1: Isotropic Capacitance of Toroids
w r D d CMS CS error
meters cm pF pF %

.3 .15 90 30 40.46 40.20 −0.63

.2 .1 60 20 26.97 26.80 -0.63

.1 .05 30 10 13.49 13.40 −0.63

.2 .08 56 16 24.55 24.40 −0.62

.2 .06 52 12 22.02 21.93 −0.42

.2 .04 48 8 19.28 19.52 +1.23

.2 .02 44 4 16.00 16.43 +2.70

.2 .01 42 2 13.72 14.19 +3.42

.2 .005 41 1 12.00 12.48 +4.05

.2 .0025 40.5 .5 10.62 11.14 +4.97

.2 .001 40.2 .2 9.09 9.76 +7.36

3 Solenoid Capacitance (Medhurst)

The isotropic capacitance of a sphere was given above as a simple formula. We looked at
the theoretical formulas for capacitance of a toroid, but basically gave up and went to a
simpler empirical version. After that learning experience, we will not even try to write exact
equations for the isotropic capacitance of a cylinder. We will immediately write the empirical
equations as developed many years ago by a man named Medhurst. These will be expressed
in several different versions, to meet different needs. The simplest expression for the isotropic
capacitance of a cylindrical coil of wire, with diameter D and coil length �, is

CM = HD pF (33)

where D is in cm, and H is a multiplying factor that equals 0.51 for �/D = 2, 0.81 for �/D
= 5, and varies linearly between 0.51 and 0.81 for �/D between 2 and 5. Most coilers prefer
values for �/D between 3.5 and 4.5, so this linear range is adequate for most purposes.

An expression for H that works for �/D between 2 and 8 is

H = 0.100976
�

D
+ 0.30963 (34)

Another expression for H that works for �/D between 1 and 8 is

H = 0.0005(
�

D
)4 − 0.0097(

�

D
)3 + 0.0648(

�

D
)2 − 0.0757(

�

D
) + 0.4723 (35)
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4 Tesla Coil Capacitance

We now have expressions for the isotropic capacitance CS of a toroid and the isotropic ca-
pacitance CM of a coil. The next step would be to set the toroid on top the coil and add
the two capacitances to get an effective capacitance Ctc for the Tesla coil. Unfortunately, this
only works when the toroid is far away from the solenoid. As the toroid is brought near the
coil form, shielding occurs such that the effective capacitance is less than the sum of the two
isotropic capacitances. The Tesla coil capacitance might be written as

Ctc = CM + KCS (36)

where K < 1. A value of K = 0.75 should result in a number for Ctc within 20% of the correct
value for most Tesla coils. The resonant frequency is related to the square root of Ctc so a
20% error in capacitance results in only a 10% error in resonant frequency.

Most readers probably feel disappointed here. We have gone to considerable effort and
still come up short of an accurate formula for Ctc. Our effort is not entirely wasted because
we can do ‘what if’ analyses relatively quickly. Questions about the effect of changing coil
diameter, coil length, or toroid diameter can be answered with adequate accuracy.

Someone might suggest using a modern digital capacitance meter to measure Ctc. This
method would probably have greater error than the above formula, because the leads of the
capacitance meter have a similar capacitance value as Ctc. Also the presence of the meter and
a human body will change the capacitance.

It is possible to calculate Ctc numerically using Gauss’s Law. If one is careful about
measuring and entering all the dimensions and the locations of grounded surfaces, one should
get a value for Ctc well within 5% of the correct value. There are programs available in the
Tesla coil community that do this.
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