To whom it may concern!

SOME USEFUL ELECTRIC CIRCUITS

1 The twin-T Bridge

The twin-T bridge shown in Fig. I is frequently used as a feedback element in
selective amplifiers, oscillators and for many other purposes. It consists of two T-circuits
connected in parallel. The analysis of this circuit is best carried out by transforming both
T into equivalent IT-connection and connecting them parallel as shown in Fig. 2, where

R
o— —O0
II o Il
| |
C C
Uinp Uout

1)

)

3)

Z g |:i| Uoul

Fig. 2 Fig. 3



(such transfiguration will be analysed in the article "Delta-star transformation").
Adding the impedances in Fig. 2 in parallel we get a new circuit shown in Fig. 3,
where
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The complex transmission coefficient is
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The absolute value of the transmission coefficient is given by
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where a = 1/(RC). If the resistors and capacitors in Fig. I are fixed, the output voltage
is dependent on the frequency of the input voltage. The dependence of U, (@ ay) is
shown in Fig. 4. We see, that there is a single frequency
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at which the output voltage is zero. In the vicinity of this frequency the circuit behaves

itself as a resonant circuit with relatively high Q-factor. The circuit is particularly useful

at low frequencies, where the equivalent RLC-circuit request large values of L and C.
Another way to analyse the twin-T bridge is using the method of node voltages.

2 The bridged T

If we remove the capacitor 2C in the circuit of Fig. I, we get a new selective
element, commonly called the bridged T-filter, shown in Fig. 5. The analysis similar to
this used in preceding case leads to an equivalent II-connection (see Fig. 3), with
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The complex transmission coefficient is
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where
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From the expression (11) is obvious, that the output voltage is real if @ = @) =

= 1/(RC), and at this frequency approaches minimum, which is
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The dependence U, (@ ay) is shown in Fig. 4 (dashed curve).

3 Delta-star transformation

The passive three terminal network consisting of three impedances Z,, Z and Z as
shown in Fig. Ia, is said to form a delta (A) — connection. The passive three terminal
network consisting of three impedances Z,, Z, and Z; as shown in Fig. 1b, is said to

form a star (Y) — connection. The two circuits are equivalent if their respective input,

output and transfer impedance are equal.
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Assuming open circuit conditions, we get from Figs. Ia, 1b:
Impedance Delta Star
Zy(Z,+2Z
Z ., = Zy(Zs+Zc) = Z,+Z,
V/
Z(Z,+Z
Z, = Zc(Zy+2p) = Z,+Z,
VA
Z,(Zy+Z
Zy, = ZaZptZo) l; c) = Z, +Z,

where



Z=Z,+Zy+Z,.

Rearranging the above equations gives
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Substracting Eq. (2) from Eq. (1)
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Adding Eq. (3) and Eq. (4) gives
Z1 — ZAZB ,
VA
similarly
Z2 — ZBZC ,
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The reverse transformation of “star network™ into “delta” is best carried out by using
impedances replaced by admittances, and short circuiting one pair of corresponding
terminals in each network at a time. Thus from Figs. Ia, 1b we get:

Short - circuited

terminals Delta
1-3 Y, = Yp+Y, =
2-3 Y, = Y, +Y, =
1- 2 Y2_3 = YC + YA =
where
Y = Yl + Y2 + Y3.
Solving for “delta” impedances:
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in terms of impedances
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